Research article Special Issues

The growth or decay estimates for nonlinear wave equations with damping and source terms


  • Received: 26 February 2023 Revised: 17 May 2023 Accepted: 01 June 2023 Published: 21 June 2023
  • The spatial decay or growth behavior of a coupled nonlinear wave equation with damping and source terms is considered. By defining the wave equations in a cylinder or an exterior region, the spatial growth and decay estimates for the solutions are obtained by assuming that the boundary conditions satisfy certain conditions. We also show that the growth or decay rates are faster than those obtained by relevant literature. This kind of spatial behavior can be extended to a nonlinear system of viscoelastic type. In the case of decay, we also prove that the total energy can be bounded by known data.

    Citation: Peng Zeng, Dandan Li, Yuanfei Li. The growth or decay estimates for nonlinear wave equations with damping and source terms[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 13989-14004. doi: 10.3934/mbe.2023623

    Related Papers:

  • The spatial decay or growth behavior of a coupled nonlinear wave equation with damping and source terms is considered. By defining the wave equations in a cylinder or an exterior region, the spatial growth and decay estimates for the solutions are obtained by assuming that the boundary conditions satisfy certain conditions. We also show that the growth or decay rates are faster than those obtained by relevant literature. This kind of spatial behavior can be extended to a nonlinear system of viscoelastic type. In the case of decay, we also prove that the total energy can be bounded by known data.



    加载中


    [1] J. Q. Wu, S. J. Li, S. G. Chai, Existence and nonexistence of a global solution for coupled nonlinear wave equations with damping and source, Nonlinear Anal., 72 (2010), 3969–3975. https://doi.org/10.1016/j.na.2010.01.028 doi: 10.1016/j.na.2010.01.028
    [2] R. Quintanilla, Some remarks on the fast spatial growth or decay in exterior regions, ZAMP, 70 (2019), 83. https://doi.org/10.1007/s00033-019-1127-x doi: 10.1007/s00033-019-1127-x
    [3] C. H. Horgan, Decay estimates for second-order quasilinear partial differential equations, Adv. Appl. Math., 5 (1984), 309–332. https://doi.org/10.1016/0196-8858(84)90012-5 doi: 10.1016/0196-8858(84)90012-5
    [4] C. H. Lin, A Phragmén-Lindelöf alternative for a class of second order quasilinear equations in $R^3$, Acta Math. Sci., 16 (1996), 181–191. https://doi.org/10.1006/game.1996.0081 doi: 10.1006/game.1996.0081
    [5] P. Erhan, P. Necat, Global existence, decay and blow up solutions for coupled nonlinear wave equations with damping and source terms, Turk. J Math., 37 (2013), 633–651. https://doi.org/10.3906/mat-1110-48 doi: 10.3906/mat-1110-48
    [6] L. Fei, H. J. Gao, Global nonexistence of positive initial-energy solutions for coupled nonlinear wave equations with damping and source terms, Abstr. Appl. Anal., 2011 (2011), 760209. https://doi.org/10.1155/2011/760209 doi: 10.1155/2011/760209
    [7] W. Chen, Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms, Nonlinear Anal., 202 (2021), 112160. https://doi.org/10.1016/j.na.2020.112160 doi: 10.1016/j.na.2020.112160
    [8] W. Chen, Cauchy problem for thermoelastic plate equations with different damping mechanisms, Commun. Math. Sci., 18 (2020), 429–457. https://doi.org/10.4310/CMS.2020.v18.n2.a7 doi: 10.4310/CMS.2020.v18.n2.a7
    [9] Y. F. Li, Lifespan estimates for a class of semilinear Wave equations with time-and space-dependent coefficients on the power nonlinearity, Mediterr. J. Math., 20 (2023), 40. https://doi.org/10.1007/s00009-022-02251-8 doi: 10.1007/s00009-022-02251-8
    [10] Y. Liu, Y. F. Li, J. C. Shi, Estimates for the linear viscoelastic damped wave equation on the Heisenberg group, J. Differ. Equations, 285 (2021), 663–685. https://doi.org/10.1016/j.jde.2021.03.026 doi: 10.1016/j.jde.2021.03.026
    [11] J. Barrera, H. Volkmer, Asymptotic expansion of the $L^2$-norm of a solution of the strongly damped wave equation in space dimension 1 and 2, Asymptot. Anal., 121 (2021), 367–399. https://doi.org/10.3233/ASY-201606 doi: 10.3233/ASY-201606
    [12] R. Ikehata, M. Onodera, Remarks on large time behavior of the $L^2$-norm of solutions to strongly damped wave equation, Differ. Integr. Equations, 30 (2017), 505–520.
    [13] C. Sun, H. Li, Algebraic formulation and application of multi-Input single-output hierarchical fuzzy systems with correction factors, IEEE Trans. Fuzzy Syst., 2022 (2022), 1–11. https://doi.org/10.1109/TFUZZ.2022.3220942 doi: 10.1109/TFUZZ.2022.3220942
    [14] C. Sun, H. Li, Parallel fuzzy relation matrix factorization towards algebraic formulation, universal approximation and interpretability of MIMO hierarchical fuzzy systems, Fuzzy Sets Syst., 450 (2022), 68–86. https://doi.org/10.1016/j.fss.2022.07.008 doi: 10.1016/j.fss.2022.07.008
    [15] Y. F. Li, X. J. Chen, Phragmén-Lindelöf alternative results in time-dependent double-diffusive Darcy plane flow, Math. Methods Appl. Sci., 45 (2022), 6982–6997. https://doi.org/10.1002/mma.8220 doi: 10.1002/mma.8220
    [16] Y. F. Li, X. J. Chen, Phragmén-Lindelöf type alternative results for the solutions to generalized heat conduction equations, Phys. Fluids, 34 (2022), 091901. https://doi.org/10.1063/5.0118243 doi: 10.1063/5.0118243
    [17] M. C. Leseduarte, R. Quintanilla, Spatial behavior in high-order partial differential equations, Math. Methods Appl. Sci., 41 (2018), 2480–2493. https://doi.org/10.1002/mma.4753 doi: 10.1002/mma.4753
    [18] M. C. Leseduarte, R. Quintanilla, Phragmén-Lindelöf alternative for the laplace equation with dynamic boundary conditions, J. Appl. Anal. Comput., 7 (2017), 1323–1335. https://doi.org/10.11948/2017081 doi: 10.11948/2017081
    [19] R. J. Knops, R. Quintanilla, Spatial behaviour in thermoelastostatic cylinders of indefinitely increasing cross-section, J. Elasticity, 121 (2015), 89–117. https://doi.org/10.1007/s10659-015-9523-8 doi: 10.1007/s10659-015-9523-8
    [20] R. J. Knops, R. Quintanilla, Spatial decay in transient heat conduction for general elongated regions, Q. Appl. Math., 76 (2018), 611–625. https://doi.org/10.1090/qam/1497 doi: 10.1090/qam/1497
    [21] Y. Liu, C. H. Lin, Phragmén-Lindelöf type alternative results for the stokes flow equation, Math. Inequalities Appl., 9 (2006), 671–694.
    [22] X. J. Chen, Y. F. Li, Spatial decay estimates for the Forchheimer fluid equations in a semi-infinite cylinder, Appl. Math., 2022 (2022), 1–18. https://doi.org/10.21136/AM.2022.0196-22 doi: 10.21136/AM.2022.0196-22
    [23] R. Quintanilla, R. Racke, Spatial behavior in phase-lag heat conduction, Differ. Integr. Equations, 28 (2015), 291–308. 10.57262/die/1423055229 doi: 10.57262/die/1423055229
    [24] S. A. Messapudi, N. Tatar, Uniform stabilization of solutions of a nonlinear system of viscoelastic equations, Appl. Anal., 87 (2008), 247–263. https://doi.org/10.1080/00036810701668394 doi: 10.1080/00036810701668394
    [25] L. A. Medeiros, M. M. Miranda, Weak solutions for a system of nonlinear Klein-Gordon equations, Annali Di Matematica Pura Ed Applicata, 146 (1986), 173–183. https://doi.org/10.1007/BF01762364 doi: 10.1007/BF01762364
    [26] I. E. Segal, The global Cauchy problem for relativistic scalar field with power interactionsk, Bulletin De La Societe Mathematique De France, 91 (1963), 129–135. https://doi.org/10.24033/bsmf.1593 doi: 10.24033/bsmf.1593
    [27] J. Zhang, On the standing wave in coupled nonlinear Klein-Gordon equations, Math. Methods Appl. Sci., 26 (2003), 11–25. https://doi.org/10.1515/pubhef-2003-1954 doi: 10.1515/pubhef-2003-1954
    [28] M. M. Cavalcanti, V. N. Cavalcanti Domingos, J. A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, Electron. J. Differ. Equations, 44 2002), 1–14.
    [29] M. M. Cavalcanti, H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim., 42 (2003), 1310–1324. https://doi.org/10.1137/S0363012902408010 doi: 10.1137/S0363012902408010
    [30] M. M. Cavalcanti, V. N. Cavalcanti Domingos, J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping, Math. Methods Appl. Sci., 24 (2001), 1043–1053. https://doi.org/10.1002/mma.250 doi: 10.1002/mma.250
    [31] J. C. Song, D. S. Yoon, Phragmén-Lindelöf type and continuous dependence results in generalized dissipative heat conduction, J. Korean Math. Soc., 35 (1998), 945–960.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1145) PDF downloads(47) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog