Research article Special Issues

Sense of Community among Chinese Older Adults in the Greater Chicago Area: Findings from the PINE Study

  • Background: Sense of community is a concept that has significant implications cross multiple disciplines, particularly in public health practice. However, there exists a knowledge gap in utilizing the sense of community in investigating the health of older immigrant populations. Objective: This study aimed to explore the perception of the sense of community among community-dwelling U.S. Chinese older adults. Methods: Data were from the PINE study, a population-based survey of U.S. Chinese older adults aged 60 years and above in the greater Chicago area. We administered the Sense of Community Index to measure the levels of sense of community. Socio-demographic information was also collected. Results: Our results suggest that Chinese older adults in this study sample reported a strong sense of community. In total, 86.7% of the participants reported satisfaction with the current neighborhood, and 78.4% expressed their desire to continue living in the community as long as possible. In addition, older age (r =0.11), having higher levels of income (r =0.08), being female (r =0.08), being unmarried (r =-0.06), living with fewer people (r =-0.22), having more children (r =0.11), having been in the U.S. for more years (r =0.12), longer residency in the community (r =0.15), higher overall health status (r =0.18), better quality of life (r =0.23), and improved health status in the past year (r =0.11) were significantly correlated with the higher levels of the sense of the community. Conclusions: The study investigation provided the basis for generating empirical knowledge for understanding the sense of community among U.S. Chinese older adults. Future research is needed to delineate the mechanisms underlying sense of community and health in the increasingly diverse aging population.

    Citation: Xinqi Dong, E-Shien Chang, Melissa A. Simon. Sense of Community among Chinese Older Adults in the Greater Chicago Area: Findings from the PINE Study[J]. AIMS Medical Science, 2014, 1(1): 28-39. doi: 10.3934/medsci.2014.1.28

    Related Papers:

    [1] Tahir Mahmood, Azam, Ubaid ur Rehman, Jabbar Ahmmad . Prioritization and selection of operating system by employing geometric aggregation operators based on Aczel-Alsina t-norm and t-conorm in the environment of bipolar complex fuzzy set. AIMS Mathematics, 2023, 8(10): 25220-25248. doi: 10.3934/math.20231286
    [2] Aziz Khan, Shahzaib Ashraf, Saleem Abdullah, Muhammad Ayaz, Thongchai Botmart . A novel decision aid approach based on spherical hesitant fuzzy Aczel-Alsina geometric aggregation information. AIMS Mathematics, 2023, 8(3): 5148-5174. doi: 10.3934/math.2023258
    [3] Wajid Ali, Tanzeela Shaheen, Iftikhar Ul Haq, Hamza Toor, Faraz Akram, Harish Garg, Md. Zia Uddin, Mohammad Mehedi Hassan . Aczel-Alsina-based aggregation operators for intuitionistic hesitant fuzzy set environment and their application to multiple attribute decision-making process. AIMS Mathematics, 2023, 8(8): 18021-18039. doi: 10.3934/math.2023916
    [4] Chunxiao Lu, Zeeshan Ali, Peide Liu . Selection of artificial neutral networks based on cubic intuitionistic fuzzy Aczel-Alsina aggregation operators. AIMS Mathematics, 2024, 9(10): 27797-27833. doi: 10.3934/math.20241350
    [5] Muhammad Naeem, Younas Khan, Shahzaib Ashraf, Wajaree Weera, Bushra Batool . A novel picture fuzzy Aczel-Alsina geometric aggregation information: Application to determining the factors affecting mango crops. AIMS Mathematics, 2022, 7(7): 12264-12288. doi: 10.3934/math.2022681
    [6] Ghous Ali, Kholood Alsager, Asad Ali . Novel linguistic $ q $-rung orthopair fuzzy Aczel-Alsina aggregation operators for group decision-making with applications. AIMS Mathematics, 2024, 9(11): 32328-32365. doi: 10.3934/math.20241551
    [7] Shichao Li, Zeeshan Ali, Peide Liu . Prioritized Hamy mean operators based on Dombi t-norm and t-conorm for the complex interval-valued Atanassov-Intuitionistic fuzzy sets and their applications in strategic decision-making problems. AIMS Mathematics, 2025, 10(3): 6589-6635. doi: 10.3934/math.2025302
    [8] Ghous Ali, Kholood Alsager . Novel Heronian mean based $ m $-polar fuzzy power geometric aggregation operators and their application to urban transportation management. AIMS Mathematics, 2024, 9(12): 34109-34146. doi: 10.3934/math.20241626
    [9] Jingjie Zhao, Jiale Zhang, Yu Lei, Baolin Yi . Proportional grey picture fuzzy sets and their application in multi-criteria decision-making with high-dimensional data. AIMS Mathematics, 2025, 10(1): 208-233. doi: 10.3934/math.2025011
    [10] Muhammad Qiyas, Muhammad Naeem, Neelam Khan . Fractional orthotriple fuzzy Choquet-Frank aggregation operators and their application in optimal selection for EEG of depression patients. AIMS Mathematics, 2023, 8(3): 6323-6355. doi: 10.3934/math.2023320
  • Background: Sense of community is a concept that has significant implications cross multiple disciplines, particularly in public health practice. However, there exists a knowledge gap in utilizing the sense of community in investigating the health of older immigrant populations. Objective: This study aimed to explore the perception of the sense of community among community-dwelling U.S. Chinese older adults. Methods: Data were from the PINE study, a population-based survey of U.S. Chinese older adults aged 60 years and above in the greater Chicago area. We administered the Sense of Community Index to measure the levels of sense of community. Socio-demographic information was also collected. Results: Our results suggest that Chinese older adults in this study sample reported a strong sense of community. In total, 86.7% of the participants reported satisfaction with the current neighborhood, and 78.4% expressed their desire to continue living in the community as long as possible. In addition, older age (r =0.11), having higher levels of income (r =0.08), being female (r =0.08), being unmarried (r =-0.06), living with fewer people (r =-0.22), having more children (r =0.11), having been in the U.S. for more years (r =0.12), longer residency in the community (r =0.15), higher overall health status (r =0.18), better quality of life (r =0.23), and improved health status in the past year (r =0.11) were significantly correlated with the higher levels of the sense of the community. Conclusions: The study investigation provided the basis for generating empirical knowledge for understanding the sense of community among U.S. Chinese older adults. Future research is needed to delineate the mechanisms underlying sense of community and health in the increasingly diverse aging population.


    Clustering analysis, artificial intelligence, neural networks and decision-making techniques are very famous for depicting vague and unreliable information in real-life problems. multi-attribute group decision making (MAGDM) procedures give important consideration to practical issues where the goal is to determine the best course of action rather than relying on a finite value in the presence of the different attributes. However, to process the vagueness in the information, the major theory of fuzzy sets (FSs) was presented by Zadeh [1] in 1965, in which he defined only the degree of membership (DoM), as $ \zeta :X\to \left[0, 1\right] $. FSs are one of the widely accepted theories to deal with MAGDM problems. Nevertheless, they have some limitations, as the theory of FSs neglected considering if an expert talked about the falsity information. Therefore, the theory of intuitionistic FSs (IFSs) was invented by Atanassov [2,3]. IFSs have a DoM "$ \zeta :X\to \left[0, 1\right] $" and degree of non-membership (DoNM) "$ \delta :X\to \left[0, 1\right] $" with the restriction $ 0\le sum\left(\zeta \left(x\right), \delta \left(x\right)\right)\le 1 $. Some recent work on the theory and applications of IFSs is discussed in [4,5,6]. Other works discuss Pythagorean FSs (PyFSs) [7], a decision-making problem [8,9,10,11], q-rung orthopair FSs (qROFSs) [12] and their applications in decision-making problems [13,14,15,16,17].

    FSs and IFSs are unable to meet the requirements when dealing with conclusions that involve multiple forms of responses, such as yes, no, abstain and refusal. The notion of an IFS has a strict condition, and it does not provide independence in assigning the DoM and DoNM and binds their sum between $ 0 $ and $ 1 $. To deal with the above types of situations, the major idea of picture FSs (PFSs) was derived by Cuong [18]. They are more suitable than the theories of FSs or IFSs in dealing with this lack of data. PFSs are represented by the DoM, abstinence (DoA) and DoNM with a valuable condition: $ 0\le sum\left(\zeta \left(x\right), \vartheta \left(x\right), \delta \left(x\right)\right)\le 1 $. Furthermore, the theory of PFSs is more suitable and reliable as compared to FSs and IFSs for evaluating uncertainty and ambiguous types of data. Various researchers started working on PFSs as soon as they were developed. Numberless research on PFSs can be seen in [19,20,21,22]. From the above analysis, we noticed that every expert or decision-maker has faced the following three major issues during the decision-making process:

    1) How do we collect the information on a suitable scale to state the data?

    2) How do we aggregate the collection of a finite number of attributes into a singleton set?

    3) How do we determine the best decision using the theory of score information?

    Therefore, this research examines the prioritized Aczel-Alsina averaging and geometric AOs based on the concept of PF information. Menger [23] presented the concept of triangular norms, and it was discovered that the norms' operations played a very important role in the field of FS theory. Since then, many scholars have extended the theory of triangular norms, such as the Hamacher t-norm and t-conorm [24], spherical t-norm and t-conorm [25], Einstein t-norm and t-conorm [26], Archimedean t-norm and t-conorm [27], Frank t-norm and t-conorm [28,29]. In the last few years, Klement et al. [18] studied more efficiently related properties of triangular norms and their corresponding features.

    The concept of Aczel-Alsina t-norm and t-conorm was proposed by Aczel and Alsina [30], which has the ability of changeability with the condition of limitation. The Aczel-Alsina t-norm and t-conorm were derived in 1982, and they are modified forms of the algebraic t-norm and t-conorm. After successfully constructing this information, various scholars have utilized it in different areas. For example, Senapati et al. [31,32] created Aczel-Alsina AOs for interval-valued IFSs (IVIFSs) and a structure of IFSs, and they then used them to address the MADM difficulties. Furthermore, Senapati [33] considered Aczel-Alsina AOs based on PFSs with application to MADM. The concept of T-spherical fuzzy Aczel Alsina AOs and Pythagorean F aczel alsina AOs were presented by Hussain et al. [34,35] to solve MADM problems. From our point of view, we noticed that the theory of Aczel-Alsina AOs is very valuable and reliable because of their structure. Moreover, developing the theory of Aczel-Alsina aggregation based on prioritized information for managing the theory of PF data is a very ambiguous and awkward task for scholars, because no one can derive it before. The major advantages of the presented theory are listed below:

    1) Aczel-Alsina AOs based on FSs, IFSs and PFSs are the special cases of the proposed work if we removed the prioritized information from the derived theory.

    2) Prioritized AOs based on FSs, IFSs and PFSs are the special cases of the proposed work if we used the algebraic operational laws instead of Aczel-Alsina operational laws in the derived theory.

    3) Prioritized Aczel-Alsina AOs based on FSs and IFSs are the special cases of the proposed work if we removed the neural or abstinence information from the derived theory.

    The theory of Aczel-Alsina AOs based on prioritized degree for managing the theory of PFSs is very valuable and dominant. Because of this construction, we evaluate a lot of real-life problems, and the proposed theory has not been presented by anyone yet. Numerous situations that occur frequently in daily life require the use of a mathematical function that may reduce a series of data into a single value. The investigation of AO has a big impact on MADM issues. In recent years, a lot of researchers have worked on how to aggregate data because of its extensive use in various sectors. However, there are several situations where the data that need to be aggregated in terms of prioritization have a strict relationship. In this research, we focus on the MADM problem with a priority relationship between the criteria. Different priority levels apply to the criteria. Take the situation where we wish to purchase some land, to construct a house based on utility access ($ {C}_{1} $), site ($ {C}_{2} $) and pricing ($ {C}_{3} $). We are not interested in paying for utility access based on cost and location. That is, there is strict prioritization among the parameters in this scenario, where > denotes "is preferable to." To address the MADM issue that was previously prioritized, Yager [36] introduced several AOs, including the prioritized scoring (PS) operator. Three operators, the prioritized "and" operator, the prioritized "or" and the prioritized averaging (PA) operator, . The prioritized OWA (POWA) operator, based on the BUM function, was also proposed by Yager [37]. A prioritized weighted AO based on the OWA operator and triangle norms (t-norms) was proposed by Yan et al. [38]. Inspired by the above analysis, the main contributions of this research are listed below:

    1) Analyzing the theory of averaging and geometric AOs in the presence of the Aczel-Alsina operational laws and prioritization degree based on PF information, such as the prioritized PF Aczel-Alsina averaging (PPFAAA) operator and prioritized PF Aczel-Alsina geometric (PPFAAG) operator

    2) Examining properties such as idempotency, monotonicity and boundedness for the derived operators and also evaluating some important results

    3) Using the derived operators to create a system for controlling the MAGDM problem using PF information

    4) Showing the approach's effectiveness and the developed operators' validity with a numerical example

    5) Comparing the proposed work with a few existing operators are also listed in this manuscript

    The remainder of this paper is designed as follows: In Section 2, we introduce the concept of PPFs and their special cases. The objective of Section 3 is to introduce the concept of the PPFAAA operator and PPFAAG operator. In Section 4, we define a method of MAGDM by using the PPFAAA and PPFAAG operators to solve algebraic issues. In Section 5, we study the impact of the parameter by using various values of $ \eta $. In Section 6, we compare the proposed work with the previously defined methods. In the last section, we conclude this research paper with a few comments.

    The proposed work is introduced in this part using some fundamental ideas. We can better understand this article with the help of these concepts. The terms PFS, Aczel-Alsina triangular norm(TN) and triangular conorm(TCN) are defined here.

    Definition 1. [39] On a non-empty set $ X $, a PFS is of the shape

    $ \varrho = \left\{\left(x, \left(\zeta , \vartheta , \delta \right)\right):0\le sum\left(\zeta \left(x\right), \vartheta \left(x\right), \delta \left(x\right)\right)\le 1\right\}. $ (1)

    Here, $ \zeta, \vartheta, \delta :X\to \left[0, 1\right] $ denote the DoM, DoA and DoNM, respectively. Further, $ r\left(x\right) = 1-sum\left(\zeta \left(x\right), \vartheta \left(x\right), \delta \left(x\right)\right) $ represents the DoR of $ x\in X $, and the triplet $ \left(\zeta, \vartheta, \delta \right) $ is termed a picture fuzzy value (PFV).

    The basic set-theoretic operations of union, intersection, inclusion and complement of PFVs were also proposed by Cuong [18] and are given as follows.

    Definition 2. [18] Let $ \varrho = \left(\zeta, \vartheta, \delta \right), {\varrho }_{1} = \left({\zeta }_{1}, {\vartheta }_{1}, {\delta }_{1}\right) $ and $ {\varrho }_{2} = \left({\zeta }_{2}, {\vartheta }_{2}, {\delta }_{2}\right) $ be three PFVs. Then,

    $ {\varrho }_{1}\subseteq {\varrho }_{2}\ iff\ {\zeta }_{1}\le {\zeta }_{2}, {\vartheta }_{1}\ge {\vartheta }_{2}, {\delta }_{1}\ge {\delta }_{2} , $ (2)
    $ {\varrho }_{1} = {\varrho }_{2}\ iff\ {\varrho }_{1}\subseteq {\varrho }_{2} \ {\rm{and}}\ {\varrho }_{2}\subseteq {\varrho }_{1} , $ (3)
    $ {\varrho }_{1}\bigcup {\varrho }_{2} = \left(\bigvee \left({\zeta }_{1}, {\zeta }_{2}\right), \bigwedge \left({\vartheta }_{1}, {\vartheta }_{2}\right), \bigwedge \left({\delta }_{1}, {\delta }_{2}\right)\right) , $ (4)
    $ {\varrho }_{1}\bigcap {\varrho }_{2} = \left(\bigwedge \left({\zeta }_{1}, {\zeta }_{2}\right), \bigvee \left({\vartheta }_{1}, {\vartheta }_{2}\right), \bigvee \left({\delta }_{1}, {\delta }_{2}\right)\right) , $ (5)
    $ {\varrho }^{c} = \left(\delta , \vartheta , \zeta \right). $ (6)

    Definition 3. Let $ \varrho = \left(\zeta, \vartheta, \delta \right) $ be a PFV. Then, the score value of $ \varrho $ is defined as

    $ SC\left(\varrho \right) = \zeta \left(x\right)-\delta \left(x\right), SC\left(\varrho \right)\in \left[-\mathrm{1, 1}\right] . $ (7)

    The score function for PFVs is given as

    Definition 4. [18] Let $ \varrho = \left(\zeta, \vartheta, \delta \right) $ be PFVs. Then, the score values of $ \varrho $ are defined as

    $ SC\left(\varrho \right) = \zeta \left(x\right)-\vartheta \left(x\right)-\delta \left(x\right), SC\left(\varrho \right)\in \left[-\mathrm{1, 1}\right] . $ (8)

    Because of these score functions, for two PFVs $ {\varrho }_{1} = \left({\zeta }_{1}, {\vartheta }_{1}, {\delta }_{1}\right) $ and $ {\varrho }_{2} = \left({\zeta }_{2}, {\vartheta }_{2}, {\delta }_{2}\right) $, we have

    $ {\varrho }_{1} $ is superior to $ {\varrho }_{2} $ if $ SC\left({\varrho }_{1}\right) > SC\left({\varrho }_{2}\right) $.

    $ {\varrho }_{1} $ is inferior to $ {\varrho }_{2} $ if $ SC\left({\varrho }_{1}\right) < SC\left({\varrho }_{2}\right) $.

    In the case when $ SC\left({\varrho }_{1}\right) = SC\left({\varrho }_{2}\right) $, two PFVs can be distinguished from each other with the help of the accuracy function, which is defined as follows:

    Definition 5. [18] Let $ \varrho = \left(\zeta, \vartheta, \delta \right) $ be a PFVs. Then, the accuracy value of $ \varrho $ is defined as

    $ AC\left(\varrho \right) = \zeta \left(x\right)+\vartheta \left(x\right)+\delta \left(x\right), SC\left(\varrho \right)\in \left[-\mathrm{1, 1}\right] . $ (9)

    Because of the accuracy function, for PFVs $ {\varrho }_{1} = \left({\zeta }_{1}, {\vartheta }_{1}, {\delta }_{1}\right) $ and $ {\varrho }_{2} = \left({\zeta }_{2}, {\vartheta }_{2}, {\delta }_{2}\right) $, we have

    $ {\varrho }_{1} $ is superior to $ {\varrho }_{2} $ if $ AC\left({\varrho }_{1}\right) > AC\left({\varrho }_{2}\right) $.

    $ {\varrho }_{1} $ is inferior to $ {\varrho }_{2} $ if $ AC\left({\varrho }_{1}\right) < AC\left({\varrho }_{2}\right) $.

    $ {\varrho }_{1} $ is similar to $ {\varrho }_{2} $ if $ AC\left({\varrho }_{1}\right) = AC\left({\varrho }_{2}\right) $.

    Definition 6. [33] Let $ \varrho = \left(\zeta, \vartheta, \delta \right), {\varrho }_{1} = \left({\zeta }_{1}, {\vartheta }_{1}, {\delta }_{1}\right) $ and $ {\varrho }_{2} = \left({\zeta }_{2}, {\vartheta }_{2}, {\delta }_{2}\right) $ be three PFVs where $ л\ge 1 $ and $ \eta > 0 $. Then, Aczel-Alsina operations of PFVs are defined by

    $ {\varrho }_{1}{ \oplus }{\varrho }_{2} = \left(1e((ln(1ζ1))л+(ln(1ζ2))л)1л,e((lnϑ1)л+(lnϑ2)л)1л,e((lnδ1)л+(lnδ2)л)1л
    \right) , $
    (10)
    $ {\varrho }_{1}\otimes {\varrho }_{2} = \left(e((lnζ1)л+(lnζ2)л)1л,1e((ln(1ϑ1))л+(ln(1ϑ2))л)1л,1e((ln(1δ2))л+(ln(1δ2))л)1л
    \right) , $
    (11)
    $ \eta \varrho = \left(1-{e}^{-{\left({\eta \left(-ln\left(1-\zeta \right)\right)}^{{\rm{ \mathsf{ л} }}}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}, {e}^{-{\left({\eta \left(-ln\vartheta \right)}^{{\rm{ \mathsf{ л} }}}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}, {e}^{-{\left({\eta \left(-ln\delta \right)}^{{\rm{ \mathsf{ л} }}}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}\right) , $ (12)
    $ {\varrho }^{\eta } = \left({e}^{-{\left({\eta \left(-ln\zeta \right)}^{{\rm{ \mathsf{ л} }}}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}, 1-{e}^{-{\left({\eta \left(-ln\left(1-\vartheta \right)\right)}^{{\rm{ \mathsf{ л} }}}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}, 1-{e}^{-{\left({\eta \left(-ln\left(1-\delta \right)\right)}^{{\rm{ \mathsf{ л} }}}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}\right) . $ (13)

    In this section, we analyze the theory of averaging and geometric AOs in the presence of the Aczel-Alsina operational laws and prioritization degree based on PF information, such as the PPFAAA operator and PPFAAG operator. Moreover, we examine properties such as idempotency, monotonicity and boundedness for the derived operators and also evaluated some important results.

    Definition 7. Let $ {\varrho }_{n} = \left(n = \mathrm{1, 2}, 3\dots h\right) $ be several PFVs. Then, the PFPAAA operator is a mapping $ {\varrho }^{n}\to \varrho $ defined by

    $ PFPAAA(ϱ1,ϱ2,,ϱn)=hq=1Tnhn=1Tnϱn=T1hn=1Tnϱ1T2hn=1Tnϱ2T3hn=1Tnϱ3,,Tnnj=1Tnϱh.
    $
    (14)

    Therefore, using the Aczel-Alsina operations on PFVs, we proposed the following theorem.

    Theorem 1. Let $ {\varrho }_{n} = \left({\zeta }_{n}, {\vartheta }_{n}, {\delta }_{n}\right)(n = \mathrm{1, 2}, 3\dots h) $ be an accumulation of PFVs. Then, the accumulated value of their employing the PFPAAA operation is indeed a PFV, as

    $FPAAA(ϱ1,ϱ2,ϱn)=hn=1Tnhn=1Tnϱn=(1e(hn=1Tnhn=1Tn(ln(1ζn))л)1л,e(hn=1Tnhn=1Tn(lnϑn)л)1л,e(hn=1Tnhn=1Tn(lnδn)л)1л).
    $
    (15)

    The proof of Theorem 1 is given in Appendix A.

    Theorem 2. (Idempotency). If all $ {\varrho }_{n} = \left({\zeta }_{n}, {\vartheta }_{n}, {\delta }_{n}\right)(n = \mathrm{1, 2}, 3\dots h) $ are equal, that is, $ {\varrho }_{n} = \varrho $ for all n, then

    $ PFPAAA\left({\varrho }_{1}, {\varrho }_{2}, \dots , {\varrho }_{h}\right) = \varrho . $ (16)

    The proof of Theorem 2 is given in Appendix B.

    Theorem 3. (Boundedness). Let $ {\varrho }_{n} = \left({\zeta }_{n}, {\vartheta }_{n}, {\delta }_{n}\right)(n = \mathrm{1, 2}, 3\dots h) $ be an accumulation of PFVs. Let $ {\varrho }^{-} = min\left({\varrho }_{1}, {\varrho }_{2}, \dots {\varrho }_{n}\right) $ and $ {\varrho }^{+} = max\left({\varrho }_{1}, {\varrho }_{2}, \dots {\varrho }_{h}\right) $. Then, we have

    $ {\varrho }^{-}\le PFPAAA\left({\varrho }_{1}, {\varrho }_{2}, {\varrho }_{3}\dots {\varrho }_{h}\right)\le {\varrho }^{+} . $ (17)

    The proof of Theorem 3 is given in Appendix C.

    Theorem 4. (Monotonicity) Let $ {\varrho }_{n} $ and $ {{\varrho }_{n}}^{'}(n = \mathrm{1, 2}, 3\dots h) $ be two sets of PFVs. If $ {\varrho }_{n}\le {{\varrho }_{n}}^{'} $ for all n, then

    $ PFPAAA\left({\varrho }_{1}, {\varrho }_{2}, {\varrho }_{3}\dots {\varrho }_{h}\right)\le PFPAAA\left({{\varrho }_{1}}^{\mathrm{'}}, {{\varrho }_{2}}^{\mathrm{'}}, {{\varrho }_{3}}^{\mathrm{'}}\dots {{\varrho }_{h}}^{\mathrm{'}}\right) . $ (18)

    Theorem 5. Let $ {\varrho }_{n} = \left({\zeta }_{n}, {\vartheta }_{n}, {\delta }_{n}\right)(n = \mathrm{1, 2}, 3\dots h) $ be an accumulation of PFVs, $ {T}_{n} = {\prod }_{n = 1}^{h-1}S\left({\varrho }_{h}\right)\left(n = \mathrm{2, 3}, \dots h\right), {T}_{1} = 1 $, and $ S\left({\varrho }_{h}\right) $ is the score of PFVs $ {\varrho }_{h} $ if $ \psi = \left(\mu, \phi, \nu \right) $ is an IVPFV on $ X $, then

    $ PFPAAA\left({{\rm{ \mathsf{ ϱ} }}}_{1}{ \oplus }{\rm{ \mathsf{ ψ} }}, {{\rm{ \mathsf{ ϱ} }}}_{2}{ \oplus }{\rm{ \mathsf{ ψ} }}, \dots , {{\rm{ \mathsf{ ϱ} }}}_{\mathrm{h}}{ \oplus }{\rm{ \mathsf{ ψ} }}, \right) = PFPAAA\left({\varrho }_{1}, {\varrho }_{2}, {\varrho }_{3}, \dots {\varrho }_{h}\right){ \oplus }{\rm{ \mathsf{ ψ} }} . $ (19)

    The proof of Theorem 5 is given in Appendix D.

    Theorem 6. Let $ {\varrho }_{n} = \left({\zeta }_{n}, {\vartheta }_{n}, {\delta }_{n}\right)\left(n = \mathrm{1, 2}, 3\dots h\right) $ be a collection of PFVs.$ {T}_{n} = {\prod }_{n = 1}^{h-1}S\left({\varrho }_{h}\right)\left(n = \mathrm{2, 3}, \dots h\right), $ $ {T}_{1} = 1 $, and $ S\left({\varrho }_{h}\right) $ be the score of PFVs $ {\varrho }_{n} $ if $ r > 0 $, PFV on $ X $. Then,

    $ PFPAAA\left({\mathrm{r}{\rm{ \mathsf{ ϱ} }}}_{1}, {\mathrm{r}{\rm{ \mathsf{ ϱ} }}}_{2}, \dots , \mathrm{r}{{\rm{ \mathsf{ ϱ} }}}_{\mathrm{h}}, \right) = rPFPAAA\left({\varrho }_{1}, {\varrho }_{2}, {\varrho }_{3}, \dots {\varrho }_{h}\right) . $ (20)

    The proof of Theorem 6 is given in Appendix E.

    Theorem 7. Let $ {\varrho }_{n} = \left({\zeta }_{n}, {\vartheta }_{n}, {\delta }_{n}\right)\left(n = \mathrm{1, 2}, 3\dots h\right) $ be a collection of PFVs. Let $ {T}_{n}{\prod }_{n = 1}^{h-1}S\left({\varrho }_{h}\right) $ $ \left(n = \mathrm{2, 3}, \dots h\right), {T}_{1} = 1 $, and $ S\left({\varrho }_{h}\right) $ be the score of PFVs $ {\varrho }_{n} $ if $ r > 0 $, $ \psi = \left(\mu, \phi, \nu \right) $ is a PFV on $ X $. Then,

    $ \mathrm{P}\mathrm{F}\mathrm{P}\mathrm{A}\mathrm{A}\mathrm{A}\left({\mathrm{r}{\rm{ \mathsf{ ϱ} }}}_{1}{ \oplus }{\rm{ \mathsf{ ψ} }}, {\mathrm{r}{\rm{ \mathsf{ ϱ} }}}_{2}{ \oplus }{\rm{ \mathsf{ ψ} }}, \dots \mathrm{r}{{\rm{ \mathsf{ ϱ} }}}_{\mathrm{h}}{ \oplus }{\rm{ \mathsf{ ψ} }}\right) = \mathrm{r}\mathrm{P}\mathrm{F}\mathrm{P}\mathrm{A}\mathrm{A}\mathrm{A}\left({{\rm{ \mathsf{ ϱ} }}}_{1}, {{\rm{ \mathsf{ ϱ} }}}_{2}, {{\rm{ \mathsf{ ϱ} }}}_{3}, \dots {{\rm{ \mathsf{ ϱ} }}}_{\mathrm{h}}\right){ \oplus }{\rm{ \mathsf{ ψ} }} . $ (21)

    The proof of Theorem 7 is given in Appendix F.

    Theorem 8. Let $ {\varrho }_{n} = \left({\zeta }_{n}, {\vartheta }_{n}, {\delta }_{n}\right) $ and $ \psi = \left({\mu }_{n}, {\phi }_{n}, {\nu }_{n}\right)(n = \mathrm{1, 2}, 3\dots h) $ be a collection of PFVs. $ {T}_{n} = {\prod }_{n = 1}^{h-1}S\left({\varrho }_{h}\right)\left(n = \mathrm{2, 3}, \dots h\right), {T}_{1} = 1 $, and $ S\left({\varrho }_{n}\right) $ be the score of PFVs $ {\varrho }_{n} $ if $ r > 0 $, is a PFV on $ X $.

    Then,

    $PFPAAA(ϱ1ψ1,ϱ2ψ2,ϱhψh)=PFPAAA(ϱ1,ϱ2,ϱ3,ϱh)PFPAAA(ψ1,ψ2,ψ3,ψh).
    $
    (22)

    The proof of Theorem 8 is given in Appendix G.

    Definition 8. Let $ {\varrho }_{n} = \left(n = \mathrm{1, 2}, 3\dots h\right) $ be a collection of several PFVs. Then, the PFPAAG operator is a mapping $ {\varrho }^{n}\to \varrho $ defined by

    $ PFPAAG\left({\varrho }_{1}, {\varrho }_{2}, \dots , {\varrho }_{h}\right) = {{\varrho }_{1}}^{\frac{{T}_{1}}{{\sum }_{n = 1}^{h}{T}_{n}}}\otimes {{\varrho }_{2}}^{\frac{{T}_{2}}{{\sum }_{n = 1}^{h}{T}_{n}}}\otimes {{\varrho }_{3}}^{\frac{{T}_{3}}{{\sum }_{n = 1}^{h}{T}_{n}}}, \dots , \otimes {{\varrho }_{h}}^{\frac{{T}_{h}}{{\sum }_{j = 1}^{n}{T}_{h}}} . $ (23)

    Therefore, using the Aczel-Alsina operations on PFVs, we obtain the following theorem.

    Theorem 9. Let $ {\varrho }_{n} = \left({\zeta }_{n}, {\vartheta }_{n}, {\delta }_{n}\right)(n = \mathrm{1, 2}, 3\dots h) $ be an accumulation of PFVs. Then, the accumulated value of them employing the PFPAAG operation is indeed PFVs, such as

    $ PFPAAG\left({\varrho }_{1}, {\varrho }_{2}, \dots {\varrho }_{h}\right) = \left(e(hn=1Tnhn=1Tn(ln(1ζn))л)1л,1e(hn=1Tnhn=1Tn(lnϑn)л)1л,1e(hn=1Tnhn=1Tn(lnδn)л)1л
    \right). $
    (24)

    Proof. The proof is similar to Theorem 1.

    Theorem 10. (Idempotency). If all $ {\varrho }_{n} = \left({\zeta }_{n}, {\vartheta }_{n}, {\delta }_{n}\right)(n = \mathrm{1, 2}, 3\dots h) $ are equal, that is, $ {\varrho }_{n} = \varrho $, for all

    n, then we have

    $ PFPAAA\left({\varrho }_{1}, {\varrho }_{2}, \dots , {\varrho }_{h}\right) = \varrho . $ (25)

    Proof. The proof is similar to Theorem 2.

    Theorem 11. (Boundedness). Suppose $ {\varrho }_{n} = \left({\zeta }_{n}, {\vartheta }_{n}, {\delta }_{n}\right)(n = \mathrm{1, 2}, 3\dots h) $ is an accumulation of PFVs.

    Let $ {\varrho }^{-} = min\left({\varrho }_{1}, {\varrho }_{2}, \dots {\varrho }_{n}\right) $ and $ {\varrho }^{+} = max\left({\varrho }_{1}, {\varrho }_{2}, \dots {\varrho }_{h}\right) $. Then, we have

    $ {\varrho }^{-}\le PFPAAG\left({\varrho }_{1}, {\varrho }_{2}, {\varrho }_{3}\dots {\varrho }_{h}\right)\le {\varrho }^{+} . $ (26)

    Proof. The proof is similar to Theorem 3.

    Theorem 12. Suppose $ {\varrho }_{n} = \left({\zeta }_{n}, {\vartheta }_{n}, {\delta }_{n}\right)(n = \mathrm{1, 2}, 3\dots h) $ is an accumulation of PFVs, $ {T}_{n} = {\prod }_{n = 1}^{h-1}S\left({\varrho }_{h}\right)\left(n = \mathrm{2, 3}, \dots h\right), {T}_{1} = 1 $, and $ S\left({\varrho }_{h}\right) $ be the score of PFVs $ {\varrho }_{n} $ if $ \psi = \left(\mu, \phi, \nu \right) $ is an PFVs on X, then

    $ PFPAAG\left({{\rm{ \mathsf{ ϱ} }}}_{1}\otimes {\rm{ \mathsf{ ψ} }}, {{\rm{ \mathsf{ ϱ} }}}_{2}\otimes {\rm{ \mathsf{ ψ} }}, \dots , {{\rm{ \mathsf{ ϱ} }}}_{\mathrm{h}}\otimes {\rm{ \mathsf{ ψ} }}, \right) = PFPAAG\left({\varrho }_{1}, {\varrho }_{2}, {\varrho }_{3}, \dots {\varrho }_{h}\right)\otimes {\rm{ \mathsf{ ψ} }} . $ (27)

    Proof. The proof is similar to Theorem 4.

    Theorem 13. Suppose $ {\varrho }_{n} = \left({\zeta }_{n}, {\vartheta }_{n}, {\delta }_{n}\right)\left(n = \mathrm{1, 2}, 3\dots h\right) $ is a collection of PFVs.$ {T}_{n} = {\prod }_{n = 1}^{h-1}S\left({\varrho }_{h}\right)\left(n = \mathrm{2, 3}, \dots h\right), {T}_{1} = 1 $, and $ S\left({\varrho }_{h}\right) $ be the score of PFVs $ {\varrho }_{n} $ if $ r > 0 $ PFVs on $ X, $ then we have

    $ PFPAAG\left({\left({\varrho }_{1}\right)}^{r}, {\left({\varrho }_{2}\right)}^{r}, \dots , {\left({\varrho }_{h}\right)}^{r}\right) = {\left(PFPAAG\left({\varrho }_{1}, {\varrho }_{2}, {\varrho }_{3}, \dots {\varrho }_{h}\right)\right)}^{r} . $ (28)

    Proof. The proof is similar to Theorem 5.

    Theorem 14. Let $ {\varrho }_{n} = \left({\zeta }_{n}, {\vartheta }_{n}, {\delta }_{n}\right)(n = \mathrm{1, 2}, 3\dots h) $ be a collection of PFVs. $ {T}_{n} = {\prod }_{n = 1}^{h-1}S\left({\varrho }_{h}\right)\left(n = \mathrm{2, 3}, \dots h\right), {T}_{1} = 1 $, and $ S\left({\varrho }_{h}\right) $ be the score of PFVs $ {\varrho }_{n} $ if $ r > 0 $, $ \psi = \left(\mu, \phi, \nu \right) $ is a PFV on $ X $. Then, we have

    $ \mathrm{P}\mathrm{F}\mathrm{P}\mathrm{A}\mathrm{A}\mathrm{G}\left({\left({{\rm{ \mathsf{ ϱ} }}}_{1}\right)}^{r}\otimes {\rm{ \mathsf{ ψ} }}, {\left({{\rm{ \mathsf{ ϱ} }}}_{2}\right)}^{r}\otimes {\rm{ \mathsf{ ψ} }}, \dots {\left({{\rm{ \mathsf{ ϱ} }}}_{\mathrm{h}}\right)}^{r}\otimes {\rm{ \mathsf{ ψ} }}\right) = {\left(\mathrm{P}\mathrm{F}\mathrm{P}\mathrm{A}\mathrm{A}\mathrm{G}\left({{\rm{ \mathsf{ ϱ} }}}_{1}, {{\rm{ \mathsf{ ϱ} }}}_{2}, {{\rm{ \mathsf{ ϱ} }}}_{3}, \dots {{\rm{ \mathsf{ ϱ} }}}_{\mathrm{h}}\right)\right)}^{r}{ \oplus }{\rm{ \mathsf{ ψ} }} . $ (29)

    Proof. The proof is similar to Theorem 6.

    Theorem 15. Let $ {\varrho }_{n} = \left({\zeta }_{n}, {\vartheta }_{n}, {\delta }_{n}\right)(n = \mathrm{1, 2}, 3\dots h) $ be a collection of PFVs. $ {T}_{n} = {\prod }_{n = 1}^{h-1}S\left({\varrho }_{h}\right)\left(n = \mathrm{2, 3}, \dots h\right), {T}_{1} = 1 $, and $ S\left({\varrho }_{h}\right) $ be the score of PFVs $ {\varrho }_{n} $ if $ r > 0 $, $ \psi = \left(\mu, \phi, \nu \right) $ is a PFV on $ X $. Then, we have

    $ \mathrm{P}\mathrm{F}\mathrm{P}\mathrm{A}\mathrm{A}\mathrm{G}\left({\left({{\rm{ \mathsf{ ϱ} }}}_{1}\right)}^{r}\otimes {\rm{ \mathsf{ ψ} }}, {\left({{\rm{ \mathsf{ ϱ} }}}_{2}\right)}^{r}\otimes {\rm{ \mathsf{ ψ} }}, \dots {\left({{\rm{ \mathsf{ ϱ} }}}_{\mathrm{h}}\right)}^{r}\otimes {\rm{ \mathsf{ ψ} }}\right) = {\left(\mathrm{P}\mathrm{F}\mathrm{P}\mathrm{A}\mathrm{A}\mathrm{G}\left({{\rm{ \mathsf{ ϱ} }}}_{1}, {{\rm{ \mathsf{ ϱ} }}}_{2}, {{\rm{ \mathsf{ ϱ} }}}_{3}, \dots {{\rm{ \mathsf{ ϱ} }}}_{\mathrm{h}}\right)\right)}^{r}{ \oplus }{\rm{ \mathsf{ ψ} }} . $ (30)

    Proof. The proof is similar to Theorem 7.

    Theorem 16. Suppose $ {\varrho }_{n} = \left({\zeta }_{n}, {\vartheta }_{n}, {\delta }_{n}\right) $, and $ \psi = \left({\mu }_{n}, {\phi }_{n}, {\nu }_{n}\right)(n = \mathrm{1, 2}, 3\dots h) $ is a collection of PFVs. $ {T}_{n} = {\prod }_{n = 1}^{h-1}S\left({\varrho }_{h}\right)\left(n = \mathrm{2, 3}, \dots h\right), {T}_{1} = 1 $, and $ S\left({\varrho }_{h}\right) $ be the score of PFVs $ {\varrho }_{n} $ if $ r > 0 $, is a PFV on $ X $. Then we have

    Proof. The proof is similar to Theorem 8.

    $ PFPAAG(ϱ1ψ1,ϱ2ψ2,ϱhψh)=PFPAAG(ϱ1,ϱ2,ϱ3,ϱh)PFPAAG(ψ1,ψ2,ψ3,ψh).
    $
    (31)

    We will create a MAGDM methodology in this section based on the picture fuzzy environment to illustrate reliability and effectiveness. In this problem, assume that $ x = \left\{{x}_{1}, {x}_{2}, {x}_{3}\dots {x}_{m}\right\} $ is the set of attributes and that the attributes are ranked in order of alternatives, with $ C = \left\{{C}_{1}, {C}_{2}, {C}_{3}\dots {C}_{z}\right\} $ priority as indicated by the linear ordering $ {C}_{1} > {C}_{2} > {C}_{3}\dots > {C}_{z} $. If $ j < i $, and $ E = \left\{{e}_{1}, {e}_{2}, {e}_{3}\dots {e}_{p}\right\} $ is the set of decision-makers, then $ {C}_{j} $ has a higher priority than $ {C}_{i} $. If $ \varsigma < \tau $, then there is a prioritization between the decision makers expressed by the linear ordering $ {e}_{1} > {e}_{2} > {e}_{3}\dots > {e}_{z} $ indicating that $ {e}_{\varsigma } $ has a higher priority than $ {e}_{\tau } $ if $ \varsigma < \tau $. $ \mathrm{{\rm K}} = {\left({K}_{ij}^{q}\right)}_{nxm} $ is a picture valued Aczel-Alsina decision matrix, and $ {K}_{ij}^{q} = \left({\zeta }^{q}, {\vartheta }^{q}, {\delta }^{q}\right) $ is an attribute value provided by the decision maker $ {e}_{q} $ which is expressed in a PFPAAA, where $ \zeta $ indicates the degree that the alternative $ {y}_{i} $ satisfies the attribute $ {C}_{j} $ expressed by the decision maker $ {e}_{q}, {\delta }^{q} $ indicate the degree that the alternative $ {y}_{i} $ does not satisfy the attribute $ {C}_{j} $ expressed by the decision maker $ {e}_{q} $, and $ {\vartheta }^{q} $ is the degree about which the decision maker has some doubts. If all the attributes $ {C}_{j}(\mathrm{1, 2}, 3\dots m) $ are the same type, then the attribute value does not need normalization. Otherwise, we normalize the decision-maker matrix $ {{\rm K}}^{q} = {\left({K}_{ij}^{q}\right)}_{nxm} $ into $ {\mathrm{R}}^{q} = {\left({K}_{ij}^{q}\right)}_{nxm} $ where

    $ {r}_{ij}^{q} = \left\{Kqij for benefit attribute Cj¯Kqij for benefit attribute Cj
    \ \ \ i = \mathrm{1, 2}, 3\dots , m\ \ \ j = \mathrm{1, 2}, 3\dots , z\right. , $

    where $ {\overline {K}}_{ij}^{q} $ is the complement of $ {K}_{ij}^{q} $ such that $ {\overline {K}}_{ij}^{q} = \left({\omega }^{q}, {\alpha }^{q}, {\beta }^{q}\right) $ and $ {r}_{ij}^{q} = ({\alpha }^{q}, {\beta }^{q}, {\omega }^{q}) $ $ i = \mathrm{1, 2}, 3\dots, m, j = \mathrm{1, 2}, 3\dots, z $

    Then, we utilized the PFPAAA operator to develop an approach to multi-criteria decision-making under PFVs; the following are the key steps:

    Step 1: By using the following equations, determine the values of $ {T}_{ij}^{q}\left(q = \mathrm{1, 2}, 3\dots s\right) $:

    $ {T}_{ij}^{q} = \prod\limits_{k = 1}^{q-1}S\left({r}_{ij}^{q}\right)\left(q = \mathrm{2, 3}\dots p\right) $
    $ {T}_{ij}^{q} = 1 . $

    Step 2: By using the PFPAAA operator,

    $ {r}_{ij} = PFPAAA\left({r}_{ij}^{1}, {r}_{ij}^{2}, {r}_{ij}^{3}\dots .{r}_{ij}^{s}\right) = \left(1e(hn=1Tijhn=1Tij(ln(1αqij))л)1л,e(hn=1Tijhn=1Tij(lnβqij)л)1л,e(hn=1Tijhn=1Tij(lnωqij)л)1л
    \right) . $

    By using the PFPAAG operator,

    $ {r}_{ij} = PFPAAA\left({r}_{ij}^{1}, {r}_{ij}^{2}, {r}_{ij}^{3}\dots .{r}_{ij}^{s}\right) = \left(e(hn=1Tijhn=1Tij(lnαqij)л)1л,1e(hn=1Tijhn=1Tij(ln(1βqij))л)1л1e(hn=1Tijhn=1Tij(ln(1ωqij))л)1л
    \right) . $

    To aggregate the decision-making of each PFV $ {\mathrm{R}}^{q} = {\left({r}_{ij}^{q}\right)}_{nxm}\left(q = \mathrm{1, 2}, 3\dots s\right) $ into the decision-making of collective PFVs $ {\mathrm{R}}^{q} = {\left({r}_{ij}^{q}\right)}_{nxm}i = \mathrm{1, 2}, 3\dots, m $, $ j = \mathrm{1, 2}, 3\dots, z $.

    Step 3: Evaluate the values of $ {T}_{ij} $ $ \left(i = \mathrm{1, 2}, 3\dots, m\ \ \ j = \mathrm{2, 3}\dots, s\right) $ based on the following equations:

    $ Tij=j1k=1S(rij)(i=1,2,3,m  j=2,3,s).Tij=1,  i=1,2,3,m.
    $
    (32)

    Step 4: Aggregate the PFVs $ {r}_{ij} $ for each alternative $ {x}_{i} $ by PFPAAA operator

    $ {r}_{i} = PFPAAA\left({r}_{i1}, {r}_{i2}, {r}_{i3}\dots .{r}_{ik}\right) = \left(1e(hn=1Tijhn=1Tij(ln(1αj))л)1л,e(hn=1Tijhn=1Tij(lnβj)л)1л,e(hn=1Tijhn=1Tij(lnωj)л)1л
    \right) . $

    Or

    $ {r}_{i} = PFPAAG\left({r}_{i1}, {r}_{i2}, {r}_{i3}\dots .{r}_{ik}\right) = \left(e(hn=1Tijhn=1Tij(lnαj)л)1л,1e(hn=1Tijhn=1Tij(ln(1βj))л)1л,1e(hn=1Tijhn=1Tij(ln(1ωj))л)1л
    \right) . $

    Step 5: Rank all the alternatives by the score function described in section 2.

    $ S\left({r}_{i}\right) = {\omega }_{i}-{\alpha }_{i},\ \ \ i = \mathrm{1, 2}, 3\dots , m . $

    Then, the bigger the value of $ S\left({r}_{i}\right) $ is, the larger the overall PFPAAA $ {r}_{i} $, and thus the alternative $ {k}_{i}\left(i = \mathrm{1, 2}, 3\dots m\right) $.

    The best car selection issue of a person wanting to purchase a car among different vehicles in the same category is resolved in this research using the multi-attribute decision-making method. Every car has an automatic transmission and runs on gasoline. First, the criteria for the best automobile selection problem are established by doing a literature search and taking into account the views of the prospective buyer. The criteria are determined as follows based on the information obtained: engine capacity, fuel usage, post-purchase support and comfort. A panel of decision-makers estimate the performance and select the best to attain the most benefits among the set of alternatives $ s = \left\{{s}_{1}, {s}_{2}, {s}_{3}, {s}_{4}\right\} $. The following criteria are used to determine the steps of the algorithm under consideration.

    Table 1.  Picture fuzzy prioritized decision matrix.
    Alternatives $ {\mathit{\boldsymbol{t}}}_{\bf{1}} $ $ {\mathit{\boldsymbol{t}}}_{\bf{2}} $ $ {\mathit{\boldsymbol{t}}}_{\bf{3}} $ $ {\mathit{\boldsymbol{t}}}_{\bf{4}} $
    $ {\mathit{\boldsymbol{s}}}_{\bf{1}} $ $ \left(\mathrm{0.7, 0.2, 0.1}\right) $ $ \left(\mathrm{0.6, 0.1, 0.3}\right) $ $ \left(\mathrm{0.5, 0.3, 0.2}\right) $ $ \left(\mathrm{0.4, 0.2, 0.3}\right) $
    $ {\mathit{\boldsymbol{s}}}_{\bf{2}} $ $ \left(\mathrm{0.6, 0.1, 0.2}\right) $ $ \left(\mathrm{0.5, 0.2, 0.1}\right) $ $ \left(\mathrm{0.5, 0.4, 0.1}\right) $ $ \left(\mathrm{0.6, 0.2, 0.3}\right) $
    $ {\mathit{\boldsymbol{s}}}_{\bf{3}} $ $ \left(\mathrm{0.5, 0.2, 0.1}\right) $ $ \left(\mathrm{0.7, 0.1, 0.2}\right) $ $ \left(\mathrm{0.4, 0.2, 0.1}\right) $ $ \left(\mathrm{0.5, 0.1, 0.2}\right) $
    $ {\mathit{\boldsymbol{s}}}_{\bf{4}} $ $ \left(\mathrm{0.6, 0.3, 0.1}\right) $ $ \left(\mathrm{0.4, 0.3, 0.1}\right) $ $ \left(\mathrm{0.7, 0.1, 0.2}\right) $ $ \left(\mathrm{0.5, 0.1, 0.4}\right) $
    $ {\mathit{\boldsymbol{s}}}_{\bf{5}} $ $ \left(\mathrm{0.4, 0.4, 0.2}\right) $ $ \left(\mathrm{0.7, 0.1, 0.2}\right) $ $ \left(\mathrm{0.8, 0.1, 0.1}\right) $ $ \left(\mathrm{0.6, 0.3, 0.1}\right) $

     | Show Table
    DownLoad: CSV
    Table 2.  Picture fuzzy prioritized decision matrix.
    Alternatives $ {\mathit{\boldsymbol{t}}}_{\bf{1}} $ $ {\mathit{\boldsymbol{t}}}_{\bf{2}} $ $ {\mathit{\boldsymbol{t}}}_{\bf{3}} $ $ {\mathit{\boldsymbol{t}}}_{\bf{4}} $
    $ {\mathit{\boldsymbol{s}}}_{\bf{1}} $ $ \left(\mathrm{0.6, 0.3, 0.1}\right) $ $ \left(\mathrm{0.7, 0.1, 0.1}\right) $ $ \left(\mathrm{0.7, 0.2, 0.1}\right) $ $ \left(\mathrm{0.7, 0.1, 0.2}\right) $
    $ {\mathit{\boldsymbol{s}}}_{\bf{2}} $ $ \left(\mathrm{0.4, 0.3, 0.2}\right) $ $ \left(\mathrm{0.6, 0.1, 0.3}\right) $ $ \left(\mathrm{0.6, 0.2, 0.2}\right) $ $ \left(\mathrm{0.4, 0.4, 0.1}\right) $
    $ {\mathit{\boldsymbol{s}}}_{\bf{3}} $ $ \left(\mathrm{0.7, 0.2, 0.1}\right) $ $ \left(\mathrm{0.4, 0.3, 0.1}\right) $ $ \left(\mathrm{0.5, 0.2, 0.1}\right) $ $ \left(\mathrm{0.7, 0.2, 0.1}\right) $
    $ {\mathit{\boldsymbol{s}}}_{\bf{4}} $ $ \left(\mathrm{0.3, 0.3, 0.2}\right) $ $ \left(\mathrm{0.3, 0.2, 0.1}\right) $ $ \left(\mathrm{0.6, 0.1, 0.2}\right) $ $ \left(\mathrm{0.5, 0.2, 0.3}\right) $
    $ {\mathit{\boldsymbol{s}}}_{\bf{5}} $ $ \left(\mathrm{0.6, 0.1, 0.2}\right) $ $ \left(\mathrm{0.8, 0.1, 0.1}\right) $ $ \left(\mathrm{0.5, 0.2, 0.1}\right) $ $ \left(\mathrm{0.5, 0.3, 0.1}\right) $

     | Show Table
    DownLoad: CSV
    Table 3.  Picture fuzzy prioritized decision matrix.
    Alternatives $ {\mathit{\boldsymbol{t}}}_{\bf{1}} $ $ {\mathit{\boldsymbol{t}}}_{\bf{2}} $ $ {\mathit{\boldsymbol{t}}}_{\bf{3}} $ $ {\mathit{\boldsymbol{t}}}_{\bf{4}} $
    $ {\mathit{\boldsymbol{s}}}_{\bf{1}} $ $ \left(\mathrm{0.5, 0.1, 0.2}\right) $ $ \left(\mathrm{0.6, 0.3, 0.2}\right) $ $ \left(\mathrm{0.6, 0.1, 0.3}\right) $ $ \left(\mathrm{0.5, 0.3, 0.2}\right) $
    $ {\mathit{\boldsymbol{s}}}_{\bf{2}} $ $ \left(\mathrm{0.5, 0.1, 0.3}\right) $ $ \left(\mathrm{0.5, 0.2, 0.1}\right) $ $ \left(\mathrm{0.5, 0.2, 0.1}\right) $ $ \left(\mathrm{0.6, 0.4, 0.1}\right) $
    $ {\mathit{\boldsymbol{s}}}_{\bf{3}} $ $ \left(\mathrm{0.4, 0.2, 0.1}\right) $ $ \left(\mathrm{0.4, 0.4, 0.2}\right) $ $ \left(\mathrm{0.7, 0.1, 0.2}\right) $ $ \left(\mathrm{0.4, 0.2, 0.1}\right) $
    $ {\mathit{\boldsymbol{s}}}_{\bf{4}} $ $ \left(\mathrm{0.5, 0.3, 0.1}\right) $ $ \left(\mathrm{0.5, 0.3, 0.2}\right) $ $ \left(\mathrm{0.4, 0.3, 0.1}\right) $ $ \left(\mathrm{0.7, 0.1, 0.2}\right) $
    $ {\mathit{\boldsymbol{s}}}_{\bf{5}} $ $ \left(\mathrm{0.7, 0.1, 0.1}\right) $ $ \left(\mathrm{0.4, 0.2, 0.1}\right) $ $ \left(\mathrm{0.6, 0.3, 0.1}\right) $ $ \left(\mathrm{0.5, 0.1, 0.2}\right) $

     | Show Table
    DownLoad: CSV

    The attribute values do not require normalization, and therefore, $ {R}^{q} = {D}^{q} = {\left({d}_{ij}^{q}\right)}_{5\times 4} = {\left({r}_{ij}^{q}\right)}_{5\times 4} $.

    The main steps are listed below according to the PFPAAA operator:

    Step 1: Find the values of $ {T}_{ij}^{1}, {T}_{ij}^{2}, {T}_{ij}^{3} $.

    $ {T}_{ij}^{1} = \left(\begin{array}{c}1\\ \begin{array}{c}1\\ \begin{array}{c}1\\ \begin{array}{c}1\\ 1\end{array}
    \end{array}\end{array}\end{array}\begin{array}{c}1\\ \begin{array}{c}1\\ \begin{array}{c}1\\ \begin{array}{c}1\\ 1\end{array}
    \end{array}\end{array}\end{array}\begin{array}{c}1\\ \begin{array}{c}1\\ \begin{array}{c}1\\ \begin{array}{c}1\\ 1\end{array}
    \end{array}\end{array}\end{array}\begin{array}{c}1\\ \begin{array}{c}1\\ \begin{array}{c}1\\ \begin{array}{c}1\\ 1\end{array}
    \end{array}\end{array}\end{array}\right) , $
    $ {T}_{ij}^{2} = \left(\begin{array}{c}0.6\\ \begin{array}{c}0.4\\ \begin{array}{c}0.4\\ \begin{array}{c}0.5\\ 0.2\end{array}
    \end{array}\end{array}\end{array}\begin{array}{c}0.3\\ \begin{array}{c}0.4\\ \begin{array}{c}0.5\\ \begin{array}{c}0.3\\ 0.5\end{array}
    \end{array}\end{array}\end{array}\begin{array}{c}0.3\\ \begin{array}{c}0.4\\ \begin{array}{c}0.3\\ \begin{array}{c}0.5\\ 0.7\end{array}
    \end{array}\end{array}\end{array}\begin{array}{c}0.1\\ \begin{array}{c}0.3\\ \begin{array}{c}0.3\\ \begin{array}{c}0.1\\ 0.5\end{array}
    \end{array}\end{array}\end{array}\right) , $
    $ {T}_{ij}^{3} = \left(\begin{array}{c}0.3\\ \begin{array}{c}0.08\\ \begin{array}{c}0.32\\ \begin{array}{c}0.05\\ 0.08\end{array}
    \end{array}\end{array}\end{array}\begin{array}{c}0.18\\ \begin{array}{c}0.12\\ \begin{array}{c}0.15\\ \begin{array}{c}0.06\\ 0.35\end{array}
    \end{array}\end{array}\end{array}\begin{array}{c}0.18\\ \begin{array}{c}0.16\\ \begin{array}{c}0.12\\ \begin{array}{c}0.2\\ 0.28\end{array}
    \end{array}\end{array}\end{array}\begin{array}{c}0.05\\ \begin{array}{c}0.09\\ \begin{array}{c}0.18\\ \begin{array}{c}0.02\\ 0.2\end{array}
    \end{array}\end{array}\end{array}\right) . $
    Table 4.  Accumulated matrix, by applying the data in Tables 13.
    Alternatives $ {\mathit{\boldsymbol{t}}}_{\bf{1}} $ $ {\mathit{\boldsymbol{t}}}_{\bf{2}} $ $ {\mathit{\boldsymbol{t}}}_{\bf{3}} $ $ {\mathit{\boldsymbol{t}}}_{\bf{4}} $
    $ {\mathit{\boldsymbol{s}}}_{\bf{1}} $ $ \left(\mathrm{0.64, 0.21, 0.11}\right) $ $ \left(\mathrm{0.62, 0.11, 0.23}\right) $ $ \left(\mathrm{0.56, 0.24, 0.18}\right) $ $ \left(\mathrm{0.57, 0.19, 0.28}\right) $
    $ {\mathit{\boldsymbol{s}}}_{\bf{2}} $ $ \left(\mathrm{0.55, 0.12, 0.21}\right) $ $ \left(\mathrm{0.53, 0.17, 0.13}\right) $ $ \left(\mathrm{0.58, 0.31, 0.13}\right) $ $ \left(\mathrm{0.57, 0.24, 0.22}\right) $
    $ {\mathit{\boldsymbol{s}}}_{\bf{3}} $ $ \left(\mathrm{0.55, 0.2, 0.1}\right) $ $ \left(\mathrm{0.61, 0.16, 0.16}\right) $ $ \left(\mathrm{0.46, 0.19, 0.11}\right) $ $ \left(\mathrm{0.56, 0.13, 0.22}\right) $
    $ {\mathit{\boldsymbol{s}}}_{\bf{4}} $ $ \left(\mathrm{0.52, 0.3, 0.13}\right) $ $ \left(\mathrm{0.38, 0.27, 0.10}\right) $ $ \left(\mathrm{0.65, 0.11, 0.18}\right) $ $ \left(\mathrm{0.58, 0.12, 0.39}\right) $
    $ {\mathit{\boldsymbol{s}}}_{\bf{5}} $ $ \left(\mathrm{0.46, 0.29, 0.19}\right) $ $ \left(\mathrm{0.69, 0.11, 0.15}\right) $ $ \left(\mathrm{0.69, 0.14, 0.1}\right) $ $ \left(\mathrm{0.52, 0.26, 0.11}\right) $

     | Show Table
    DownLoad: CSV

    Step 2: Use the PFPAAA operator, Eq (8), to combine each PFVs decision making $ {R}^{q} = {\left({r}_{ij}^{q}\right)}_{5\times 4}(q = \mathrm{1, 2}, 3) $ into a collective picture fuzzy decision matrix $ \widetilde {R} = {\left(\widetilde {{r}_{ij}}\right)}_{5X4} $.

    Step 3: By using Eqs (19) and (20), find the values of $ {T}_{ij}\left(i = \mathrm{1, 2}, 3\dots, m\ \ \ j = \mathrm{1, 2}, 3\dots, z\right) $.

    $ {T}_{ij}^{1} = \left(\begin{array}{c}1\ 0.5323\\ \begin{array}{c}1\ 0.3438\\ \begin{array}{c}1\ 0.4466\\ \begin{array}{c}1\ 0.3923\\ 1\ 0.2692\end{array}
    \end{array}\end{array}\end{array}\begin{array}{c}0.1996\\ \begin{array}{c}0.1358\\ \begin{array}{c}0.1198\\ \begin{array}{c}0.1103\\ 0.1475\end{array}
    \end{array}\end{array}\end{array}\begin{array}{c}0.0756\\ \begin{array}{c}0.0634\\ \begin{array}{c}0.0693\\ \begin{array}{c}0.0508\\ 0.0877\end{array}
    \end{array}\end{array}\end{array}\right) . $

    Step 4: Utilize the PFPAAA operator to aggregate all the preference values $ {r}_{ij}\left(i = \mathrm{1, 2}, \mathrm{3, 4}, 5\right) $ in the ith line of $ \widetilde {R} $ and get the overall preference values $ {r}_{i} $:

    $ {r}_{1} = \left(\mathrm{0.6211, 0.1754, 0.1513}\right) , $
    $ {r}_{2} = \left(\mathrm{0.5466, 0.1528, 0.1786}\right) , $
    $ {r}_{3} = \left(\mathrm{0.5541, 0.1834, 0.1163}\right) , $
    $ {r}_{4} = \left(\mathrm{0.5001, 0.689, 0.1293}\right) , $
    $ {r}_{5} = \left(\mathrm{0.5420, 0.2309, 0.1651}\right) . $

    Step 5: Calculate the scores of $ {r}_{i}\left(i = \mathrm{1, 2}, \mathrm{3, 4}, 5\right) $, respectively:

    $ {S}_{1} = 0.469 , {S}_{2} = 0.3680 , {S}_{3} = 0.4378 , {S}_{4} = 0.3708 , {S}_{5} = 0.3770 . $

    Since

    $ {S}_{1} > {S}_{3} > {S}_{5} > {S}_{4} > {S}_{2} , $

    we have

    $ {x}_{1} > {x}_{3} > {x}_{5} > {x}_{4} > {x}_{2} . $

    Therefore, $ {x}_{1} $ is the best option.

    By using PFPAAG operators, these are the primary steps:

    Step 1: Check step 1.

    Step 2: Use the PFPAAG operators to calculate all the PFVs' decision making values $ \widetilde {R} = {\left({\widetilde {r}}_{ij}^{'}\right)}_{5X4}(q = \mathrm{1, 2}, 3) $ into a collective picture fuzzy decision matrix $ \widetilde {{R}^{'}} = {\left({\widetilde {r}}_{ij}^{'}\right)}_{5X4}(q = \mathrm{1, 2}, 3) $.

    Step 3: Aggregate the values of $ {T}_{ij}^{'}\left(i = \mathrm{1, 2}, 3\dots, m\ \ \ j = \mathrm{1, 2}, 3\dots, z\right) $ based on Eqs (19) and (20).

    $ {T}_{ij}^{'} = \left(\begin{array}{c}1\ 0.5157\\ \begin{array}{c}1\ 0.3267\\ \begin{array}{c}1\ 0.4253\\ \begin{array}{c}1\ 0.3434\\ 1\ 0.2472\end{array}
    \end{array}\end{array}\end{array}\begin{array}{c}0.1742\\ \begin{array}{c}0.1198\\ \begin{array}{c}0.1661\\ \begin{array}{c}0.0943\\ 0.1229\end{array}
    \end{array}\end{array}\end{array}\begin{array}{c}0.0616\\ \begin{array}{c}0.0547\\ \begin{array}{c}0.0549\\ \begin{array}{c}0.0412\\ 0.0676\end{array}
    \end{array}\end{array}\end{array}\right) . $

    Step 4: Utilize the PFPAAA operator to aggregate all the preference values $ {r}_{ij}^{'}\left(i = \mathrm{1, 2}, \mathrm{3, 4}, 5\right) $ in the ith line of $ \widetilde {{R}^{'}} $, and get the overall preference values $ {r}_{ij}^{'} $:

    $ {\widetilde {r}}_{1}^{'} = \left(\mathrm{0.6019, 0.1973, 0.1743}\right) , $
    $ {\widetilde {r}}_{2}^{'} = \left(\mathrm{0.5332, 0.1758, 0.1906}\right) , $
    $ {\widetilde {r}}_{3}^{'} = \left(\mathrm{0.5248, 0.1955, 0.1229}\right) , $
    $ {\widetilde {r}}_{4}^{'} = \left(\mathrm{0.4608, 0.2760, 0.1383}\right) , $
    $ {\widetilde {r}}_{5}^{'} = \left(\mathrm{0.4933, 0.2878, 0.1735}\right) . $

    Step 5: Calculate the scores of $ {r}_{i}\left(i = \mathrm{1, 2}, \mathrm{3, 4}, 5\right) $, respectively:

    $ {S}_{1} = 0.4276 , {S}_{2} = 0.3426 , {S}_{3} = 0.4019 , {S}_{4} = 0.3226 , {S}_{5} = 0.3199 . $

    Since

    $ {S}_{1} > {S}_{3} > {S}_{2} > {S}_{4} > {S}_{5} , $

    we have

    $ {x}_{1} > {x}_{3} > {x}_{2} > {x}_{4} > {x}_{5} . $

    Therefore, $ {x}_{2} $ is the best option. Thus, the different rankings of alternatives are obtained by the PFPAAA and PFPAAG operators.

    Figure 1.  Graphical presentation of score value.

    Comparative analysis is one of the most valuable and dominant techniques for evaluating the supremacy between any two different kinds of operators. We compared the proposed theory with some existing operators: the picture fuzzy weighted averaging (PFWA) operator, proposed by Wei [40]; the picture fuzzy weighted geometric (PFWG) operator, invented by Wei [40]; the picture fuzzy hybrid weighted averaging (PFHWA) operator, derived by Wei [39]; the picture fuzzy hybrid weighted geometric (PFHWG) operator, presented by Wei [39]; the picture fuzzy frank weighted averaging (PFFWA) operator, discovered by Seikh et al. [28]; the picture fuzzy frank weighted geometric (PFFWG) operator, presented by Seikh et al. [28]; the picture fuzzy Dombi weighted averaging (PFDWA) operator, examined by Jana et al. [41]; and the picture fuzzy Dombi weighted geometric (PFDWG) operator, evaluated by Jana et al. [41].

    The comparison is summarized in Table 5. Using the data in Table 4, make a side-by-side comparison of the proposed and current operators. As can be seen from the analysis, the best candidate for both ways is $ {S}_{1} $ by using PFPAAA and PFPAAG AOs, and the rankings for both methods are equal. This confirms the approach we recommended in this article is logical and efficient. The TN and TCN used by Aczel-Alsina are more flexible than those used by other AOs. The main benefit of the PFPAAA and PFPAAG operators we presented is that they introduce a prioritized relationship structure of prioritized aggregating operators, which allows us to represent the prioritized relationships more accurately between attributes. However, the alternative suggested by others does not consider such real-world circumstances where some attributes may have higher priority than other attributes.

    Table 5.  Comparison between the proposed and current operators.
    Methods Operator Ranking
    PFPAAA Proposed work $ {S}_{1} > {S}_{3} > {S}_{5} > {S}_{4} > {S}_{\bf{2}} $
    PFPAAG Proposed work $ {S}_{1} > {S}_{3} > {S}_{2} > {S}_{4} > {S}_{\bf{5}} $
    PFWA Wei [40] $ {S}_{1} > {S}_{2} > {S}_{3} > {S}_{5} > {S}_{\bf{4}} $
    PFWG Wei [40] $ {S}_{2} > {S}_{3} > {S}_{4} > {S}_{5} > {S}_{\bf{1}} $
    PFHWA Wei [39] $ {S}_{3} > {S}_{1} > {S}_{4} > {S}_{2} > {S}_{\bf{5}} $
    PFHWG Wei [39] $ {S}_{1} > {S}_{3} > {S}_{2} > {S}_{4} > {S}_{\bf{5}} $
    PFFWA Seikh and Mandal [28] $ {S}_{1} > {S}_{4} > {S}_{3} > {S}_{2} > {S}_{\bf{5}} $
    PFFWG Seikh and Mandal [28] $ {S}_{1} > {S}_{3} > {S}_{4} > {S}_{2} > {S}_{\bf{5}} $
    PFDWA Jana et al. [41] $ {S}_{1} > {S}_{4} > {S}_{3} > {S}_{2} > {S}_{\bf{5}} $
    PFDWG Jana et al. [41] $ {S}_{1} > {S}_{3} > {S}_{4} > {S}_{2} > {S}_{\bf{2}} $

     | Show Table
    DownLoad: CSV
    Figure 2.  Representation of information in Table 5.

    The main contributions of this research are listed below:

    1) We analyzed the theory of averaging and geometric AOs in the presence of the Aczel-Alsina operational laws and prioritization degree based on PF information, such as the PPFAAA operator and PPFAAG operator.

    2) We examined properties such as idempotency, monotonicity and boundedness for the derived operators and also evaluated some important results.

    3) We used the derived operators to create a system for controlling the MAGDM problem using PF information.

    4) We showed the approach's effectiveness and the developed operators' validity, and a numerical example has been given.

    5) We compared the proposed work with a few existing operators listed in this manuscript.

    6) We shall try to utilize the abovementioned method in the future and expand its application to various fuzzy situations.

    Proof. Through the method of mathematical induction, we are ready to prove Theorem 1 as follows: In the context of $ n = 2 $ and the PFV Aczel-Alsina operations, we obtain

    $ \frac{{T}_{1}}{{\sum }_{j = 1}^{n}{T}_{j}}{\varrho }_{1} = \left(1-{e}^{-{\left({\frac{{T}_{1}}{{\sum }_{n = 1}^{h}{T}_{n}}\left(-\mathrm{ln}\left(1-{\zeta }_{1}\right)\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}, {e}^{-{\left(\frac{{T}_{1}}{{\sum }_{n = 1}^{h}{T}_{n}}{\left(-\mathrm{ln}{\vartheta }_{1}\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}, {e}^{-{\left(\frac{{T}_{1}}{{\sum }_{n = 1}^{h}{T}_{n}}{\left(-\mathrm{ln}{\delta }_{1}\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}\right) , $
    $ \frac{{T}_{2}}{{\sum }_{j = 1}^{n}{T}_{j}}{\varrho }_{2} = \left(1-{e}^{-{\left(\frac{{T}_{2}}{{\sum }_{n = 1}^{h}{T}_{n}}{\left(-\mathrm{ln}\left(1-{\zeta }_{2}\right)\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}, {e}^{-{\left(\frac{{T}_{2}}{{\sum }_{n = 1}^{h}{T}_{n}}{\left(-\mathrm{ln}{\vartheta }_{2}\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}, {e}^{-{\left({\frac{{T}_{2}}{{\sum }_{n = 1}^{h}{T}_{n}}\left(-\mathrm{ln}{\delta }_{2}\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}\right) . $

    We obtain

    $ PFPAAA\left({\varrho }_{1}{\varrho }_{2}\right) = \frac{{T}_{1}}{{\sum }_{j = 1}^{n}{T}_{j}}{\varrho }_{1} \oplus \frac{{T}_{2}}{{\sum }_{j = 1}^{n}{T}_{j}}{\varrho }_{2} $
    $ =(1e(T1hn=1Tn(ln(1ζ1))л)1л,e(T1hn=1Tn(lnϑ1)л)1л,e(T1hn=1Tn(lnδ1)л)1л)(1e(T2hn=1Tn(ln(1ζ2))л)1л,e(T2hn=1Tn(lnϑ2)л)1л,e(T2hn=1Tn(lnδ2)л)1л)=(1e(T12n=1Tn(ln(1ζ1))л+T22n=1Tn(ln(1ζ2))л)1л,e(T12n=1Tn(lnϑ1)л+T22n=1Tn(lnϑ2)л)1л,e(T12n=1Tn(lnδ1)л+T22n=1Tn(lnδ2)л)1л)
    $
    $ = \left(1-{e}^{-{\left(\sum _{n = 1}^{h}\frac{{T}_{n}}{{\sum }_{n = 1}^{h}{T}_{n}}{\left(-\mathrm{ln}\left(1-{\zeta }_{n}\right)\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}, {e}^{-{\left(\sum _{n = 1}^{h}\frac{{T}_{n}}{{\sum }_{n = 1}^{h}{T}_{n}}{\left(-\mathrm{ln}{\vartheta }_{n}\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}, {e}^{-{\left(\sum _{n = 1}^{h}\frac{{T}_{n}}{{\sum }_{n = 1}^{h}{T}_{n}}{\left(-\mathrm{ln}{\delta }_{n}\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}\right) . $

    As a result, $ n = 2 $ (15) holds $. $ Furthermore, we assume that for $ n = k $ (15), we obtain

    $ PFPAAA(ϱ1,ϱ2,ϱk)=kn=1(Tnhn=1Tnϱn)=(1e(kn=1Tnhn=1Tn(ln(1ζn))л)1л,e(kn=1Tnhn=1Tn(lnϑn)л)1л,e(kn=1Tnhn=1Tn(lnδn)л)1л).
    $

    Now, for $ n = k+1 $,

    $ PFPAAA\left({\varrho }_{1}, {\varrho }_{2}, \dots \dots {\varrho }_{k+1}\right) = { \oplus }_{n = 1}^{k}\left(\frac{{T}_{n}}{{\sum }_{n = 1}^{k+1}{T}_{n}}{\varrho }_{n}\right) \oplus \left(\frac{{T}_{k+1}}{{\sum }_{n = 1}^{k+1}{T}_{n}}{\varrho }_{k+1}\right) $
    $ =(1e(kn=1Tnhn=1Tn(ln(1ζn))л)1л,e(kn=1Tnhn=1Tn(lnϑn)л)1л,e(kn=1Tnhn=1Tn(lnδn)л)1л)(1e(Tk+1k+1n=1Tn(ln(1ζk+1))л)1л,e(Tk+1k+1n=1Tn(lnϑk+1)л)1л,e(Tk+1k+1n=1Tn(lnδk+1)л)1л)
    $
    $ = \left(1-{e}^{-{\left(\sum _{n = 1}^{k+1}\frac{{T}_{n}}{{\sum }_{n = 1}^{k+1}{T}_{n}}{\left(-\mathrm{ln}\left(1-{\zeta }_{n}\right)\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}, {e}^{-{\left(\sum _{n = 1}^{k+1}\frac{{T}_{n}}{{\sum }_{n = 1}^{k+1}{T}_{n}}{\left(-\mathrm{ln}{\vartheta }_{n}\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}, {e}^{-{\left(\sum _{n = 1}^{k+1}\frac{{T}_{n}}{{\sum }_{n = 1}^{k+1}{T}_{n}}{\left(-\mathrm{ln}{\delta }_{n}\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}\right) . $

    Thus, Eq 15 is correct for $ n = k+1 $. Consequently, we conclude that Eq 15 is true for n.

    Proof. Since $ {\varrho }_{n} = \left({\zeta }_{n}, {\vartheta }_{n}, {\delta }_{n}\right) = \varrho (n = \mathrm{1, 2}, 3\dots h) $, by Eq 15, we have

    $ PFPAAA\left({\varrho }_{1}, {\varrho }_{2}, \dots {\varrho }_{n}\right) = { \oplus }_{n = 1}^{h}\frac{{T}_{n}}{{\sum }_{n = 1}^{h}{T}_{n}}{\varrho }_{n} = \left(1e(hn=1Tnhn=1Tn(ln(1ζn))л)1л,e(hn=1Tnhn=1Tn(lnϑn)л)1л,e(hn=1Tnhn=1Tn(lnδn)л)1л
    \right) $
    $ = \left(1e((ln(1ζ))л)1л,e((lnϑ)л)1л,e((lnδ)л)1л
    \right) = \left(1e(ln(1ζ)),e(lnϑ),e(lnδ)
    \right) $
    $ = \left(\zeta , \vartheta , \delta \right) = \varrho . $

    Thus, $ $

    $ PFPAAA\left({\varrho }_{1}, {\varrho }_{2}, \dots {\varrho }_{h}\right) = \varrho . $

    Proof. Let $ {\varrho }^{-} = min\left({\varrho }_{1}, {\varrho }_{2}, \dots {\varrho }_{n}\right) = \left({\zeta }^{-}, {\vartheta }^{-}, {\delta }^{-}\right) $ and $ {\varrho }^{+} = max\left({\varrho }_{1}, {\varrho }_{2}, \dots {\varrho }_{n}\right) = \left({\zeta }^{+}, {\vartheta }^{+}, {\delta }^{+}\right) $. As a result, we get the inequalities that follow,

    $1e(hn=1Tnhn=1Tn(ln(1ζ))л)1л1e(hn=1Tnhn=1Tn(ln(1ζn))л)1л1e(hn=1Tnhn=1Tn(ln(1ζ+))л)1л
    $
    $ {e}^{-{\left(\sum _{n = 1}^{h}\frac{{T}_{n}}{{\sum }_{n = 1}^{h}{T}_{n}}{\left(-\mathrm{ln}\left({\vartheta }^{-}\right)\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}\le {e}^{-{\left(\sum _{n = 1}^{h}\frac{{T}_{n}}{{\sum }_{n = 1}^{h}{T}_{n}}{\left(-\mathrm{ln}\left(1-{\vartheta }_{n}\right)\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}\le {e}^{-{\left(\sum _{n = 1}^{h}\frac{{T}_{n}}{{\sum }_{n = 1}^{h}{T}_{n}}{\left(-\mathrm{ln}\left(1-{\vartheta }^{+}\right)\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}} $
    $ {e}^{-{\left(\sum _{n = 1}^{h}\frac{{T}_{n}}{{\sum }_{n = 1}^{h}{T}_{n}}{\left(-\mathrm{ln}\left(1-{\delta }^{-}\right)\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}\le {e}^{-{\left(\sum _{n = 1}^{h}\frac{{T}_{n}}{{\sum }_{n = 1}^{h}{T}_{n}}{\left(-\mathrm{ln}\left(1-{\delta }_{n}\right)\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}\le {e}^{-{\left(\sum _{n = 1}^{h}\frac{{T}_{n}}{{\sum }_{n = 1}^{h}{T}_{n}}{\left(-\mathrm{ln}\left(1-{\delta }^{+}\right)\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}} . $

    Therefore,

    $ {\varrho }^{-}\le PFPAAA\left({\varrho }_{1}, {\varrho }_{2}, {\varrho }_{3}\dots {\varrho }_{h}\right)\le {\varrho }^{+}. $

    Proof. Let

    $ PFPAAA\left({{\rm{ \mathsf{ ϱ} }}}_{1}, {{\rm{ \mathsf{ ϱ} }}}_{2}, \dots , {{\rm{ \mathsf{ ϱ} }}}_{\mathrm{h}}\right) = \left(1e(hn=1Tnhn=1Tn(ln(1ζn))л)1л,e(hn=1Tnhn=1Tn(ln(ϑn))л)1л,e(hn=1Tnhn=1Tn(ln(δn))л)1л
    \right) , $
    $ {{\rm{ \mathsf{ ϱ} }}}_{\mathrm{n}}{ \oplus }{\rm{ \mathsf{ ψ} }} = \left(1e((ln(1ζn))л+(ln(1μ))л)1л,e((lnϑn)л+(lnϕ)л)1л,e((lnδn)л+(lnν)л)1л
    \right) . $

    According to Theorem 1, we have

    $ PFPAAA(ϱ1ψ,ϱ2ψ,,ϱhψ)=(1e(hn=1Tnhn=1Tn(ln(1(1e((ln(1ζn))л+(ln(1μ))л)1л)))л)1л,e(hn=1Tnhn=1Tn(ln(e((lnϑn)л+(lnϕ)л)1л))л)1л,e(hn=1Tnhn=1Tn(ln(e((lnδn)л+(lnν)л)1л))л)1л)
    $
    $ = \left(1e(hn=1Tnhn=1Tn(ln(1ζn))л+(ln(1(μ)))л)1л,e(hn=1Tnhn=1Tn(ln(ϑn))л+(ln(ϕ))л)1л,e(hn=1Tnhn=1Tn(ln(δn))л+(ln(ν))л)1л
    \right) . $

    By utilizing the operational laws of PFVs, we obtain

    $ PFPAAA\left({{\rm{ \mathsf{ ϱ} }}}_{1}, {{\rm{ \mathsf{ ϱ} }}}_{2}, \dots , {{\rm{ \mathsf{ ϱ} }}}_{\mathrm{h}}\right){ \oplus }{\rm{ \mathsf{ ψ} }} = \left(1e(hn=1Tnhn=1Tn(ln(1ζn))л)1л,e(hn=1Tnhn=1Tn(ln(ϑn))л)1л,e(hn=1Tnhn=1Tn(ln(δn))л)1л
    \right){ \oplus }{\rm{ \mathsf{ ψ} }} $
    $ = \left(1e(hn=1Tnhn=1Tn(ln(1ζn))л)1л,e(hn=1Tnhn=1Tn(ln(ϑn))л)1л,e(hn=1Tnhn=1Tn(ln(δn))л)1л
    \right){ \oplus }\left(\mu , \phi , \nu \right) $
    $ = \left(1e((ln(1(1e(hn=1Tnhn=1Tn(ln(1ζn))л)1л)))л+(ln(1μ))л)1л,e((ln(e(hn=1Tnhn=1Tn(ln(ϑn))л)1л))л+(lnϕ)л)1л,e((ln(e(hn=1Tnhn=1Tn(ln(δn))л)1л))л+(lnν)л)1л
    \right) $
    $ = \left(1e(hn=1Tnhn=1Tn(ln(1ζnμ))л)1л,e(hn=1Tnhn=1Tn(ln(ϑnϕ))л)1л,e(hn=1Tnhn=1Tn(ln(δnν))л)1л
    \right) . $

    Thus,

    $ PFPAAA\left({\varrho }_{1} \oplus \psi , {\varrho }_{2} \oplus \psi , \dots , {\varrho }_{h} \oplus \psi , \right) = PFPAAA\left({\varrho }_{1}, {\varrho }_{2}, {\varrho }_{3}, \dots {\varrho }_{h}\right) \oplus {\rm{ \mathsf{ ψ} }}. $

    Proof. Following the operational rules listed in Section 2, we get

    $ \eta \varrho = \left(1-{e}^{-{\left({\eta \left(-ln\left(1-\zeta \right)\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}, {e}^{-{\left({\eta \left(-ln\vartheta \right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}, {e}^{-{\left({\eta \left(-ln\delta \right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}\right) . $

    According to Theorem 1, we have

    $ PFPAAA(rϱ1,rϱ2,,rϱh,)=(1e(hn=1Tnhn=1Tn(ln(1(1e(r(ln(1ζ))л)1л)))л)1л,e(hn=1Tnhn=1Tn(ln(,e(r(lnϑ)л)1л))л)1л,e(hn=1Tnhn=1Tn(ln(e(r(lnδ)л)1л))л)1л)
    $
    $ = \left(1e(hn=1Tnhn=1Tnr((ln(1ζ))л))1л,e(hn=1Tnhn=1Tnr((lnϑ)л)л)1л,e(hn=1Tnhn=1Tnr((lnδ)л)л)1л
    \right) $
    $ rPFPAAA(ϱ1,ϱ2,ϱ3,ϱh)=r(1e(hn=1Tnhn=1Tn(ln(1(1e((ln(1ζ))л)1л)))л)1л,e(hn=1Tnhn=1Tn(ln(,e((lnϑ)л)1л))л)1л,e(hn=1Tnhn=1Tn(ln(e((lnδ)л)1л))л)1л)
    $
    $ = r\left(1e(hn=1Tnhn=1Tn((ln(1ζ))л))1л,e(hn=1Tnhn=1Tn((lnϑ)л)л)1л,e(hn=1Tnhn=1Tn((lnδ)л)л)1л
    \right) = \left(1e(hn=1Tnhn=1Tnr((ln(1ζ))л))1л,e(hn=1Tnhn=1Tnr((lnϑ)л)л)1л,e(hn=1Tnhn=1Tnr((lnδ)л)л)1л
    \right) . $

    Thus,

    $ \mathrm{P}\mathrm{F}\mathrm{P}\mathrm{A}\mathrm{A}\mathrm{A}\left({\mathrm{r}{\rm{ \mathsf{ ϱ} }}}_{1}, {\mathrm{r}{\rm{ \mathsf{ ϱ} }}}_{2}, \dots , \mathrm{r}{{\rm{ \mathsf{ ϱ} }}}_{\mathrm{h}}, \right) = \mathrm{r}\mathrm{P}\mathrm{F}\mathrm{P}\mathrm{A}\mathrm{A}\mathrm{A}\left({{\rm{ \mathsf{ ϱ} }}}_{1}, {{\rm{ \mathsf{ ϱ} }}}_{2}, {{\rm{ \mathsf{ ϱ} }}}_{3}, \dots {{\rm{ \mathsf{ ϱ} }}}_{\mathrm{h}}\right). $

    Proof.

    $ \mathrm{P}\mathrm{F}\mathrm{P}\mathrm{A}\mathrm{A}\mathrm{A}\left({\mathrm{r}{\rm{ \mathsf{ ϱ} }}}_{1}{ \oplus }{\rm{ \mathsf{ ψ} }}, {\mathrm{r}{\rm{ \mathsf{ ϱ} }}}_{2}{ \oplus }{\rm{ \mathsf{ ψ} }}, \dots \mathrm{r}{{\rm{ \mathsf{ ϱ} }}}_{\mathrm{h}}{ \oplus }{\rm{ \mathsf{ ψ} }}\right) $
    $ \mathrm{r}{{\rm{ \mathsf{ ϱ} }}}_{\mathrm{n}} = \left(1-{e}^{-{\left({r\left(-ln\left(1-{\zeta }_{n}\right)\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}, {e}^{-{\left({r\left(-ln{\vartheta }_{n}\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}, {e}^{-{\left({r\left(-ln{\delta }_{n}\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}\right) $
    $ \mathrm{r}{{\rm{ \mathsf{ ϱ} }}}_{\mathrm{n}}{ \oplus }{\rm{ \mathsf{ ψ} }} = \left(1e(r(ln(1ζn))л)1л,e(r(lnϑn)л)1л,e(r(lnδn)л)1л
    \right){ \oplus }\left(\mu , \phi , \nu \right) $
    $ \mathrm{r}{{\rm{ \mathsf{ ϱ} }}}_{\mathrm{n}}{ \oplus }{\rm{ \mathsf{ ψ} }} = \left(1e((ln(1(1e(r(ln(1ζn))л)1л)))л+(ln(μn))л)1л,e((ln(e(r(lnϑn)л)1л))л+(lnϕn)л)1л,e((lne(r(lnδn)л)1л)л+(lnνn)л)1л
    \right) $
    $ = \left(1e(hn=1Tnhn=1Tn(ln(1(1e((ln(1(1e(r(ln(1ζn))л)1л)))л+(ln(1μn))л)1л)))л)1л,e(hn=1Tnhn=1Tn(ln(e((ln(e(r(lnϑn)л)1л))л+(lnϕn)л)1л))л)1л,e(hn=1Tnhn=1Tn(ln(e((lne(r(lnδn)л)1л)л+(lnνn)л)1л))л)1л
    \right) $
    $ = \left(1e(hn=1Tnhn=1Tn(r(ln(1ζn))л+(ln(1μn))л))1л,e(hn=1Tnhn=1Tn(r(lnϑn)л+(lnϕn)л))1л,e(hn=1Tnhn=1Tn(r(lnδn)л+(lnνn)л))1л
    \right) $
    $ = \mathrm{r}\mathrm{P}\mathrm{F}\mathrm{P}\mathrm{A}\mathrm{A}\mathrm{A}\left({{\rm{ \mathsf{ ϱ} }}}_{1}, {{\rm{ \mathsf{ ϱ} }}}_{2}, {{\rm{ \mathsf{ ϱ} }}}_{3}, \dots {{\rm{ \mathsf{ ϱ} }}}_{\mathrm{h}}\right){ \oplus }{\rm{ \mathsf{ ψ} }} $
    $ \mathrm{P}\mathrm{F}\mathrm{P}\mathrm{A}\mathrm{A}\mathrm{A}\left({{\rm{ \mathsf{ ϱ} }}}_{1}, {{\rm{ \mathsf{ ϱ} }}}_{2}, {{\rm{ \mathsf{ ϱ} }}}_{3}, \dots {{\rm{ \mathsf{ ϱ} }}}_{\mathrm{h}}\right) = \left(1e(hn=1Tnhn=1Tn(ln(1ζn))л)1л,e(hn=1Tnhn=1Tn(lnϑn)л)1л,e(hn=1Tnhn=1Tn(lnδn)л)1л
    \right) $
    $ \mathrm{r}\mathrm{P}\mathrm{F}\mathrm{P}\mathrm{A}\mathrm{A}\mathrm{A}\left({{\rm{ \mathsf{ ϱ} }}}_{1}, {{\rm{ \mathsf{ ϱ} }}}_{2}, {{\rm{ \mathsf{ ϱ} }}}_{3}, \dots {{\rm{ \mathsf{ ϱ} }}}_{\mathrm{h}}\right) = r\left(1e(hn=1Tnhn=1Tn(ln(1ζn))л)1л,e(hn=1Tnhn=1Tn(lnϑn)л)1л,e(hn=1Tnhn=1Tn(lnδn)л)1л
    \right) $
    $ \mathrm{r}\mathrm{P}\mathrm{F}\mathrm{P}\mathrm{A}\mathrm{A}\mathrm{A}\left({{\rm{ \mathsf{ ϱ} }}}_{1}, {{\rm{ \mathsf{ ϱ} }}}_{2}, {{\rm{ \mathsf{ ϱ} }}}_{3}, \dots {{\rm{ \mathsf{ ϱ} }}}_{\mathrm{h}}\right) = \left(1e(hn=1Tnhn=1Tn(r(ln(1ζn))л))1л,e(hn=1Tnhn=1Tn(r(lnϑn)л))1л,e(hn=1Tnhn=1Tn(r(lnδn)л))1л
    \right) $
    $ rPFPAAA(ϱ1,ϱ2,ϱ3,ϱh)ψ=(1e(hn=1Tnhn=1Tn(r(ln(1ζn))л))1л,e(hn=1Tnhn=1Tn(r(lnϑn)л))1л,e(hn=1Tnhn=1Tn(r(lnδn)л))1л)(μ,ϕ,ν).
    $

    Thus,

    $ \mathrm{P}\mathrm{F}\mathrm{P}\mathrm{A}\mathrm{A}\mathrm{A}\left({\mathrm{r}{\rm{ \mathsf{ ϱ} }}}_{1}{ \oplus }{\rm{ \mathsf{ ψ} }}, {\mathrm{r}{\rm{ \mathsf{ ϱ} }}}_{2}{ \oplus }{\rm{ \mathsf{ ψ} }}, \dots \mathrm{r}{{\rm{ \mathsf{ ϱ} }}}_{\mathrm{h}}{ \oplus }{\rm{ \mathsf{ ψ} }}\right) = \mathrm{r}\mathrm{P}\mathrm{F}\mathrm{P}\mathrm{A}\mathrm{A}\mathrm{A}\left({{\rm{ \mathsf{ ϱ} }}}_{1}, {{\rm{ \mathsf{ ϱ} }}}_{2}, {{\rm{ \mathsf{ ϱ} }}}_{3}, \dots {{\rm{ \mathsf{ ϱ} }}}_{\mathrm{h}}\right){ \oplus }{\rm{ \mathsf{ ψ} }}. $

    Proof. We have

    $ PFPAAA\left({\varrho }_{1} \oplus {\psi }_{1}, {\varrho }_{2} \oplus {\psi }_{2}, \dots {\varrho }_{h} \oplus {\psi }_{h}\right) $
    $ {\varrho }_{n} \oplus {\psi }_{n} = \left(1e((ln(1ζn))л+(ln(1μn))л)1л,e((lnϑn)л+(lnϕn)л)1л,e((lnδn)л+(lnνn)л)1л
    \right) $
    $ = \left(1e(hn=1Tnhn=1Tn(ln(1(1e((ln(1ζn))л+(ln(1μn))л)1л)))л)1л,e(hn=1Tnhn=1Tn(ln(e((lnϑn)л+(lnϕn)л)1л))л)1л,e(hn=1Tnhn=1Tn(ln(e((lnδn)л+(lnνn)л)1л))л)1л
    \right) $
    $ = \left(1e(hn=1Tnhn=1Tn(ln(1ζn))л+(ln(1μn))л)1л,e(hn=1Tnhn=1Tn(ln(ϑn))л+(lnϕn)л)1л,e(hn=1Tnhn=1Tn(ln(δn))л+(lnνn)л)1л
    \right) $
    $ PFPAAA\left({\varrho }_{1}, {\varrho }_{2}, {\varrho }_{3}, \dots {\varrho }_{h}\right) \oplus PFPAAA\left({\psi }_{1}, {\psi }_{2}, {\psi }_{3}, \dots {\psi }_{h}\right) $
    $ PFPAAA\left({\varrho }_{1}, {\varrho }_{2}, \dots {\varrho }_{n}\right) = \left(1e(hn=1Tnhn=1Tn(ln(1ζn))л)1л,e(hn=1Tnhn=1Tn(lnϕn)л)1л,e(hn=1Tnhn=1Tn(lnδn)л)1л
    \right) $
    $ PFPAAA\left({\psi }_{1}, {\psi }_{2}, {\psi }_{3}, \dots {\psi }_{h}\right) = \left(1e(hn=1Tnhn=1Tn(ln(1μn))л)1л,e(hn=1Tnhn=1Tn(lnϑn)л)1л,e(hn=1Tnhn=1Tn(lnνn)л)1л
    \right) $
    $PFPAAA(ϱ1,ϱ2,ϱ3,ϱh)PFPAAA(ψ1,ψ2,ψ3,ψh)=((1e(hn=1Tnhn=1Tn(ln(1ζn))л)1л,e(hn=1Tnhn=1Tn(lnϕn)л)1л,e(hn=1Tnhn=1Tn(lnδn)л)1л)(1e(hn=1Tnhn=1Tn(ln(1μn))л)1л,e(hn=1Tnhn=1Tn(lnϑn)л)1л,e(hn=1Tnhn=1Tn(lnνn)л)1л))
    $
    $ = \left(\begin{array}{c}\left(\begin{array}{c}1-{e}^{-{\left(\sum _{n = 1}^{h}\frac{{T}_{n}}{{\sum }_{n = 1}^{h}{T}_{n}}{\left(-\mathrm{ln}\left(1-\left(1-{e}^{-{\left({\left(-\mathrm{ln}\left(1-{\zeta }_{n}\right)\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}\right)\right)\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}, \\ {e}^{-{\left(\sum _{n = 1}^{h}\frac{{T}_{n}}{{\sum }_{n = 1}^{h}{T}_{n}}{\left(-\mathrm{ln}\left({e}^{-{\left({\left(-\mathrm{ln}{\vartheta }_{n}\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}\right)\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}, \\ {e}^{-{\left(\sum _{n = 1}^{h}\frac{{T}_{n}}{{\sum }_{n = 1}^{h}{T}_{n}}{\left(-\mathrm{ln}\left({e}^{-{\left({\left(-\mathrm{ln}{\delta }_{n}\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}\right)\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}\end{array}
    \right)\\ \oplus \left(1e(hn=1Tnhn=1Tn(ln(1(1e((ln(1μn))л)1л)))л)1л,e(hn=1Tnhn=1Tn(ln(e((lnϕn)л)1л))л)1л,e(hn=1Tnhn=1Tn(ln(e((lnνn)л)1л))л)1л
    \right)\end{array}\right) $
    $ = \left(\begin{array}{c}\left(\begin{array}{c}1-{e}^{-{\left(\sum _{n = 1}^{h}\frac{{T}_{n}}{{\sum }_{n = 1}^{h}{T}_{n}}{\left(-\mathrm{ln}\left(1-{\zeta }_{n}\right)\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}, \\ {e}^{-{\left(\sum _{n = 1}^{h}\frac{{T}_{n}}{{\sum }_{n = 1}^{h}{T}_{n}}{\left(-\mathrm{ln}{\vartheta }_{n}\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}, \\ {e}^{-{\left(\sum _{n = 1}^{h}\frac{{T}_{n}}{{\sum }_{n = 1}^{h}{T}_{n}}{\left(-\mathrm{ln}{\delta }_{n}\right)}^{л}\right)}^{{}^{1}\!\!\diagup\!\!{}_{{\rm{ \mathsf{ л} }}}\;}}\end{array}
    \right) \oplus \\ \left(1e(hn=1Tnhn=1Tn(ln(1μn))л)1л,e(hn=1Tnhn=1Tn(lnϕn)л)1л,e(hn=1Tnhn=1Tn(lnνn)л)1л
    \right)\end{array}\right) $
    $ = \left(1e((ln(1(1e(hn=1Tnhn=1Tn(ln(1ζn))л)1л)))л+(ln(1(1e(hn=1Tnhn=1Tn(ln(1μn))л)1л)))л)1л,e((ln(e(hn=1Tnhn=1Tn(lnϑn)л)1л))л+(ln(e(hn=1Tnhn=1Tn(lnϕn)л)1л))л)1лe((ln(e(hn=1Tnhn=1Tn(lnδn)л)1л))л+(ln(e(hn=1Tnhn=1Tn(lnνn)л)1л))л)1л
    \right) $
    $ = \left(1e(hn=1Tnhn=1Tn(ln(1ζn))л+hn=1Tnhn=1Tn(ln(1μn))л)1л,e(hn=1Tnhn=1Tn(lnϑn)л+hn=1Tnhn=1Tn(lnϕn)л)1лe(hn=1Tnhn=1Tn(lnδn)л+hn=1Tnhn=1Tn(lnνn)лл)1л
    \right) $
    $ = \left(1e(hn=1Tnhn=1Tn(ln(1ζn))л+(ln(1μn))л)1л,e(hn=1Tnhn=1Tn(ln(ϑn))л+(lnϕn)л)1л,e(hn=1Tnhn=1Tn(ln(δn))л+(lnνn)л)1л
    \right). $

    Thus,

    $ PFPAAA(ϱ1ψ1,ϱ2ψ2,ϱhψh)=PFPAAA(ϱ1,ϱ2,ϱ3,ϱh)PFPAAA(ψ1,ψ2,ψ3,ψh).
    $
    [1] McMillan DW, Chavis DM (1986) Sense of commmunity: A definition and theory. Am J Commun Psychol 14: 6-23. doi: 10.1002/1520-6629(198601)14:1<6::AID-JCOP2290140103>3.0.CO;2-I
    [2] Chipur HM, Pretty GH (1999) A review of the sense of community index: current uses, factor structure, reliablity, and further development. J Commun Psychol 27(643): 658.
    [3] Chavis DM, Pretty GMH (1999) Sense of community: Advances in measurement and application. J Commun Psychol 27: 635-642. doi: 10.1002/(SICI)1520-6629(199911)27:6<635::AID-JCOP1>3.0.CO;2-F
    [4] Puddifoot JE (1995) Dimensions of community identify. J Commun Appl Psychol 5: 357-370. doi: 10.1002/casp.2450050507
    [5] Kingston S, Mitchell R, Florin P, et al. (1999) Sense of community in neighborhoods as a multi-level construct. J Commun Psychol 27: 681-694. doi: 10.1002/(SICI)1520-6629(199911)27:6<681::AID-JCOP4>3.0.CO;2-W
    [6] Glynn TJ (1981) Psychological sense of community: Measurement and application. Human Relat 34: 780-818.
    [7] Chavis DM, Wandersman A (1990) A sense of community in the urban enviroment: A catalyst for participation and community development. Am J Commun Psychol 18: 55-81. doi: 10.1007/BF00922689
    [8] Prezza M, Amici M, Roberti T (2001) Sense of community referred to the whole town: Its relations with neighboring, loneliness, life satisfaction, and area of residence. J Commun Psychol29: 29-52.
    [9] Farrell SJ, Coulombe TAD (2004) Neighborhoods and neighbors: Do they contribute to personal well-being. J Commun Psychol 32: 9-25. doi: 10.1002/jcop.10082
    [10] Baldassare M, Rosenfield S, Rook KS (1984) The types of social relations predicting elderly well-being. Res Aging 6: 549-559. doi: 10.1177/0164027584006004006
    [11] Bromell L, Cagney KA (2014) Companionship in the neighborhood context: Older adults' living arrangments and perceptions of social cohesion. Res Aging 36(2): 228-243.
    [12] Cagney KA, Browning CR, Wen M (2005) Racial disparities in self-rated health at older ages: What difference does the neighborhood make? J Gerongol Psychol SCI 60: S181-S190. doi: 10.1093/geronb/60.4.S181
    [13] Basta NE, Matthews FE, Chatfield MD, et al. (2008) Community-level socio-economic status and cognitive and functional impairment in the older population. Eur J Public Health 18: 48-54. doi: 10.1093/eurpub/ckm076
    [14] Roh S, Jang Y, Chiriboga DA, et al. (2011) Perceived neighborhood enviroment affecting physical and mental health: A study with Korean American older adults in New York City. J Immigr Minor Health 13(6): 1005-1012.
    [15] Barnes JS, Bennett CE (2002) The Asian population: 2000. Washington D. C. : United State Census Report.
    [16] Bennett CE, Martin B (1995) The nation's Asian and Pacific islander population 1995. Washington D. C. : United State Census Report.
    [17] U. S. Census Bureau (2011) Census demographic profile: 2010. Washington D. C. : United State Census Report.
    [18] Dong X, Wong E, Simon MA (2014) Study design and implementation of the PINE Study. J Health Aging Mar 25. pii: 0898264314526620. [Epub ahead of print].
    [19] Simon M, Chang E, Rajan K, et al. (2014) Demographic characteristics of U. S. Chinese older adults in the greater Chicago area: Assessing the representativeness of the PINE study. J Aging Health In Press.
    [20] Perkins D, Florin P, Rich R, et al. (1990) Participation and the social and physical enviroment of residential blocks: crime and community context. Am J Commun Psychol 18: 83-115. doi: 10.1007/BF00922690
    [21] Riger C, Lavrakas P (1981) Community ties patterns of attachment and social interaction in urban neighborhoods. Am J Commun Psychol 9: 55-66. doi: 10.1007/BF00896360
    [22] Riger C, Lavrakas P. Community ties patterns of attachment and social interaction in urban neighborhoods. Am J Commun Psychol 9: 55-66.
    [23] Kwag KH, Jang Y, Rhew S, et al. (2001) Neighborhood effects on physical and mentl health: A study of Korean American older adults. Asian Am J Psychol 2(2): 91-100.
    [24] Robert SA, Lee KY (2002) Explaining race differences in health among older adults: The contribution of community socioeconomic contexts. Res Aging 24: 654-683. doi: 10.1177/016402702237186
    [25] Dong X, Chang ES, Wong E, et al. (2011) Working with culture: lessons learned from a community-engaged project in a Chinese aging population. Aging Health 7(4): 529-537.
    [26] Dong X, Chang E, Wong E, et al. (2011) Sustaining community-university partnerships: Lessons learned from a participatory research project with elderly Chinese. Gateways Int J Commun Res Engag 4: 31-47. doi: 10.5130/ijcre.v4i0.1767
  • This article has been cited by:

    1. Subramanian Petchimuthu, Balakrishnan Palpandi, Fathima Banu M., Tapan Senapati, Exploring pharmacological therapies through complex q-rung picture fuzzy Aczel–Alsina prioritized ordered operators in adverse drug reaction analysis, 2024, 133, 09521976, 107996, 10.1016/j.engappai.2024.107996
    2. Jinxia Huo, Weidong Zhang, Zhenmin Chen, Enhanced decision-making through an intelligent algorithmic approach for multiple-attribute college English teaching quality evaluation with interval-valued intuitionistic fuzzy sets, 2024, 28, 13272314, 279, 10.3233/KES-230299
    3. Cui Mao, Enhanced group decision-making through an intelligent algorithmic approach for multiple-attribute credit evaluation with 2-tuple linguistic neutrosophic sets, 2024, 28, 13272314, 163, 10.3233/KES-230233
    4. Longpeng Bian, Chang Che, Enhanced Combined Techniques for Interval-Valued Intuitionistic Fuzzy Multiple-Attribute Group Decision-Making and Applications to Quality Evaluation of Large-Scale Multi-View 3D Reconstruction, 2023, 11, 2169-3536, 120502, 10.1109/ACCESS.2023.3327310
    5. Yongjie Wang, Chang-e Lu, Zhihong Cheng, Juan Wang, Extended TODIM technique based on TOPSIS for county preschool education resource allocation level evaluation under interval-valued Pythagorean fuzzy sets, 2024, 46, 10641246, 321, 10.3233/JIFS-233742
    6. Cui Mao, Enhanced group decision-making through an intelligent algorithmic approach for multiple-attribute credit evaluation with 2-tuple linguistic neutrosophic sets, 2024, 13272314, 1, 10.3233/KES-180
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5093) PDF downloads(1049) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog