Cardiac arrest (CA) is a fatal acute event. The development of new CA early warning system based on time series of vital signs from electronic health records (EHR) has great potential to reduce CA damage. In this process, recursive architecture-based deep learning, as a powerful tool for time series data processing, enables automatically extract features from various monitoring clinical parameters and to further improve the performance for acute critical illness prediction. However, the unexplainable nature and excessive time caused by black box structure with poor parallelism are the limitations of its development, especially in the CA clinical application with strict requirement of emergency treatment and low hidden dangers. In this study, we present an explainable and efficient deep early warning system for CA prediction, which features are captured by an efficient temporal convolutional network (TCN) on EHR clinical parameters sequence and explained by deep Taylor decomposition (DTD) theoretical framework. To demonstrate the feasibility of our method and further evaluate its performance, prediction and explanation experiments were performed. Experimental results show that our method achieves superior CA prediction accuracy compared with standard national early warning score (NEWS), in terms of overall AUROC (0.850 Vs. 0.476) and F1-Score (0.750 Vs. 0.450). Furthermore, our method improves the interpretability and efficiency of deep learning-based CA early warning system. It provides the relevance of prediction results for each clinical parameter and about 1.7 times speed enhancement for system calculation compared with the long short-term memory network.
Citation: Qinhua Tang, Xingxing Cen, Changqing Pan. Explainable and efficient deep early warning system for cardiac arrest prediction from electronic health records[J]. Mathematical Biosciences and Engineering, 2022, 19(10): 9825-9841. doi: 10.3934/mbe.2022457
[1] | Maria Conceição A. Leite, Yunjiao Wang . Multistability, oscillations and bifurcations in feedback loops. Mathematical Biosciences and Engineering, 2010, 7(1): 83-97. doi: 10.3934/mbe.2010.7.83 |
[2] | Lingli Zhou, Fengqing Fu, Yao Wang, Ling Yang . Interlocked feedback loops balance the adaptive immune response. Mathematical Biosciences and Engineering, 2022, 19(4): 4084-4100. doi: 10.3934/mbe.2022188 |
[3] | Dongxiang Gao, Yujun Zhang, Libing Wu, Sihan Liu . Fixed-time command filtered output feedback control for twin-roll inclined casting system with prescribed performance. Mathematical Biosciences and Engineering, 2024, 21(2): 2282-2301. doi: 10.3934/mbe.2024100 |
[4] | Yue Liu, Wing-Cheong Lo . Analysis of spontaneous emergence of cell polarity with delayed negative feedback. Mathematical Biosciences and Engineering, 2019, 16(3): 1392-1413. doi: 10.3934/mbe.2019068 |
[5] | T. J. Newman . Modeling Multicellular Systems Using Subcellular Elements. Mathematical Biosciences and Engineering, 2005, 2(3): 613-624. doi: 10.3934/mbe.2005.2.613 |
[6] | Akinori Awazu . Input-dependent wave propagations in asymmetric cellular automata: Possible behaviors of feed-forward loop in biological reaction network. Mathematical Biosciences and Engineering, 2008, 5(3): 419-427. doi: 10.3934/mbe.2008.5.419 |
[7] | Na Zhang, Jianwei Xia, Tianjiao Liu, Chengyuan Yan, Xiao Wang . Dynamic event-triggered adaptive finite-time consensus control for multi-agent systems with time-varying actuator faults. Mathematical Biosciences and Engineering, 2023, 20(5): 7761-7783. doi: 10.3934/mbe.2023335 |
[8] | Qiushi Wang, Hongwei Ren, Zhiping Peng, Junlin Huang . Dynamic event-triggered consensus control for nonlinear multi-agent systems under DoS attacks. Mathematical Biosciences and Engineering, 2024, 21(2): 3304-3318. doi: 10.3934/mbe.2024146 |
[9] | Cristina De Ambrosi, Annalisa Barla, Lorenzo Tortolina, Nicoletta Castagnino, Raffaele Pesenti, Alessandro Verri, Alberto Ballestrero, Franco Patrone, Silvio Parodi . Parameter space exploration within dynamic simulations of signaling networks. Mathematical Biosciences and Engineering, 2013, 10(1): 103-120. doi: 10.3934/mbe.2013.10.103 |
[10] | Hany Bauomy . Safety action over oscillations of a beam excited by moving load via a new active vibration controller. Mathematical Biosciences and Engineering, 2023, 20(3): 5135-5158. doi: 10.3934/mbe.2023238 |
Cardiac arrest (CA) is a fatal acute event. The development of new CA early warning system based on time series of vital signs from electronic health records (EHR) has great potential to reduce CA damage. In this process, recursive architecture-based deep learning, as a powerful tool for time series data processing, enables automatically extract features from various monitoring clinical parameters and to further improve the performance for acute critical illness prediction. However, the unexplainable nature and excessive time caused by black box structure with poor parallelism are the limitations of its development, especially in the CA clinical application with strict requirement of emergency treatment and low hidden dangers. In this study, we present an explainable and efficient deep early warning system for CA prediction, which features are captured by an efficient temporal convolutional network (TCN) on EHR clinical parameters sequence and explained by deep Taylor decomposition (DTD) theoretical framework. To demonstrate the feasibility of our method and further evaluate its performance, prediction and explanation experiments were performed. Experimental results show that our method achieves superior CA prediction accuracy compared with standard national early warning score (NEWS), in terms of overall AUROC (0.850 Vs. 0.476) and F1-Score (0.750 Vs. 0.450). Furthermore, our method improves the interpretability and efficiency of deep learning-based CA early warning system. It provides the relevance of prediction results for each clinical parameter and about 1.7 times speed enhancement for system calculation compared with the long short-term memory network.
[1] |
S. Girotra, B. K. Nallamothu, J. A. Spertus, Y. Li, H. M. Krumholz, P. S. Chan, Trends in survival after in-hospital cardiac arrest, N. Engl. J. Med., 367 (2012), 1912-1920. https://doi.org/10.1016/j.jemermed.2013.02.007 doi: 10.1016/j.jemermed.2013.02.007
![]() |
[2] |
L. Mandigers, F. Termorshuizen, N. F. Keizer, D. Gommers, D. Reis Miranda, W. J. Rietdijk, et al., A nationwide overview of 1-year mortality in cardiac arrest patients admitted to intensive care units in the Netherlands between 2010 and 2016, Resuscitation, 147 (2020), 88-94. https://doi.org/10.1016/j.resuscitation.2019.12.029 doi: 10.1016/j.resuscitation.2019.12.029
![]() |
[3] |
J. Soar, J. P. Nolan, B. W. Böttiger, G. D. Perkins, C. Lott, N. I. Nikolaou, et al., European resuscitation council guidelines for resuscitation 2015: section 3. Adult advanced life support, Resuscitation, 95 (2015), 100-147. https://doi.org/10.1016/j.resuscitation.2015.07.016 doi: 10.1016/j.resuscitation.2015.07.016
![]() |
[4] | G. B. Smith, D. R. Prytherch, P. Meredith, P. E. Schmidt, P. I. Featherstone, The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death, Resuscitation, 84 (2013), 465-470. https://doi.org/10.1016/j.resuscitation.2012.12.016 |
[5] |
I. Nishijima, S. Oyadomari, S. Maedomari, R. Toma, C. Igei, S. Kobata, et al., Use of a modified early warning score system to reduce the rate of in-hospital cardiac arrest, J. Intensive Care, 4 (2016), 1-6. https://doi.org/10.1186/s40560-016-0134-7 doi: 10.1186/s40560-016-0134-7
![]() |
[6] |
F. E. Shamout, T. Zhu, P. Sharma, P. J. Watkinson, D. A. Clifton, Deep interpretable early warning system for the detection of clinical deterioration, IEEE J. Biomed. Heal. Inf., 24 (2019), 437-446. https://doi.org/10.1109/jbhi.2019.2937803 doi: 10.1109/jbhi.2019.2937803
![]() |
[7] |
J. Kwon, Y. Lee, Y. Lee, S. Lee, J. Park, An algorithm based on deep learning for predicting in‐hospital cardiac arrest, J. Am. Heart Assoc., 7 (2018), 1-11. https://doi.org/10.1161/jaha.118.008678 doi: 10.1161/jaha.118.008678
![]() |
[8] |
J. Kim, M. Chae, H. J. Chang, Y. A. Kim, E. Park, Predicting cardiac arrest and respiratory failure using feasible artificial intelligence with simple trajectories of patient data, J. Clin. Med., 8 (2019), 1336-1350. https://doi.org/10.3390/jcm8091336 doi: 10.3390/jcm8091336
![]() |
[9] |
T. Pham, T. Tran, D. Phung, S. Venkatesh, Predicting healthcare trajectories from medical records: A deep learning approach, J. Biomed. Inf., 69 (2017), 218-229. https://doi.org/10.1016/j.jbi.2017.04.001 doi: 10.1016/j.jbi.2017.04.001
![]() |
[10] |
S. M. Lauritsen, M. E. Kalør, E. L. Kongsgaard, K. M. Lauritsen, M. J. Jørgensen, J. Lange, et al., Early detection of sepsis utilizing deep learning on electronic health record event sequences, Artif. Intell. Med., 104 (2020), 101820. https://doi.org/10.1016/j.artmed.2020.101820 doi: 10.1016/j.artmed.2020.101820
![]() |
[11] | M. Aczon, D. Ledbetter, L. Ho, A. Gunny, A. Flynn, J. Williams, et al., Dynamic mortality risk predictions in pediatric critical care using recurrent neural networks, preprint, arXiv: 1701.06675. |
[12] |
H. Harutyunyan, H. Khachatrian, D. C. Kale, G. Ver Steeg, A. Galstyan, Multitask learning and benchmarking with clinical time series data, Sci. Data, 6 (2019), 1-18. https://doi.org/10.1038/s41597-019-0103-9 doi: 10.1038/s41597-019-0103-9
![]() |
[13] |
S. Hong, S. Lee, J. Lee, W. Cha, K. Kim, Prediction of cardiac arrest in the emergency department based on machine learning and sequential characteristics: model development and retrospective clinical validation study, JMIR Med. Inf., 8 (2020), 1-14. https://doi.org/10.2196/15932 doi: 10.2196/15932
![]() |
[14] |
Y. J. Lee, K Cho, O. Kwon, H. Park, Y. Lee, J. Kwon, et al., A multicentre validation study of the deep learning-based early warning score for predicting in-hospital cardiac arrest in patients admitted to general wards, Resuscitation, 163 (2021), 78-85. https://doi.org/10.1016/j.resuscitation.2021.04.013 doi: 10.1016/j.resuscitation.2021.04.013
![]() |
[15] |
S. J. Park, K. Cho, O. Kwon, H. Park, Y. Lee, W. H. Shim, et al., Development and validation of a deep-learning-based pediatric early warning system: A single-center study, Biomed. J., 45 (2022), 155-168. https://doi.org/10.1016/j.bj.2021.01.003 doi: 10.1016/j.bj.2021.01.003
![]() |
[16] | M. Moor, M. Horn, B. Rieck, D. Roqueiro, K. Borgwardt, Temporal convolutional networks and dynamic time warping can drastically improve the early prediction of sepsis, preprint, arXiv: 1902.01659. |
[17] | S. Bai, J. Z. Kolter, V. Koltun, An empirical evaluation of generic convolutional and recurrent networks for sequence modeling, preprint, arXiv: 1803.01271. |
[18] | Y. Chang, J. Rubin, G. Boverman, S. Vij, A. Rahman, A. Natarajan, et al., A multi-task imputation and classification neural architecture for early prediction of sepsis from multivariate clinical time series, in 2019 Computing in Cardiology (CinC), (2019), 1-4. https://doi.org/10.23919/CinC49843.2019.9005751 |
[19] |
N. Sato, E. Uchino, R. Kojima, S. Hiragi, M. Yanagita, Y. Okuno, Prediction and visualization of acute kidney injury in intensive care unit using one-dimensional convolutional neural networks based on routinely collected data, Comput. Methods Programs Biomed., 206 (2021), 106129. https://doi.org/10.1016/j.cmpb.2021.106129 doi: 10.1016/j.cmpb.2021.106129
![]() |
[20] | O. Almqvist, A comparative study between algorithms for time series forecasting on customer prediction: An investigation into the performance of ARIMA, RNN, LSTM, TCN and HMM, 2019. Available from: https://www.researchgate.net/publication/333731678 |
[21] |
G. Montavon, S. Lapuschkin, A. Binder, W. Samek, K. R. Müller, Explaining nonlinear classification decisions with deep taylor decomposition, Pattern Recognit., 65 (2017), 211-222. https://doi.org/10.1016/j.patcog.2016.11.008 doi: 10.1016/j.patcog.2016.11.008
![]() |
[22] |
C. Xiao, E. Choi, J. Sun, Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review, J. Am. Med. Inf. Assoc., 25 (2018), 1419-1428. https://doi.org/10.1093/jamia/ocy068 doi: 10.1093/jamia/ocy068
![]() |
[23] |
B. Shickel, P. J. Tighe, A. Bihorac, P. Rashidi, Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis, IEEE J. Biomed. Heal. Inf., 22 (2017), 1589-1604. https://doi.org/10.1109/jbhi.2017.2767063 doi: 10.1109/jbhi.2017.2767063
![]() |
[24] |
W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, K. R. Müller, Explaining deep neural networks and beyond: A review of methods and applications, Proc. IEEE, 109 (2021), 247-278. https://doi.org/10.1109/jproc.2021.3060483 doi: 10.1109/jproc.2021.3060483
![]() |
[25] | H. Chefer, S. Gur, L. Wolf, Transformer interpretability beyond attention visualization, in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2021), 782-791. https://doi.org/10.1109/cvpr46437.2021.00084 |
[26] | W. J. Nam, S. Gur, J. Choi, L. Wolf, S. W. Lee, Relative attributing propagation: Interpreting the comparative contributions of individual units in deep neural networks, in Proceedings of the AAAI Conference on Artificial Intelligence, 34 (2020), 2501-2508. https://doi.org/10.1609/aaai.v34i03.5632 |
[27] | S. Gur, A. Ali, L. Wolf, Visualization of Supervised and Self-Supervised Neural Networks via Attribution Guided Factorization, preprint, arXiv: 2012.02166. |
[28] |
S. M. Lauritsen, M. Kristensen, M. V. Olsen, M. S. Larsen, K. M. Lauritsen, M. J. Jørgensen, et al., Explainable artificial intelligence model to predict acute critical illness from electronic health records, Nat. Commun., 11 (2020), 1-11. https://doi.org/10.1038/s41467-020-17431-x doi: 10.1038/s41467-020-17431-x
![]() |
1. | Fernando Antunes, Paula Matos Brito, Quantitative biology of hydrogen peroxide signaling, 2017, 13, 22132317, 1, 10.1016/j.redox.2017.04.039 | |
2. | Tamar Friedlander, Roshan Prizak, Călin C. Guet, Nicholas H. Barton, Gašper Tkačik, Intrinsic limits to gene regulation by global crosstalk, 2016, 7, 2041-1723, 10.1038/ncomms12307 | |
3. | Michał Komorowski, Dan S. Tawfik, The Limited Information Capacity of Cross-Reactive Sensors Drives the Evolutionary Expansion of Signaling, 2019, 8, 24054712, 76, 10.1016/j.cels.2018.12.006 | |
4. | Alejandra C. Ventura, Alan Bush, Gustavo Vasen, Matías A. Goldín, Brianne Burkinshaw, Nirveek Bhattacharjee, Albert Folch, Roger Brent, Ariel Chernomoretz, Alejandro Colman-Lerner, Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range, 2014, 111, 0027-8424, E3860, 10.1073/pnas.1322761111 | |
5. | Damon A. Clark, Raphael Benichou, Markus Meister, Rava Azeredo da Silveira, Lyle J. Graham, Dynamical Adaptation in Photoreceptors, 2013, 9, 1553-7358, e1003289, 10.1371/journal.pcbi.1003289 | |
6. | Ilan Smoly, Haim Elbaz, Chaim Engelen, Tahel Wechsler, Gal Elbaz, Giora Ben-Ari, Alon Samach, Tamar Friedlander, John Lunn, A model estimating the level of floral transition in olive trees exposed to warm periods during winter, 2024, 0022-0957, 10.1093/jxb/erae459 |