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Abstract: The spatial decay or growth behavior of a coupled nonlinear wave equation with damping
and source terms is considered. By defining the wave equations in a cylinder or an exterior region,
the spatial growth and decay estimates for the solutions are obtained by assuming that the boundary
conditions satisfy certain conditions. We also show that the growth or decay rates are faster than those
obtained by relevant literature. This kind of spatial behavior can be extended to a nonlinear system of
viscoelastic type. In the case of decay, we also prove that the total energy can be bounded by known
data.
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1. Introduction

In the present paper, we study the following coupled nonlinear wave equations (see [1])

ty — div(p(|Vul?)Vue) + ", + fi(u,v) = 0, (1.1)
Vi — div(p(lelz)Vv) + ", + folu,v) =0, (1.2)
where u, = %,v, = %, m,n > 1, V is the gradient operator, div is the divergence operator and

fi(.,.) : R > R,i = 1,2 are known functions. For arbitrary solutions of (1.1) and (1.2), the function p
is supposed to satisfy one or the other of the two conditions:

Al). 0 < p*(¢)q* < mp(g),
or

A2). 0 < ¢ <p '(¢") < Kap(g)) 5,

2
where 5(g>) = )" p(Q)d¢, ¢ = [Vul,my, K1, K> > 0.

Quintanilla [2] imposed condition Al and obtained the growth or decay estimates of the solution

to the type III heat conduction. The condition Al can be satisfied easily, e.g., p(¢*>) = —=—= or

1+q?
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o(@» = (1 + %qz)f’“,b > 0,0 < p < 1. The similar condition as A2 was also considered by many

papers (see [3,4]). p(¢®) = /1 + ¢ satisfies the condition A2.

In addition, we introduce a function F(u, v) which is defined as g—,’j = filu,v
F(0,0) =0.

The wave equations have attracted many attentions of scholars due to their wide application, and a
large number of achievements have been made in the existence of solutions (see [1,5-12]). The fuzzy
inference method is used to solve this problem. The algebraic formulation of fuzzy relation is studied
in [13, 14]. In this paper, we study the Phragmén-Lindelof type alternative property of solutions of
wave equations (1.1)—(1.2). It is proved that the solution of the equations either grows exponentially
(polynomially) or decays exponentially (polynomially) when the space variable tends to infinite. In
the case of decay, people usually expect a fast decay rate. The Phragmén-Lindelof type alternative
research on partial differential equations has lasted for a long time (see [2, 15-23]).

It is worth emphasizing that Quintanilla [2] considered an exterior or cone-like region. Under some
appropriate conditions, the growth/decay estimates of some parabolic problems are obtained. Inspired
by [2], we extends the research of to the nonlinear wave model in this paper. However, different
from [2], in addition to condition A1 and condition A2, we also consider a special condition of p. The
appropriate energy function is established, and the nonlinear differential inequality about the energy
function is derived. By solving this differential inequality, the Phragmén-Lindel6f type alternative
results of the solution are obtained. Our model is much more complex than [2], so the methods used
in [2] can not be applied to our model directly. Finally, a nonlinear system of viscoelastic type is also
studied when the system is defined in an exterior or cone-like regions and the growth or decay rates are
also obtained.

, £ = f(u,v), where

2. The Phragmén-Lindelof type alternative result under A1

Letting that €(r) denotes a cone-like region, i.e.,
Q(r) = x|l > 72,7 > Ry > 0,
and that B(r) denotes the exterior surface to the sphere, i.e.,
B() = (x|l = 2,7 > Ry > 0},
Equations (1.1) and (1.2) also have the following initial-boundary conditions

ux,0) =v(x,0) =0, in Q, 2.1
ux,t) = gi(x,1), vix,t) = g2(x, 1), in B(Ry) X (0,7), (2.2)

where g; and g, are positive known functions, x = (xy, x,, x3) and 7 > 0.
Now, we establish an energy function

! !
&(r,1) = f f ¢ (VP \Vu - Zu,dSdn + f f e p(IVvP)Vy - Tv,dSdn
0 JB() r 0 JBM r
= Ei(r, 1) + Ex(r, ). 2.3)
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Let ry be a positive constant which satisfies r > ry > Ry. Integrating &(z, t) from r to r, using the
divergence theorem and Eqs (1.1) and (1.2), (2.1) and (2.2), we have

E(r,t) — E(ro, 1) = f t f r f eV - |p(IVul?)Vuuw, |dsdédn
0 Jrg JBE)

! r
+f ff e“‘”’V-[p(IVvlz)Vvvn]dsdfdn
0 Jrg JBE)
! r
+fff e“"”[u,m+|u,7|’”+1+f1(u,v)]u,7dsd§dn
0 Jrg JBE)
! r
+f ff e‘“”’[v,,,7+|v,,|”“+f2(u,v)]v,,dsd§d77
B($)
f f f —p (IVul*)dsdédn + - f f f p(IVvI*)dsdédn
B(&) B(&)
:Ee_‘”t f f ju® + i + B(1Vul?) + B(IVv? )+2F(u,v)]dsd§
ro JB(¢)
1 [ -wn 2 2, = 2 ~ 2
+ 5w N luyl® + vyl + B(IVulP) + B(IVVP) + 2F (u, v)|dS dédn
0 Jrg JBE)

! r
+ f f f el + vy |d sdédn, (2.4)
0 Jrog JBE)

from which it follows that

%a(r, f) = %e‘“’t fB . (el + Wil + B(1VuP) + B(IVVP) + 2F (u, v)]ds

+ %w fo t fB ( )e-w"[|u,7|2 + vyl? + P(1Vul?) + B(IVVP) + 2F (u, v) |dS dy

t
+ f f el + v, |d sy, (2.5)
0 B(r)

where w is positive constant.
Now, we show how to bound &(r, 1) by 3 8(r 1). We use the Holder inequality, the Young inequality
and the condition A1 to have

! ! 1
‘81(r,t)'s [ fO fB ) ¢ p*(IVuP ) VuPdsdy - fo fB (r)e-w"uidsdn]z
t ! 1
Vmy [ e“"”ﬁ(quIz)dsdn : e“‘”’uzdsdn] ’
B(r) B(r) !
g f f | IVul dsdn+ f f “’”u2dsd77 (2.6)
B(r) B(r)

t
e‘“’”ﬁ(|Vv|2)dsd77+ff e‘“’"v,zldsdn]. (2.7)
B(r) 0 JBr)
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Inserting (2.6) and (2.7) into (2.3) and combining (2.5), we have
Vi

w

|8(r, t)| <

[%sm 0], 2.8)

We consider inequality (2.8) for two cases.
I. If dry > R, such that &E(ry, 1) > 0. From (2.5), we obtain &(r, 1) > E(ry, t) = 0, r > ry. Therefore,
from (2.8) we have

vV 0
&r.t) < YU L&), r 2 1. 2.9)
w Lor
Integrating (2.9) from r, to r, we have
E(r1) 2 [E(ro, D] 1 2 1y, (2.10)

Combing (2.4) and (2.10), we have

r—00

+ %a} fo t f r fB . ety + vy + (IVulP) + B(IVv?) + 2F (u, v)|dsdédn

t T
+fo fro jz;(f) e_wn[lu”|m+l " |V’7|n+l]d8d§d’7]}

> E(Ry, e Vi, 2.11)

nm{e—«%’[%e—w f , fB . [l + i + (V) + B(IVVF) + 2F (u, ) |dsde

IL. If Vr > Ry such that &(r, 1) < 0. The inequality (2.8) can be rewritten as

NI
~&(nt) < Y2 L), r = Ro. 2.12)
w Lor
Integrating (2.12) from r to r, we have
—&(r.1) 2 | = ERy. )| T, r 2 Ry, (2.13)

Inequality (2.13) shows that lim, ... | ~&(r, )| = 0. Integrating (2.5) from r to oo and combining (2.13),
we obtain

%e““t f i fB . |l + 1.l + B(IVul?) + B(IVvP) + 2F (u, v)|dsdlé
! 00
+ %w fo f fB . Nty + vy + B(IVuP) + B(IVVP) + 2F (u, v)|d sdédn

! 00
+ f f f el + v, |d sl
0 r B(¢)

< [ — &(ro, r)]e‘ﬁ("’“”. (2.14)

We summarize the above result as the following theorem.

Theorem 2.1. Let (u, v) be solution of the (1.1), (1.2), (2.1), (2.2) in Q(R)), and p satisfies condition
Al. Then for fixed ¢, (u,v) either grows exponentially or decays exponentially. Specifically, either
(2.11) holds or (2.14) holds.
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3. The Phragmén-Lindelof type alternative result under A2

If the function p satisfies the condition A2, we recompute the inequality (2.6) and (2.7). Therefore

&:0)] < | f t f e p*(IVul? ) Vuldsdy - f t f e“"”u,zldsa’n]%
0 JB(r) 0 JB(r)
t t
< Ky VK| f f o™ (IVul?)dsdn - f f e“”"uidsdn]%
0 JB(r) 0 JB(r)

Ki VKiK. ! !
< #[ff e“‘”"ﬁ(IVu|2)dsdi7+ff e‘“’”u,zldsdn], (3.1
2 0 B(r) 0 B(r)
and
1 VK K
|82(r z)‘ —12[ f f & (Vv )dsdn + f f “om2dsdn). (3.2)
B(r) B(r)
Inserting (3.1) and (3.2) into (2.3) and combining (2.5), we have
| VK Ky p 0
&6 < #[ &) (3.3)

By following a similar method to that used in Section 2, we can obtain the Phragmén-Lindel6f type
alternative result.

Theorem 3.1. Let (u, v) be solution of the (1.1), (1.2), (2.1), (2.2) in Q(Ry), and p satisfies condition
Al. Then for fixed ¢, (u, v) either grows exponentially or decays exponentially.

Remark 3.1. Clearly, the rates of growth or decay obtained in Theorems 2.1 and 3.1 depend on w.
Because w can be chosen large enough, the rates of growth or decay of the solutions can become large
as we want.

Remark 3.2. The analysis in Sections 2 and 3 can be adapted to the single-wave equation

y — div(p(|Vul?)Vu) + ", + f(u) = 0 (3.4)
and the heat conduction at low temperature
auy, + bu;, — cAu + Au, =0, 3.5
where a, b, c > 0.
4. The Phragmén-Lindelof type alternative result when p(¢?) = b, + b,g*
In this section, we suppose that p satisfies o(q?) = by + byg*®, where by, b, and S are positive

constants. Clearly, p(¢*) = by + b,g*® can not satisfy Al or A2. In this case, we define an “energy”
function

!
F(r,t) = f f e_“’”(bl + bleulz'B)Vu . )—Cundsdn
0 JBM r
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!
+ f f ¢ by + bolV¥)Vy - v, dsdn
0 JB() r

= Fi(r, 1) + Fa(r, ). 4.1)

Computing as that in (2.4) and (2.5), we can get

1 ’ 1
F (1) = F (.0 + 5™ f f [l + by Vul® + ——by|VuP | dsdé
B) B+1

1 _

+ —e ff |vt| +b|Vv| +
2 B B+
o [ [, el +

+ —w e“’”lul + b(|Vul|” +
2 Jo Jn IBe ! : ﬁ"‘l

1 L 1
+ = “M Ny, 2 + by |V + ——bo| VPP 4 F(u, v)|dsdéd
2“’foff@e (v, + b1 V) T (u, v)|dsdédn

t r i3
+ f f f e_wn|u,,|m+ldsdfd77 + f f €_wn|Vn|n+1de§dl7, (4‘2)
0 Jrg JBE 0 JB(r)

1
—wt 2 2 2(B+1)
;| + b1|\Vu|” + ——b,|Vu| ds
L(r)[ ' ﬁ +1 ]

1
_a)tf [|Vt|2 + b1|VV|2 + ﬁ + 1
B(r)
1 1
+ 5w f f 1 luy* + by [Vl +ﬂ—b o[ VuP#*V|dsdn
B(r)

+ 0 f f ~n |v,7|2+b1|Vv|2
B(r) B+

+ f f e MNu, " dsdn + f f ey, " dsdn. (4.3)
0 JB®r) 0 JB(r)

Using the Holder inequality and Young’s inequality, we have

t t 1
‘ﬁ(r, t)‘ sbl[ff e“""quIstdnff e““"uzdsdn]2
0 JBw B(r) !
! 2B+1 L )
+by| f f VP Ddsdn | f f &My " dscl | |¢2mr| 57 7T
B(r) B(r)
—rwff _“”’qulzdsdn+—rwff “’”uzdsdn
= Rw!2 B() B()

2B+1

b2|Vv|2<ﬁ“) + F(u,v)|dsd¢

bo|VulP*D |dsdédn

and

—T(r 1) =

L
2¢
1
+ e by VVPE+D 4 F(u, v)]ds

b2|Vv|2(ﬁ+1) + F(u, v)]dsdn

+b2|2t7r|2(ﬁ+'> m+1R ;m m+l 2ﬁfiﬂ+l) f f ‘””|Vu|2('8+1)de77
36+ T m+1 B(r)
L}’ t 28+1 1
+ —zﬂf“ f e “Mu, "' dsdn ]w“) " (4.4)
26D T omel ()
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and

|?‘2(r t)|<——r f f w"|vv|2dsdn+—rw f f “n2dsdn)
B(r) B(r)

2Bl

+b2|2t7r|2<ﬁ+1> "“R ﬁ+1 n+l Zﬁi(lﬁﬂ) ff —wnlvv|2(ﬁ+l)dsdn
26+ n+1 B(r)
bt
zﬂ;“ f f My, " dsdn | (4.5)
2B+D) n+1 B(r)

where we have chosen Inserting (4.4) and (4.5) into (4.1), we obtain

2(B+1) n+1

261 1 28+1 1

[r—ﬂr H|r (4.6)

|7'~(r f)‘ <e¢ r—T(r 0|+ cz[r—gf(r 1] 2 *ineT

VB A .
where ¢; = Row> €2 = by 2tm| B0 R , €3 = by 2tm|?B DR, .

Next, we will analyze Eq (4.6) in two cases
L. If Ary > R, such that ¥ (ry, 1) > 0, then F(r,t) > F (ro,t) > 0,r > ry. Therefore, (4.6) can be
rewritten as

23+1 1

(r 1) < cl[r% (r t)] + Cz[r% (r t)]Z(ﬁH) s

+ C3[r£T o], r>r. 4.7)
or

Using Young’s inequality, we have

STyt e 46 +3
[r_ﬂr 0] < 4(ﬁ:1) 2(m+1))[

r

F(r, zf)]i

S

+
|

F (1), (4.8)

26+1 1

[7—7:( t)]zwm n+l <

|

408 + 1) 2(n+ 1)
1
4B+ 1) 2(n +1)

(

(4(,31+ D 2(m n 1))[r(9r
(643 )

( )

[raﬁ?'(r . 4.9)

+

Inserting (4.8) and (4.9) into (4.7), we have

8 } )
F(r,1) < c4[ra—’f(r, |’ + c5[r57"(r, D], r=n. (4.10)

_ 4p+3 1 4p+3 1 _ 1 1 1 1
where ¢, = C2(4(ﬁ+1) + 2(m+1)) + ¢ (4(/3+1) + 2(n+1)) and ¢s = ¢y + C2(4(ﬁ+1) - 2(m+1)) + C3(4(ﬂ+1) - 2(n+1))'

From (4.10) we have
F(r, 1) 0 cq 12 Ci
< w/ — H+ —| - —= >
Cs - [ rarT(r’ ) 2C5] 405’ r=ro
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or

SF (1) 1
>—, r=>rn 4.11)

[ F(rt) a ¢y ]2 r

cs 4c§ 2cs
Integrating (4.11) from ry to r, we get
T(r D, Fro,t) € ¢4
2 l -1 — =
e n( 405 2C5 ( Cs 402 2¢s )]

> in(), 2 (4.12)

Dropping the third term on the left of (4.12), we have

/T(r 1) :745 S 010, t)( ) (4.13)
where Q) (ro, 1) = ( rnd 4 .g - zcs)eXP{ 2cs[\/ et 4c5 B 535]_1}-

In view of
T(r t) T(r t)
2C5
we have from (4.13)
F(r.1) > s Qo (). (4.14)
o

Combining (4.2) and (4.14), we have

lim {r fs f f > + by |Vul® + b2|vu|2<ﬂ+1>]dsd§

r—)DO (g)

1
—e f f v + ByVVR + —— BV + F (u, ) |dsdé
"o B(f) B+1

1 [ 1
+ 5w f f f e-wﬂ[|u,,|2+b1|vu|2+—b2|vu|2<ﬁ+1>]dsd§dn
B() ,3
+Zw f f f |v,7|2+b1|Vv|2
B() B+
+ f f f e MNu, "™ dsdédn + f f ey, |"" dsdédn|)
0 Jrg JBE) 0 JB(r)

_1
> ¢sQ1(ro, D, . (4.15)

b2|Vv|2(ﬂ+1> + F(u, v)]dsa’fdn
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II. If Yr > R such that ¥ (r, 1) < 0, then (4.6) can be rewritten as

B+l 1
26+D Tl

—F(r,1) < ¢ [ra%?(r, t)] + cz[r(%?'(r, t)]

9, ek
+ 03[1”5?(7‘, t)] A r > Ry. (4.16)
Without losing generality, we suppose that m > n > 1.
0 22£+i)+il L1 - L1 0
+D) T n+ m+
[ro-7 ) < g e F )]
2(8+1) m+1
B+l 1 e
208+1)  m+l 0 26+ Vel
P U AGD : .17)
2(8+1) m+1

0 2B(m +3) + 4 0 L
[ra—rT(r, t)] < B+ Dm+D)+ 1[r§(f"(r, ;)]
m+1=2B+1) @ JETI.
" 2B+ D(m+2)+1 [ra_;fT(r’ t)] : (4.18)

Inserting (4.17) and (4.18) into (4.16), we get

0 . g p 0 el e
~F(r,1) < c6[ra—7:(r, e +c7[ra—7—‘(r, [ 2 Ry, (4.19)
r r
h _ + L7 2pm+3)+4 + o T _ mtl2BHh g (4.19) bai
WRETC Co = |C1 + C3 31 1 2B+ D(m+2)+1 C32p1 1 »C71 = C3—(2ﬁ+1)(m+2)+1' rom (4. w€ obtain
2(8+1) m+l 2(8+1) m+l
0 —F(r,t c? Cé 2,6‘+ll 1
Lz [y 0D S ST s g,
or c7 de; 207
or
2
—F(r,t) + 5 >
2
o c7 4cs d —F(r,1) Ce Cs } < 1 >R (4.20)
7 — - (<=, 2Ky .
2 BT C7 42 2cq r
[ i G0 R I 0_6] EED T 7
c7 45% 2¢7
Integrating (4.20) from R, to r, we obtain
2B+1 1 b 2(;3'8 1)*%
2C7(2(B+1) + m+1)[ —F(r,1) LS G ];ég)mll
2
Mﬁﬂ) + % c7 4cs 2¢7
2p+1 1 B+t
2C7( + _) _ C2 2(B+1) " m+1
_ 2(B+1) m+1 [ ?(Ro,l) + S i] zz(é;ﬂ) -
2(,3,3+1) + ﬁ €7 463 2¢7
411 2 p T}
C6(2(ﬁ+1) + m+1)[ ~F(r,t) g C6 ]_7M
- 4+ — - — 2(B+1) " m+1
2(/31+1) - m% €7 4C$ 2¢7
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c7 42 2¢q

2(B+1) * ol
1 1

20641 m+l

2p+1 L 2 T
+ C6(2(,B+1) + m+1)[\/—7:(Ro,l‘) + Ce Co ]_ 2B 1

< ln(RO) 4.21)

r

Dropping the first and fourth terms on the left of (4.21), we obtain

2ﬁ+l 1

2 2B+D) " m+1
-F(r,t) ¢ r s e Y o1
=+ =% < |esin(—-) = QaRo, )| T 4+ = (4.22)
C7 4C7 Ro 2C7
o)) [ran . @ o | B -
where Qz(R(), l) = ; [ o + e E] 26+0) "t T and cg = T
6 WJ"W) 7 Cﬁ(z(ﬂn)*'m)
Squaring (4.22) we have
2p+1
/f:l +m«2+1

T 1) < erfesin( ) = QatRo, 0]

2ﬁ+| 1
2(ﬁ+ 1 ) m+1

+c6[Cgln( ) 0>(R,, t)] T T (4.23)

From (4.15) and (4.23) we can obtain the following theorem.
Theorem 4.1. Let (u v) be the solution of (1.1), (1.2), (2.1) and (2.2) with p(¢*) = b, + b,g*,

where > max{ L} Then for fixed #, when r — oo, (u,v) either grows algebraically or

m+12 n+l

2(ﬁ+])
ne .
decays logarithmically. The growth rate is at least as fast as z°s and the decay rate is at least as fast as

Zﬁ+] 1
2(ﬁ+]) tinel

(lnr) 2(ﬁ+1) mhrl .
Remark 4.1. Obviously, in this case of p(g*) = b; + b,g**, the decay rate obtained by Theorem 4.1
is slower than that obtained by Theorem 2.1 and Theorem 3.1.

5. A nonlinear system of viscoelastic type

In this section, we concern with a system of two coupled viscoelastic equations
!
Uy — Au + f hy(t = mAu(mdn + fi(u,v) =0, (6.1
0

—Av+ f hy(t — mAv(n)dn + fr(u,v) =0, (5.2)
0

which describes the interaction between two different fields arising in viscoelasticity. In (5.1) and (5.2),
0 <t < T and hy, h, are differentiable functions satisfying /,(0), h,(0) > 0 and

T, AT ¢ (T, 2
2 fo (T = mdn). 2] f (BT =) = whi(T =) dn| < 1 (0), (53)

Mathematical Biosciences and Engineering Volume 20, Issue 8, 13989-14004.
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T
el f BT = n)dn), h4(7(;)[ f (P(T = 1) = wha(T = ) din] < () (5.4)

Messaoudi and Tatar [24] considered the system (5.1) and (5.2) in a bounded domain and proved
the uniform decay for the solution when r — oco. For more special cases, one can refer to [25-27]. They
mainly concerned the well-posedness of the solutions and proved that the solutions decayed uniformly
under some suitable conditions. However, the present paper extends the previous results to Egs (5.1)
and (5.2) in an exterior region. We consider Eqgs (5.1) and (5.2) with the initial-boundary conditions
(2.1) and (2.2) in Q.

We define two functions

! x ! g x
Gi(r,t) = f f e “"Vu - —u,dsdn — f f e‘””(f hy(n— s)Vuds) - —u,dsdn
0 JB( r 0 JB(K 0 r

=1+ 1, (5.5
! _ x ! _ g x
Gy(r,t) = f f e “"Vy - —v,dsdn — f f e “”’(f hy(n — s)Vvds) - =vpdsdn
0 JB() r 0 JB®) 0 r
=J + J,. (56)

Integrating (5.5) from ry to r and using (5.1), (5.2), (2.1), (2.2) and the divergence theorem, we have

1 T 1 f r
Gi(r, 1) = G1(ro, 1) + = f f | lul? + \VuP |dsdé + S f f f e~ Mu,[*dsdédn
2 Jr Ipe 2 Jo I I
1 ! r ! r
+-w f f f e N\Vul*dsdédn + f f f ey (0)|\Vul*dsdédn
2 Jo Jn I 0 Jr JB@)
r t
—ff e_“”(fhl(t—‘r)VudT)-Vudsdf
B(©)
f f f f 1, (n = 7) = whi(n - 7))Vudt| - Vudsdédn
B(&) 0
+f ff e " fi(u, v)uy,dsdédn. 5.7
0 Jro JBE)

From (5.7) it follows that

) 1 1
—G(r,t) = = e |u,)* + Vuzds+—wff e “MNu, |*dsd
=Gi(r 2f<r> [l + V2] e Pasdy
1
+ 70 f f ~NVulPdsdn + f f e, (0)|Vul*dsdn
B(r) B(r)
—f e fhl(t—T)VudT)-Vuds
B(r) 0

1 1
+ff e [f (h’(n T)— whl(n—T))VudT]~Vudsdn
B(r)

f f “ 1 (u, v)uydsdn. (5.8)
B(r)
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By the Young inequality and the Holder inequality, we have

t
—f e“‘”(fhl(n—r)VudT)‘Vuds‘
B(r) 0
< f | f thl(t—s)Vu(s)ds)2+lIVulzlds
I 0 4
! ! 1
S(f h%(t—‘r)dr)ff e“‘”’quIzdsdn+—f e \Vul*ds,
0 0 JB( 4 Jw

' f f f 1,01 = 7) = wh (n - 7))Vudz| - Vua’sdn‘
B(r) 0
= m[j; (h’l(ﬂ -7)—wh(n- T))zdr]f(; Lm eV uldsdn

1 !
+— f f e “hy(0)|Vul*dsdn.
4 0 B(r)

Inserting (5.9) and (5.10) into (5.8) and using (5.3), we have

9 1 1 [
—G\(r,0) = 5 f e lu, + 5|Vul*|ds + sw f f e Mu, *dsdn
oz 2 Jsr 4 310 s+ 5 o Joy

1 ! t
+ —wf f e“"”quIzdsdn + f f e " fi(u, vVupdsdn.
2 Jo I 0 JBw

Similar to (5.11), we also have for G,(r, 1)

0 1 1 1 !
—Gy(r,t) > = f el + =|Vv]*|ds + —a)f f e~ v, [*dsdn
oz 2 Jin i+ 5 as 50 s

1 ! !
+ —wf f e~ M\Vv|*dsdn + f f e " fo(u, v)v,dsdn.
2 0 JB(®r) 0 JB(r)

G(r,t) = Gi(r, 1) + Gy(1, 1),

and

If we define

then by (5.11) and (5.12) we have

0 1 1 1
—G(r Nz f . e“‘”[lu,lz + v+ E|Vu|2 + 5|Vv|2 + 2F(u,v)]ds

!
L f f Nty + vyl + [Vl + [VVI + 2F (u, v)|dsdn.
2 B()

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

On the other hand, we bound G(r, ) by (%G(r, 1). Using the Holder inequality, the AG mean inequal-

ity, (5.3) and combining (5.13), we have

|+l <([ [ eovarandn- [ [ ena,pasan)
0 JB(r) 0 JB(r)
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f f vy PdAdn - f f “”7|v,7|2dsd77)
B(r) B(r)

w[ G(r, t)] (5.14)

t il 2 ! 1
‘Iz‘ S(ff e“"”‘f h](]]—T)VMdT' dsdn-ff e_“"7|14,7|2dsa’77)2
0o JBw) 0 0o JBw»)

! n 7 t 1

(ff e_“”’(f hf(n—‘r)dr)(f |Vu|2dr)dsdn-ff e“""lu,,lzdsdn)2
B(r) 0 B(r)
1
< f i - )dr)’( f f ~NVuldsdn - f f w”lunlzdsdn)
B(r) B(r)
Si(fh%(n—T)de ff e“"”quIzdsdn+ff e‘“”’lu,,lzdsdn]
0 B(r) 0 JB(r)

1(0)[ G(r1)|- (5.15)

and

IA

2
Similar to (5.15), we have

T
‘Jz‘ < — \/hz(O)[ G(r, z)] (5.16)
Inserting (5.14)—(5.16) into (5.5) and (5 .6), we have

’G(r, z)] < c%[(%c;(r, ) (5.17)

where ¢o = Z(VR(0) + VR (0)) + 2.
We can follow the similar arguments given in the previous sections to obtain the following theorem.
Theorem 5.1. Let (u, v) be the solution of (5.1), (5.2), (2.1) and (2.2) in £, and (5.3) and (5.4) hold.
For fixed ¢,
(1) f ARy = ryg, G(Ry, 1) = 0, then

G(r, 1) = G(Ry, et "™
() IfV r > ry, G(r, 1) < 0, then
—G(r,f) < [ — G(ro, r)]e‘%“"“.

Again, the rate of growth or decay obtained in this case is arbitrarily large
Remark 5.1. It is clear that the above analysis can be adapted without difficulties to the equation
(see [28,29])

— koAu + f divla(x)h(t — s)Vu(s)lds + b(x)g(u,;) + f(u) =0
0

and the equation (see [30])
!
| " uy — koAu — Auyy + f h(t — s)Au(s)lds — yAu, = 0
0
with some suitable g and a(x) + b(x) > byy > 0 and ko, o,y > 0.
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6. Conclusions

In this paper, we have considered several situations where the solutions of Eqs (1.1) and (1.2) either
grow or decay exponentially or polynomially. We emphasize that the Poincaré inequality on the cross
sections is not used in this paper. Thus, our results also hold for the two-dimensional case. On the
other hand, there are some deeper problems to be studied in this paper. We can continue to study the
continuous dependence of coeflicients in the equation as that in [31]. These are the issues we will
continue to study in the future.
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