Research article Special Issues

Depression-induced changes in directed functional brain networks: A source-space resting-state EEG study

  • Received: 29 January 2024 Revised: 01 March 2024 Accepted: 06 March 2024 Published: 23 September 2024
  • Current research confirms abnormalities in resting-state electroencephalogram (EEG) power and functional connectivity (FC) patterns in specific brain regions of individuals with depression. To study changes in the flow of information between cortical regions of the brain in patients with depression, we used 64-channel EEG to record neural oscillatory activity in 68 relevant cortical regions in 22 depressed patients and 22 healthy adolescents using source-space EEG. The direction and strength of information flow between brain regions was investigated using directional phase transfer entropy (PTE). Compared to healthy controls, we observed an increased intensity of PTE information flow between the left and right hemispheres in the theta and alpha frequency bands in depressed subjects. The intensity of information flow between anterior and posterior regions within each hemisphere was reduced. Significant differences were found in the left supramarginal gyrus, right delta in the theta frequency band and bilateral lateral occipital lobe, and paracentral gyrus and parahippocampal gyrus in the alpha frequency band. The accuracy of cross-classification of directed PTE values with significant differences between groups was 91%. These findings suggest that altered information flow in the brains of depressed patients is related to the pathogenesis of depression, providing insights for patient identification and pathological studies.

    Citation: Zhongwen Jia, Lihan Tang, Jidong Lv, Linhong Deng, Ling Zou. Depression-induced changes in directed functional brain networks: A source-space resting-state EEG study[J]. Mathematical Biosciences and Engineering, 2024, 21(9): 7124-7138. doi: 10.3934/mbe.2024315

    Related Papers:

  • Current research confirms abnormalities in resting-state electroencephalogram (EEG) power and functional connectivity (FC) patterns in specific brain regions of individuals with depression. To study changes in the flow of information between cortical regions of the brain in patients with depression, we used 64-channel EEG to record neural oscillatory activity in 68 relevant cortical regions in 22 depressed patients and 22 healthy adolescents using source-space EEG. The direction and strength of information flow between brain regions was investigated using directional phase transfer entropy (PTE). Compared to healthy controls, we observed an increased intensity of PTE information flow between the left and right hemispheres in the theta and alpha frequency bands in depressed subjects. The intensity of information flow between anterior and posterior regions within each hemisphere was reduced. Significant differences were found in the left supramarginal gyrus, right delta in the theta frequency band and bilateral lateral occipital lobe, and paracentral gyrus and parahippocampal gyrus in the alpha frequency band. The accuracy of cross-classification of directed PTE values with significant differences between groups was 91%. These findings suggest that altered information flow in the brains of depressed patients is related to the pathogenesis of depression, providing insights for patient identification and pathological studies.



    加载中


    [1] E. Brinda, A. Rajkumar, J. Attermann, U. Gerdtham, U. Enemark, K. Jacob, Health, Social, and Economic Variables Associated with Depression Among Older People in Low and Middle Income Countries: World Health Organization Study on Global AGEing and Adult Health, Am. J. Geriatr. Psychiatry, 24 (2016), 1196–1208. https://doi.org/10.1016/j.jagp.2016.07.016 doi: 10.1016/j.jagp.2016.07.016
    [2] A. Leuchter, I. Cook, D. Debrota, A. Hunter, W. Potter, C. McGrouther, et al., Changes in brain function during administration of Venlafaxine or Placebo to normal subjects, Clin. EEG Neurosci., 39 (2008), 175–181. https://doi.org/10.1177/155005940803900405 doi: 10.1177/155005940803900405
    [3] R. Wichers, J. Findon, A. Jelsma, V. Giampietro, V. Stoencheva, D. Robertson, et al., Modulation of brain activation during executive functioning in autism with citalopram, Transl. Psychiatry, 9 (2019). https://doi.org/10.1038/s41398-019-0641-0 doi: 10.1038/s41398-019-0641-0
    [4] J. Somberg, American Journal of Therapeutics, Am. J. Ther., 9 (2002), 1–1. https://doi.org/10.1097/00045391-200201000-00001 doi: 10.1097/00045391-200201000-00001
    [5] Y. Noda, Potential neurophysiological mechanisms of 1Hz-TMS to the Right Prefrontal Cortex for depression: An exploratory TMS-EEG study in healthy participants, J. Pers. Med., 11 (2021). https://doi.org/10.3390/jpm11020068 doi: 10.3390/jpm11020068
    [6] T. Hutton, S. Aaronson, L. Carpenter, K. Pages, W. Scott, C. Kraemer, et al., The anxiolytic and antidepressant effects of transcranial magnetic stimulation in patients with anxious depression, J. Clin. Psychiatry, 84 (2023). https://doi.org/10.4088/JCP.22m14571 doi: 10.4088/JCP.22m14571
    [7] N. Ichikawa, G. Lisi, N. Yahata, G. Okada, M. Takamura, R. Hashimoto, et al., Primary functional brain connections associated with melancholic major depressive disorder and modulation by antidepressants, Sci. Rep., 10 (2020). https://doi.org/10.1038/s41598-020-73436-y doi: 10.1038/s41598-020-73436-y
    [8] H. Li, W. Yan, Q. Wang, L. Liu, X. Lin, X. Zhu, et al., Mindfulness-based cognitive therapy regulates brain connectivity in patients with late-life depression, Front. Psychiatry, 13 (2022). https://doi.org/10.3389/fpsyt.2022.841461 doi: 10.3389/fpsyt.2022.841461
    [9] C. Greco, O. Matarazzo, G. Cordasco, A. Vinciarelli, Z. Callejas, A. Esposito, Discriminative power of EEG-based biomarkers in major depressive disorder: A systematic review, IEEE Access, 9 (2021), 112850–112870. https://doi.org/10.1109/access.2021.3103047 doi: 10.1109/access.2021.3103047
    [10] A. Damborska, E. Honzirkova, R. Bartecek, J. Hořínková, S. Fedorová, S. Ondruš, et al., Altered directed functional connectivity of the right amygdala in depression: High-density EEG study, Sci. Rep., 10 (2020). https://doi.org/10.1038/s41598-020-61264-z doi: 10.1038/s41598-020-61264-z
    [11] E. Olejarczyk, A. Jozwik, V. Valiulis, K. Dapsys, G. Gerulskis, A. Germanavicius, Statistical analysis of graph-theoretic indices to study eeg-tms connectivity in patients with depression, Front. Neuroinform, 15 (2021). https://doi.org/10.3389/fninf.2021.651082 doi: 10.3389/fninf.2021.651082
    [12] F. Hasanzadeh, M. Mohebbi, R. Rostami, Graph theory analysis of directed functional brain networks in major depressive disorder based on EEG signal, J. Neural Eng., 17 (2020). https://doi.org/10.1088/1741-2552/ab7613 doi: 10.1088/1741-2552/ab7613
    [13] H. Lee, G. Mashour, G. Noh, S. Kim, U. Lee, Reconfiguration of Network Hub Structure after Propofol-induced Unconsciousness, Anesthesiology, 119 (2013), 1347–1359. https://doi.org/10.1097/ALN.0b013e3182a8ec8c doi: 10.1097/ALN.0b013e3182a8ec8c
    [14] R. Pascual-Marqui, D. Lehmann, M. Koukkou, K. Kochi, P. Anderer, B. Saletu, et al., Assessing interactions in the brain with exact low-resolution electromagnetic tomography, Philos. Trans. R. Soc. A, 369 (2011), 3768–3784. https://doi.org/10.1098/rsta.2011.0081 doi: 10.1098/rsta.2011.0081
    [15] F. Tadel, S. Baillet, J. Mosher, D. Pantazis, R. Leahy, Brainstorm: A user-friendly application for MEG/EEG analysis, Comput. Intell. Neurosci., 10 (2011). https://doi.org/10.1155/2011/879716 doi: 10.1155/2011/879716
    [16] A. Gramfort, T. Papadopoulo, E. Olivi, M. Clerc, OpenMEEG: Opensource software for quasistatic bioelectromagnetics, Biomed. Eng. Online, 9 (2010). https://doi.org/10.1186/1475-925x-9-45 doi: 10.1186/1475-925x-9-45
    [17] R. Desikan, F. Segonne, B. Fischl, B. Quinn, B. Dickerson, D. Buckner, et al., An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest, Neuroimage, 31 (2006), 968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021 doi: 10.1016/j.neuroimage.2006.01.021
    [18] J. Waller, T. Miao, I. Ikedionwu, K. Lin, Reviewing applications of structural and functional MRI for bipolar disorder, Jpn. J. Radiol., 39 (2021), 414–423. https://doi.org/10.1007/s11604-020-01074-5 doi: 10.1007/s11604-020-01074-5
    [19] L. Orgo, M. Bachmann, K. Kalev, Resting EEG functional connectivity and graph theoretical measures for discrimination of depression, in 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Orlando, FL, USA, (2017), 389–392. https://doi.org/10.1109/BHI.2017.7897287
    [20] V. Grin-Yatsenko, I. Baas, V. Ponomarev, J. Kropotov, EEG Power Spectra at Early Stages of Depressive Disorders, J. Clin. Neurophysiol., 26 (2009), 401–406. https://doi.org/10.1097/WNP.0b013e3181c298fe doi: 10.1097/WNP.0b013e3181c298fe
    [21] W. Peng, Z. Jia, X. Huang, X. Huang, S. Lui, W. Kuang, et al., Brain structural abnormalities in emotional regulation and sensory processing regions associated with anxious depression, Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 94 (2019). https://doi.org/10.1016/j.pnpbp.2019.109676 doi: 10.1016/j.pnpbp.2019.109676
    [22] C. Dell'acqua, S. Ghiasi, S. M. Benvenuti, A. Greco, C. Gentili, G. Valenza, Increased functional connectivity within alpha and theta frequency bands in dysphoria: A resting-state EEG study, J. Affect Disord., 281 (2021), 199–207. https://doi.org/10.1016/j.jad.2020.12.015 doi: 10.1016/j.jad.2020.12.015
    [23] P. Cristancho, N. Trapp, S. Siddiqi, D. Dixon, J. Miller, E. Lenze, Crossover to Bilateral repetitive transcranial magnetic stimulation a potential strategy when patients are not responding to unilateral left-sided high-frequency repetitive transcranial magnetic stimulation, J. ECT, 35 (2019), 3–5. https://doi.org/10.1097/yct.0000000000000500 doi: 10.1097/yct.0000000000000500
    [24] J. Maller, R. Thomson, J. Rosenfeld, R. Anderson, Z. Daskalakis, P. Fitzgerald, Reply: Occipital bending in depression, Brain, 138 (2015). https://doi.org/10.1093/brain/awu199 doi: 10.1093/brain/awu199
    [25] H. Zhou, X. Chen, Y. Shen, L. Li, N. Chen, Z.Zhu, Rumination and the default mode network: Meta-analysis of brain imaging studies and implications for depression, Neuroimage, 206 (2020). https://doi.org/10.1016/j.neuroimage.2019.116287 doi: 10.1016/j.neuroimage.2019.116287
    [26] H. Wu, T. Li, C. Peng, C. Yang, Y. Bian, X. Li, The right prefrontal cortex (PFC) can distinguish anxious depression from non-anxious depression: A promising functional near infrared spectroscopy study (fNIRS), J. Affect. Disord., 317 (2022), 319–328. https://doi.org/10.1016/j.jad.2022.08.024 doi: 10.1016/j.jad.2022.08.024
    [27] Y. Gao, X. Yao, Q. Yu, Y. An, Z. Chen, J. Yi, et al., Resting-state functional magnetic resonance study of the brain's network of the temporal lobe epilepsy patients with depression, Zhonghua yi xue za zhi, 96 (2016), 1696–1698. https://doi.org/10.3760/cma.j.issn.0376-2491.2016.21.017 doi: 10.3760/cma.j.issn.0376-2491.2016.21.017
    [28] Y. Hou, S. Zhang, N. Li, Z. Huang, W. Li, Y. Wang, Neurofeedback training improves anxiety trait and depressive symptom in GAD, Brain Behav., 11 (2021). https://doi.org/10.1002/brb3.2024 doi: 10.1002/brb3.2024
    [29] G. Northoff, How do resting state changes in depression translate into psychopathological symptoms? From 'Spatiotemporal correspondence' to 'Spatiotemporal Psychopathology', Curr. Opin. Psychiatry, 29 (2016), 18–24. https://doi.org/10.1097/yco.0000000000000222 doi: 10.1097/yco.0000000000000222
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(386) PDF downloads(36) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog