
Citation: Maryam Sadat Sadatrasul, Neda Fiezi, Nasir Ghasemian, Mohammad Shenagari, Saber Esmaeili, Ehsan Ollah Jazaeri, Asghar Abdoli, Abbas Jamali. Oil-in-water emulsion formulated with eucalyptus leaves extract inhibit influenza virus binding and replication in vitro[J]. AIMS Microbiology, 2017, 3(4): 899-907. doi: 10.3934/microbiol.2017.4.899
[1] | Abel Cabrera Martínez, Iztok Peterin, Ismael G. Yero . Roman domination in direct product graphs and rooted product graphs. AIMS Mathematics, 2021, 6(10): 11084-11096. doi: 10.3934/math.2021643 |
[2] | Fu-Tao Hu, Xing Wei Wang, Ning Li . Characterization of trees with Roman bondage number 1. AIMS Mathematics, 2020, 5(6): 6183-6188. doi: 10.3934/math.2020397 |
[3] | Rangel Hernández-Ortiz, Luis Pedro Montejano, Juan Alberto Rodríguez-Velázquez . Weak Roman domination in rooted product graphs. AIMS Mathematics, 2021, 6(4): 3641-3653. doi: 10.3934/math.2021217 |
[4] | Mingyu Zhang, Junxia Zhang . On Roman balanced domination of graphs. AIMS Mathematics, 2024, 9(12): 36001-36011. doi: 10.3934/math.20241707 |
[5] | Jian Yang, Yuefen Chen, Zhiqiang Li . Some sufficient conditions for a tree to have its weak Roman domination number be equal to its domination number plus 1. AIMS Mathematics, 2023, 8(8): 17702-17718. doi: 10.3934/math.2023904 |
[6] | Saeed Kosari, Yongsheng Rao, Zehui Shao, Jafar Amjadi, Rana Khoeilar . Complexity of signed total $k$-Roman domination problem in graphs. AIMS Mathematics, 2021, 6(1): 952-961. doi: 10.3934/math.2021057 |
[7] | Zhibin Du, Ayu Ameliatul Shahilah Ahmad Jamri, Roslan Hasni, Doost Ali Mojdeh . Maximal first Zagreb index of trees with given Roman domination number. AIMS Mathematics, 2022, 7(7): 11801-11812. doi: 10.3934/math.2022658 |
[8] | Bana Al Subaiei, Ahlam AlMulhim, Abolape Deborah Akwu . Vertex-edge perfect Roman domination number. AIMS Mathematics, 2023, 8(9): 21472-21483. doi: 10.3934/math.20231094 |
[9] | Chang-Xu Zhang, Fu-Tao Hu, Shu-Cheng Yang . On the (total) Roman domination in Latin square graphs. AIMS Mathematics, 2024, 9(1): 594-606. doi: 10.3934/math.2024031 |
[10] | Abel Cabrera-Martínez, Andrea Conchado Peiró . On the $ \{2\} $-domination number of graphs. AIMS Mathematics, 2022, 7(6): 10731-10743. doi: 10.3934/math.2022599 |
In this paper, we shall only consider graphs without multiple edges or loops. Let G=(V(G),E(G)) be a graph, v∈V(G), the neighborhood of v in G is denoted by N(v). That is to say N(v)={u|uv∈E(G),u∈V(G)}. The degree of a vertex v is denoted by d(v), i.e. d(v)=|N(v)|. A graph is trivial if it has a single vertex. The maximum degree and the minimum degree of a graph G are denoted by Δ(G) and δ(G), respectively. Denote by Kn the complete graph on n vertices.
A subset D of the vertex set of a graph G is a dominating set if every vertex not in D has at least one neighbor in D. The domination number γ(G) is the minimum cardinality of a dominating set of G. A dominating set D of G with |D|=γ(G) is called a γ-set of G.
Roman domination of graphs is an interesting variety of domination, which was proposed by Cockayne et al. [6]. A Roman dominating function (RDF) of a graph G is a function f:V(G)→{0,1,2} such that every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. The weight w(f) of a Roman dominating function f is the value w(f)=∑u∈V(G)f(u). The minimum weight of an RDF on a graph G is called the Roman domination number γR(G) of G. An RDF f of G with w(f)=γR(G) is called a γR-function of G. The problems on domination and Roman domination of graphs have been investigated widely, for example, see list of references [8,9,10,13] and [3,7,12], respectively.
In 2016, Chellali et al. [5] introduced a variant of Roman dominating functions, called Roman {2}-dominating functions. A Roman {2}-dominating function (R{2}DF) of G is a function f:V→{0,1,2} such that ∑u∈N(v)f(u)≥2 for every vertex v∈V with f(v)=0. The weight of a Roman {2}-dominating function f is the sum ∑v∈Vf(v). The Roman {2}-domination number γ{R2}(G) is the minimum weight of an R{2}DF of G. Note that if f is an R{2}DF of G and v is a vertex with f(v)=0, then either there is a vertex u∈N(v) with f(u)=2, or at least two vertices x,y∈N(v) with f(x)=f(y)=1. Hence, an R{2}DF of G is also an RDF of G, which is also mentioned by Chellali et al [5]. Moreover, they showed that the decision problem for Roman {2}-domination is NP-complete, even for bipartite graphs.
In fact, a Roman {2}-dominating function is essentially the same as a weak {2}-dominating function, which was introduced by Brešar et al. [1] and studied in literatures [2,11,14,15].
For a mapping f:V(G)→{0,1,2}, let (V0,V1,V2) be the ordered partition of V(G) induced by f such that Vi={x:f(x)=i} for i=0,1,2. Note that there exists a 1-1 correspondence between the function f and the partition (V0,V1,V2) of V(G), so we will write f=(V0,V1,V2).
Chellali et al. [4] obtained the following lower bound of Roman domination number.
Lemma 1. (Chellali et al. [4]) Let G be a nontrivial connected graph with maximum degree Δ. Then γR(G)≥Δ+1Δγ(G).
In this paper, we generalize this result on nontrivial connected graph G with maximum degree Δ and minimum degree δ. We prove that γR(G)≥Δ+2δΔ+δγ(G). As a corollary, we obtain that 32γ(G)≤γR(G)≤2γ(G) for any nontrivial regular graph G. Moreover, we prove that γR(G)≤2γ{R2}(G)−1 for every graph G and there exists a graph Ik such that γ{R2}(Ik)=k and γR(Ik)=2k−1 for any integer k≥2.
Lemma 2. (Cockayne et al. [6]) Let f=(V0,V1,V2) be a γR-function of an isolate-free graph G with |V1| as small as possible. Then
(i) No edge of G joins V1 and V2;
(ii) V1 is independent, namely no edge of G joins two vertices in V1;
(iii) Each vertex of V0 is adjacent to at most one vertex of V1.
Theorem 3. Let G be a nontrivial connected graph with maximum degree Δ(G)=Δ and minimum degree δ(G)=δ. Then
γR(G)≥Δ+2δΔ+δγ(G). | (2.1) |
Moreover, if the equality holds, then
γ(G)=n(Δ+δ)Δδ+Δ+δandγR(G)=n(Δ+2δ)Δδ+Δ+δ. |
Proof. Let f=(V0,V1,V2) be a γR-function of G with V1 as small as possible. By Lemma 2, we know that N(v)⊆V0 for any v∈V1 and N(v1)∩N(v2)=∅ for any v1,v2∈V1. So we have
|V1|≤|V0|δ | (2.2) |
Since G is nontrivial, it follows that V2≠∅. Note that every vertex in V2 is adjacent to at most Δ vertices in V0; we have
|V0|≤Δ|V2| | (2.3) |
By Formulae (2.2) and (2.3), we have
|V1|≤Δδ|V2| | (2.4) |
By the definition of an RDF, every vertex in V0 has at least one neighbor in V2. So V1∪V2 is a dominating set of G. Together with Formula (2.4), we can obtain that
γ(G)≤|V1|+|V2|≤Δδ|V2|+|V2|=Δ+δδ|V2|. |
Note that f is a γR-function of G; we have
γR(G)=|V1|+2|V2|=(|V1|+|V2|)+|V2|≥γ(G)+δΔ+δγ(G)=Δ+2δΔ+δγ(G). |
Moreover, if the equality in Formula (2.1) holds, then by previous argument we obtain that |V1|=|V0|δ, |V0|=Δ|V2|, and V1∪V2 is a γ-set of G. Then we have
n=|V0|+|V1|+|V2|=|V0|+|V0|δ+|V0|Δ=Δδ+Δ+δΔδ|V0|. |
Hence, we have
|V0|=nΔδΔδ+Δ+δ,|V1|=nΔΔδ+Δ+δ, and |V2|=nδΔδ+Δ+δ. |
So
γR(G)=|V1|+2|V2|=n(Δ+2δ)Δδ+Δ+δ and γ(G)=|V1|+|V2|=n(Δ+δ)Δδ+Δ+δ |
since V1∪V2 is a γ-set of G. This completes the proof.
Now we show that the lower bound in Theorem 3 can be attained by constructing an infinite family of graphs. For any integers k≥2, δ≥2 and Δ=kδ, we construct a graph Hk from K1,Δ by adding k news vertices such that each new vertex is adjacent to δ vertices of K1,Δ with degree 1 and no two new vertices has common neighbors. Then add some edges between the neighbors of each new vertex u such that δ(Hk)=δ and the induced subetaaph of N(u) in Hk is not complete. The resulting graph Hk is a connected graph with maximum degree Δ(G)=Δ and maximum degree δ(G)=δ. It can be checked that γ(Hk)=k+1 and γR(Hk)=k+2=Δ+2δΔ+δγ(G).
For example, if k=2, δ=3 and Δ=kδ=6, then the graph H2 constructed by the above method is shown in Figure 1, where u1 and u2 are new vertices.
Furthermore, by Theorem 3, we can obtain a lower bound of the Roman domination number on regular graphs.
Corollary 4. Let G be an r-regular graph, where r≥1. Then
γR(G)≥32γ(G) | (2.5) |
Moreover, if the equality holds, then
γ(G)=2nr+2andγR(G)=3nr+2. |
Proof. Since G is r-regular, we have Δ(G)=δ(G)=r. By Theorem 3 we can obtain that this corollary is true.
For any integer n≥2, denote by G2n the (2n−2)-regular graph with 2n vertices, namely G2n is the graph obtained from K2n by deleting a perfect matching. It can be checked that γ(G2n)=2 and γR(G2n)=3=32γ(G) for any n≥2. Hence, the bound in Corollary 4 is attained.
Note that γR(G)≤2γ(G) for any graph G; we can conclude the following result.
Corollary 5. Let G be an r-regular graph, where r≥1. Then
32γ(G)≤γR(G)≤2γ(G). |
Chellali et al. [5] obtain the following bounds for the Roman {2}-domination number of a graph G.
Lemma 6. (Chellali et al. [5]) For every graph G, γ(G)≤γ{R2}(G)≤γR(G)≤2γ(G).
Lemma 7. (Chellali et al. [5]) If G is a connected graph of order n and maximum degree Δ(G)=Δ, then
γ{R2}(G)≥2nΔ+2. |
Theorem 8. For every graph G, γR(G)≤2γ{R2}(G)−1. Moreover, for any integer k≥2, there exists a graph Ik such that γ{R2}(Ik)=k and γR(Ik)=2k−1.
Proof. Let f=(V0,V1,V2) be an γ{R2}-function of G. Then γ{R2}(G)=|V1|+2|V2| and γR(G)≤2|V1|+2|V2| since V1∪V2 is a dominating set of G. If |V2|≥1, then γR(G)≤2|V1|+2|V2|=2γ{R2}(G)−2|V2|≥2γ{R2}(G)−2. If |V2|=0, then every vertex in V0 is adjacent to at least two vertices in V1. So for any vertex u∈V1, f′=(V0,{u},V1∖{u}) is an RDF of G. Then we have γR(G)≤1+2|V1∖{u}|=2|V1|−1=2γ{R2}(G)−1.
For any integer k≥2, let Ik be the graph obtained from Kk by replacing every edge of Kk with two paths of length 2. Then Δ(Ik)=2(k−1) and δ(Ik)=2. We first prove that γ{R2}(Ik)=k. Since V(Ik)=|V(Kk)|+2|E(Kk)|=k+2⋅k(k−1)2=k2, by Lemma 7 we can obtain γ{R2}(Ik)≥2|V(Ik)|Δ(Ik)+2=2k22(k−1)+2=k. On the other hand, let f(x)=1 for each x∈V(Ik) with d(x)=2(k−1) and f(y)=0 for each y∈V(Ik) with d(y)=2. It can be seen that f is an R{2}DF of Ik and w(f)=k. Hence, γ{R2}(Ik)=k.
We now prove that γR(Ik)=2k−1. Let g={V′1,V′2,V′3} be a γR-function of Ik such that |V′1| is minimum. For each 4-cycle C=v1v2v3v4v1 of Ik with d(v1)=d(v3)=2(k−1) and d(v2)=d(v4)=2, we have wg(C)=g(v1)+g(v2)+g(v3)+g(v4)≥2. If wg(C)=2, then by Lemma 2(iii) we have g(vi)∈{0,2} for any i∈{1,2,3,4}. Hence, one of v1 and v3 has value 2 and g(v2)=g(v4)=0. If wg(C)=3, then by Lemma 2(i) we have {g(v1),g(v3)}={1,2} or {g(v2),g(v4)}={1,2}. When {g(v2),g(v4)}={1,2}, let {g′(v1),g′(v2)}={1,2}, g′(v2)=g′(v4)=0 and g′(x)=g(x) for any x∈V(Ik)∖{v1,v2,v3,v4}. Then g′ is also a γR-function of Ik. If wg(C)=4, then exchange the values on C such that v1,v3 have value 2 and v2,v4 have value 0. So we obtain that Ik has a γR-function h such that h(y)=0 for any y∈V(Ik) with degree 2. Note that any two vertices of Ik with degree 2(k−1) belongs to a 4-cycle considered above; we can obtain that there is exactly one vertex z of Ik with degree 2(k−1) such that h(z)=1. Hence, γR(Ik)=w(h)=2k−1.
Note that the graph Ik constructed in Theorem 8 satisfies that γ(Ik)=k=γ{R2}(Ik). By Theorem 8, it suffices to prove that γ(Ik)=k. Let A={v:v∈V(Ik),d(v)=2(k−1)} and B=V(Ik)∖A. We will prove that Ik has a γ-set containing no vertex of B. Let D be a γ-set of Ik. If D contains a vertex u∈B. Since the degree of u is 2, let u1 and u2 be two neighbors of u in Ik. Then d(u1)=d(u2)=2(k−1) and, by the construction of Ik, u1 and u2 have two common neighbors u,u′ with degree 2. Hence, at least one of u′,u1, and u2 belongs to D. Let D′=(D∖{u,u′})∪{u1,u2}. Then D′ is also a γ-set of Ik. Hence, we can obtain a γ-set of Ik containing no vertex of B by performing the above operation for each vertex v∈D∩B. So A is a γ-set of Ik and γ(Ik)=|A|=k.
By Lemma 6 and Theorem 8, we can obtain the following corollary.
Corollary 9. For every graph G, γ{R2}(G)≤γR(G)≤2γ{R2}(G)−1.
Theorem 10. For every graph G, γR(G)≤γ(G)+γ{R2}(G)−1.
Proof. By Lemma 6 we can obtain that γR(G)≤2γ(G)≤γ(G)+γ{R2}(G). If the equality holds, then γR(G)=2γ(G) and γ(G)=γ{R2}(G). So γR(G)=2γ{R2}(G), which contradicts Theorem 8. Hence, we have γR(G)≤γ(G)+γ{R2}(G)−1.
In this paper, we prove that γR(G)≥Δ+2δΔ+δγ(G) for any nontrivial connected graph G with maximum degree Δ and minimum degree δ, which improves a result obtained by Chellali et al. [4]. As a corollary, we obtain that 32γ(G)≤γR(G)≤2γ(G) for any nontrivial regular graph G. Moreover, we prove that γR(G)≤2γ{R2}(G)−1 for every graph G and the bound is achieved. Although the bounds in Theorem 3 and Theorem 8 are achieved, characterizing the graphs that satisfy the equalities remain a challenge for further work.
The author thanks anonymous referees sincerely for their helpful suggestions to improve this work. This work was supported by the National Natural Science Foundation of China (No.61802158) and Natural Science Foundation of Gansu Province (20JR10RA605).
The author declares that they have no conflict of interest.
[1] | Miller JS (2001) The Global Importance of Plants as Sources of Medicines and the Future Potential of Chinese Plants, In: Drug Discovery and Traditional Chinese Medicine, Springer, 33–42. |
[2] |
Jassim S, Naji MA (2003) Novel antiviral agents: a medicinal plant perspective. J Appl Microbiol 95: 412–427. doi: 10.1046/j.1365-2672.2003.02026.x
![]() |
[3] |
Duggar BM, Armstrong JK (1925) The effect of treating the virus of tobacco mosaic with the juices of various plants. Ann Mo Bot Gard 12: 359–366. doi: 10.2307/2394061
![]() |
[4] | Waziri HM (2015) Plants as antiviral agents. J Plant Pathol Microbiol 6: 1. |
[5] | El-Baz FK, Mahmoud K, El-Senousy WM, et al. (2015) Antiviral-antimicrobial and schistosomicidal activities of eucalyptus camaldulensis essential oils. Int J Pharm Sci Rev Res 31: 262–268. |
[6] |
Cermelli C, Fabio A, Fabio G, et al. (2008) Effect of eucalyptus essential oil on respiratory bacteria and viruses. Curr Microbiol 56: 89–92. doi: 10.1007/s00284-007-9045-0
![]() |
[7] | Sarrazin C, Do M, Boix M (2009) Carrier in oil-in-water emulsion form, particularly for cosmetic or dermatological use. Google Patents. |
[8] | Prankerd R, Stella V (1990) The use of oil-in-water emulsions as a vehicle for parenteral drug administration. PDA J Pharm Sci Tech 44: 139–149. |
[9] | Chavan R, Chaturvedi P, Chowdhary A (2015) Anti-influenza potential of alkaloidal molecules of jatropha curcas leaves. Int J Pharm Sci Res 6: 4705. |
[10] |
Brankston G, Gitterman L, Hirji Z, et al. (2007) Transmission of influenza A in human beings. Lancet Infect Dis 7: 257–265. doi: 10.1016/S1473-3099(07)70029-4
![]() |
[11] |
Weinstein RA, Bridges CB, Kuehnert MJ, et al. (2003) Transmission of influenza: implications for control in health care settings. Clin Infect Dis 37: 1094–1101. doi: 10.1086/378292
![]() |
[12] | Seyyednejad SM, Motamedi H, Najvani FD, et al. (2014) Antibacterial effect of eucalyptus microtheca. Int J Enteric Pathog 2: 1–5. |
[13] | Suzuki T (1981) Process for preparing stable oil-in-water emulsions. Google Patents. |
[14] | Mehrbod P, Amini E, Tavasoti KM (2009) Antiviral activity of garlic extract on influenza virus. |
[15] |
Abdoli A, Soleimanjahi H, Jamali A, et al. (2016) Comparison between MDCK and MDCK-SIAT1 cell lines as preferred host for cell culture-based influenza vaccine production. Biotechnol Lett 38: 941–948. doi: 10.1007/s10529-016-2069-4
![]() |
[16] | Abdoli A, Soleimanjahi H, Kheiri MT, et al. (2014) An H1-H3 chimeric influenza virosome confers complete protection against lethal challenge with PR8 (H1N1) and X47 (H3N2) viruses in mice. Pathog Dis 72: 197–207. |
[17] | Abdoli A, Soleimanjahi H, Kheiri MT, et al. (2013) Determining influenza virus shedding at different time points in Madin-Darby canine kidney cell line. Cell J 15: 130. |
[18] |
Lowen AC, Steel J, Mubareka S, et al. (2008) High temperature (30 C) blocks aerosol but not contact transmission of influenza virus. J Virol 82: 5650–5652. doi: 10.1128/JVI.00325-08
![]() |
[19] |
Smith DJ, Lapedes AS, de Jong JC, et al. (2004) Mapping the antigenic and genetic evolution of influenza virus. Science 305: 371–376. doi: 10.1126/science.1097211
![]() |
[20] |
Gerhard W, Mozdzanowska K, Zharikova D (2006) Prospects for universal influenza virus vaccine. Emerg Infect Dis 12: 569. doi: 10.3201/eid1204.051020
![]() |
[21] |
Collins PJ, Haire LF, Lin YP, et al. (2008) Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature 453: 1258–1261. doi: 10.1038/nature06956
![]() |
[22] |
Gubareva LV, Kaiser L, Hayden FG (2000) Influenza virus neuraminidase inhibitors. Lancet 355: 827–835. doi: 10.1016/S0140-6736(99)11433-8
![]() |
[23] |
Regoes RR, Bonhoeffer S (2006) Emergence of drug-resistant influenza virus: population dynamical considerations. Science 312: 389–391. doi: 10.1126/science.1122947
![]() |
[24] |
Ehrhardt C, Dudek SE, Holzberg M, et al. (2013) A plant extract of Ribes nigrum folium possesses anti-influenza virus activity in vitro and in vivo by preventing virus entry to host cells. PLoS One 8: e63657. doi: 10.1371/journal.pone.0063657
![]() |
[25] | Sawai R, Kuroda K, Shibata T, et al. (2008) Anti-influenza virus activity of Chaenomeles sinensis. J Ethnopharmacol 118: 108–112. |
[26] |
Roschek B, Fink RC, McMichael MD, et al. (2009) Elderberry flavonoids bind to and prevent H1N1 infection in vitro. Phytochemistry 70: 1255–1261. doi: 10.1016/j.phytochem.2009.06.003
![]() |
[27] |
Ge H, Wang YF, Xu J, et al. (2010) Anti-influenza agents from traditional Chinese medicine. Nat Prod Rep 27: 1758–1780. doi: 10.1039/c0np00005a
![]() |
[28] |
Ahmad I, Beg AZ (2001) Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J Ethnopharmacol 74: 113–123. doi: 10.1016/S0378-8741(00)00335-4
![]() |
[29] | Falahati M, Tabrizib NO, Jahaniani F (2005) Anti dermatophyte activities of Eucalyptus camaldulensis in comparison with Griseofulvin. Iran J Pharmacol Ther 4: 80–83. |
[30] |
Ikuta K, Hashimoto K, Kaneko H, et al. (2012) Anti-viral and anti-bacterial activities of an extract of blackcurrants (Ribes nigrum L.). Microbiol Immunol 56: 805–809. doi: 10.1111/j.1348-0421.2012.00510.x
![]() |
[31] |
Nisisako T, Okushima S, Torii T (2005) Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. Soft Matter 1: 23–27. doi: 10.1039/b501972a
![]() |
[32] | Yoneyama T, Matsuoka Y, Suzuki H, et al. (1994) Water-in-oil emulsion solid cosmetic composition. Google Patents. |
1. | Chang-Xu Zhang, Fu-Tao Hu, Shu-Cheng Yang, On the (total) Roman domination in Latin square graphs, 2024, 9, 2473-6988, 594, 10.3934/math.2024031 | |
2. | Sakander Hayat, Raman Sundareswaran, Marayanagaraj Shanmugapriya, Asad Khan, Venkatasubramanian Swaminathan, Mohamed Hussian Jabarullah, Mohammed J. F. Alenazi, Characterizations of Minimal Dominating Sets in γ-Endowed and Symmetric γ-Endowed Graphs with Applications to Structure-Property Modeling, 2024, 16, 2073-8994, 663, 10.3390/sym16060663 | |
3. | Tatjana Zec, On the Roman domination problem of some Johnson graphs, 2023, 37, 0354-5180, 2067, 10.2298/FIL2307067Z | |
4. | Jian Yang, Yuefen Chen, Zhiqiang Li, Some sufficient conditions for a tree to have its weak Roman domination number be equal to its domination number plus 1, 2023, 8, 2473-6988, 17702, 10.3934/math.2023904 |