The growth of distributed generation significantly reduces the synchronous generators' overall rotational inertia, causing large frequency deviation and leading to an unstable grid. Adding virtual rotational inertia using virtual synchronous generators (VSG) is a promising technique to stabilize grid frequency. Due to coupled nature of frequency and active output power in a grid-tied virtual synchronous generator (GTVSG), the simultaneous design of transient response and steady state error becomes challenging. This paper presents a duplex PD inertial damping control (DPDIDC) technique to provide active power control decoupling in GTVSG. The power verses frequency characteristics of GTVSG is analyzed emphasizing the inconsistencies between the steady-state error and transient characteristics of active output power. The two PD controllers are placed in series with the generator's inertia forward channel and feedback channel. Finally, the performance superiority of the developed control scheme is validated using a simulation based study.
Citation: Sue Wang, Jing Li, Saleem Riaz, Haider Zaman, Pengfei Hao, Yiwen Luo, Alsharef Mohammad, Ahmad Aziz Al-Ahmadi, NasimUllah. Duplex PD inertial damping control paradigm for active power decoupling of grid-tied virtual synchronous generator[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 12031-12057. doi: 10.3934/mbe.2022560
The growth of distributed generation significantly reduces the synchronous generators' overall rotational inertia, causing large frequency deviation and leading to an unstable grid. Adding virtual rotational inertia using virtual synchronous generators (VSG) is a promising technique to stabilize grid frequency. Due to coupled nature of frequency and active output power in a grid-tied virtual synchronous generator (GTVSG), the simultaneous design of transient response and steady state error becomes challenging. This paper presents a duplex PD inertial damping control (DPDIDC) technique to provide active power control decoupling in GTVSG. The power verses frequency characteristics of GTVSG is analyzed emphasizing the inconsistencies between the steady-state error and transient characteristics of active output power. The two PD controllers are placed in series with the generator's inertia forward channel and feedback channel. Finally, the performance superiority of the developed control scheme is validated using a simulation based study.
[1] | C. Hepburn, Y. Qi, N. Stern, B. Ward, X. Chun, D. Zenghelis, Towards carbon neutrality and China's 14th Five-Year Plan: clean energy transition, sustainable urban development, and investment priorities, Environ. Sci. Ecotechnol., 8 (2021), 100–130. https://doi.org/10.1016/J.ESE.2021.100130 doi: 10.1016/J.ESE.2021.100130 |
[2] | Q. C. Zhong, T. Holnick, Control of Power Inverters in Renewable Energy and Smart Grid Integration, John Wiley & Sons, 2012. https://doi.org/10.1002/9781118481806 |
[3] | L. Z. Yao, B. Yang, H. F. Cui, J. Zhuang, J. Ye, J. Xue, Challenges and progresses of energy storage technology and its application in power systems, J. Mod. Power Syst. Clean Energy, 4 (2016), 519–528. https://doi.org/10.1007/s40565-016-0248-x doi: 10.1007/s40565-016-0248-x |
[4] | Y. W. Wang, B. Y. Liu, S. X. Duan, Transient performance comparison of modified VSG controlled grid-tied converter, in 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), IEEE, (2019), 3300–3303. https://doi.org/10.1109/APEC.2019.8722121 |
[5] | M. Q. Mao, C. Qian, Y. Ding, Decentralized coordination power control for islanding microgrid based on PV/BES-VSG, CPSS Trans. Power Electron. Appl., 3 (2018), 14–24. https://doi.org/10.24295/CPSSTPEA.2018.00002 doi: 10.24295/CPSSTPEA.2018.00002 |
[6] | W. H. Wu, Y. D. Chen, L. M. Zhou, A. Luo, X. Zhou, Z. He, et al., Sequence impedance modeling and stability comparative analysis of voltage-controlled VSGs and current-controlled VSGs, IEEE Trans. Ind. Electron., 66 (2018), 6460–6472. https://doi.org/10.1109/TIE.2018.2873523 doi: 10.1109/TIE.2018.2873523 |
[7] | K. Shi, H. H. Ye, W. T. Song, G. L. Zhou, Virtual inertia control strategy in microgrid based on virtual synchronous generator technology, IEEE Access, 6 (2018), 27949–27957. https://doi.org/10.1109/access.2018.2839737 doi: 10.1109/access.2018.2839737 |
[8] | H. S. Hlaing, J. Liu, Y. Miura, H. Bevrani, T. Ise, Enhanced performance of a stand-alone gas-engine generator using virtual synchronous generator and energy storage system, IEEE Access, 7 (2019), 176960–176970. https://doi.org/10.1109/ACCESS.2019.2957890 doi: 10.1109/ACCESS.2019.2957890 |
[9] | S. Saadatmand, M. Nia, P. Shamsi, M. Ferdowsi, D. C. Wunsch, Neural network predictive controller for grid-connected virtual synchronous generator, in 2019 North American Power Symposium (NAPS), IEEE, (2019), 1–6. https://doi.org/10.1109/NAPS46351.2019.900038 |
[10] | L. M. A Torres, L. A. C Lopes, T. L. A. Miguel, C. J. R. Espinoza, Self-tuning virtual synchronous machine: A control strategy for energy storage systems to support dynamic frequency control, IEEE Trans. Energy Convers., 29 (2014), 833–840. https://doi.org/10.1109/TEC.2014.2362577 doi: 10.1109/TEC.2014.2362577 |
[11] | M. Guan, W. Pan, J. Zhang, Q. Hao, J. Cheng, X. Zheng, Synchronous generator emulation control strategy for voltage source converter (VSC) stations, IEEE Trans. Power Syst., 30 (2015), 3093–3101. https://doi.org/10.1109/TPWRS.2014.2384498 doi: 10.1109/TPWRS.2014.2384498 |
[12] | H. Wu, X. B. Ruan, D. Yang, X. Chen, W. Zhao, Z. Lv, et al., Small-signal modeling and parameters design for virtual synchronous generators, IEEE Trans. Ind. Electron., 63 (2016), 4292–4303. https://doi.org/10.1109/TIE.2016.2543181 doi: 10.1109/TIE.2016.2543181 |
[13] | H. Xu, X. Zhang, F. Liu, Virtual synchronous generator control strategy based on lead-lag link virtual inertia, Proc. CSEE, 37 (2017), 1918–1926. https://doi.org/10.13334/j.0258-8013.pcsee.160205 doi: 10.13334/j.0258-8013.pcsee.160205 |
[14] | J. Liu, Y. Miura, T. Ise, Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators, IEEE Trans. Power Electron., 31 (2015), 3600–3611. https://doi.org/10.1109/TPEL.2015.2465852 doi: 10.1109/TPEL.2015.2465852 |
[15] | K. Shi, H. Ye, P. Xu, D. Zhao, L. Jiao, Low-voltage ride through control strategy of virtual synchronous generator based on the analysis of excitation state, IET Gener. Transm. Distrib., 12 (2018), 2165–2172. https://doi.org/10.1049/iet-gtd.2017.1988 doi: 10.1049/iet-gtd.2017.1988 |
[16] | J. Li, B. Wen, H. Wang, Adaptive virtual inertia control strategy of VSG for micro-grid based on improved bang-bang control strategy, IEEE Access, 7 (2019), 39509–39514. https://doi.org/10.1109/ACCESS.2019.2904943 doi: 10.1109/ACCESS.2019.2904943 |
[17] | J. W. Ding, J. B. Zhang, Z. H. Ma, VSG inertia and damping coefficient adaptive control, in 2020 Asia Energy and Electrical Engineering Symposium (AEEES), IEEE, (2020), 431–435. https://doi.org/10.1109/AEEES48850.2020.9121526 |
[18] | J. Alipoor, Y. Miura, T. Ise, Power system stabilization using virtual synchronous generator with alternating moment of inertia, IEEE J. Emerging Sel. Top. Power Electron., 3 (2015), 451–458. https://doi.org/10.1109/JESTPE.2014.2362530 doi: 10.1109/JESTPE.2014.2362530 |
[19] | H. Z. Xu, X. Zhang, F. Liu, Control strategy of virtual synchronous generator based on differential compensation virtual inertia, Autom. Electr. Power Syst., 41 (2017), 96–102. https://doi.org/10.7500/AEPS20160420001 doi: 10.7500/AEPS20160420001 |
[20] | M. X. Li, Y. Wang, N. Y. Xu, Virtual synchronous generator control strategy based on bandpass damping power feedback, Trans. China Electrotech. Soc., 33 (2018), 2176–2185. https://doi.org/10.19595/j.cnki.1000-6753.tces.170201 doi: 10.19595/j.cnki.1000-6753.tces.170201 |
[21] | X. Li, G. Chen, M. Ali, Improved virtual synchronous generator with transient damping link and its seamless transfer control for cascaded H-bridge multilevel converter-based energy storage system, IET Electr. Power Appl., 13 (2019), 1535–1543. https://doi.org/10.1049/iet-epa.2018.5722 doi: 10.1049/iet-epa.2018.5722 |
[22] | C. Li, Y. Q. Yang, N. Mijatovic, T. Dragicevic, Frequency stability assessment of grid-forming VSG in framework of MPME with feedforward decoupling control strategy, IEEE Trans. Ind. Electron., 69 (2022), 6903–6913. https://doi.org/10.1109/TIE.2021.3099236 doi: 10.1109/TIE.2021.3099236 |
[23] | H. Xu, C. Yu, C. Liu, Q Wang, X. Zhang, An improved virtual inertia algorithm of virtual synchronous generator, J. Mod. Power Syst. Clean Energy, 8 (2019), 377–386. https://doi.org/10.35833/MPCE.2018.000472 doi: 10.35833/MPCE.2018.000472 |
[24] | Z. Lv, W. Sheng, H. Liu, L. Sun, M. Wu, Application and challenge of virtual synchronous machine technology in power system, in Proceedings of the CSEE, 37 (2017), 349–359. https://doi.org/10.13334/j.0258-8013.pcsee.161604 |
[25] | K. Shi, G. Zhou, P. Xu, H. Ye, F. Tan, The integrated switching control strategy for grid-connected and islanding operation of micro-grid inverters based on a virtual synchronous generator, Energies, 11 (2018), 1–20. https://doi.org/10.3390/en11061544 doi: 10.3390/en11061544 |
[26] | J. He, Y. W. Li, J. M Guerrero, F. Blaabjerg, J. C. Vasquez, An islanding microgrid power sharing approach using enhanced virtual impedance control scheme, IEEE Trans. Power Electron., 28 (2013), 5272–5282. https://doi.org/10.1109/TPEL.2013.2243757 doi: 10.1109/TPEL.2013.2243757 |
[27] | D. Chen, Y. Xu, A. Q. Huang, Integration of DC microgrids as virtual synchronous machines into the AC grid, IEEE Trans. Ind. Electron., 64 (2017), 7455–7466. https://doi.org/10.1109/TIE.2017.2674621 doi: 10.1109/TIE.2017.2674621 |
[28] | Y. C. Zhu, M. F. Peng, X. Yu, Research on improved virtual synchronous generator based on differential compensation link, in 2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems (ICICM), (2018), 259–263. https://doi.org/10.1109/ICAM.2018.8596677 |