Research article Special Issues

Parallel anomaly detection algorithm for cybersecurity on the highspeed train control system


  • Received: 23 September 2021 Accepted: 06 November 2021 Published: 12 November 2021
  • With the rapid development of the high-speed train industry, the high-speed train control system has now been exposed to a complicated network environment full of dangers. This paper provides a speculative parallel data detection algorithm to rapidly detect the potential threats and ensure data transmission security in the railway network. At first, the structure of the high-speed train control data received by the railway control center was analyzed and divided tentatively into small chunks to eliminate the inside dependencies. Then the traditional threat detection algorithm based on deterministic finite automaton was reformed by the speculative parallel optimization so that the inline relationship's influences that affected the data detection order could be avoided. At last, the speculative parallel detection algorithm would inspect the divided data chunks on a distributed platform. With the help of both the speculative parallel technique and the distributed platform, the detection deficiency for train control data was improved significantly. The results showed that the proposed algorithm exhibited better performance and scalability when compared with the traditional, non-parallel detection method, and massive train control data could be inspected and processed promptly. Now it has been proved by practical use that the proposed algorithm was stable and reliable. Our local train control center was able to quickly detect the anomaly and make a fast response during the train control data transmission by adopting the proposed algorithm.

    Citation: Zhoukai Wang, Xinhong Hei, Weigang Ma, Yichuan Wang, Kan Wang, Qiao Jia. Parallel anomaly detection algorithm for cybersecurity on the highspeed train control system[J]. Mathematical Biosciences and Engineering, 2022, 19(1): 287-308. doi: 10.3934/mbe.2022015

    Related Papers:

    [1] Maria Conceição A. Leite, Yunjiao Wang . Multistability, oscillations and bifurcations in feedback loops. Mathematical Biosciences and Engineering, 2010, 7(1): 83-97. doi: 10.3934/mbe.2010.7.83
    [2] Lingli Zhou, Fengqing Fu, Yao Wang, Ling Yang . Interlocked feedback loops balance the adaptive immune response. Mathematical Biosciences and Engineering, 2022, 19(4): 4084-4100. doi: 10.3934/mbe.2022188
    [3] Dongxiang Gao, Yujun Zhang, Libing Wu, Sihan Liu . Fixed-time command filtered output feedback control for twin-roll inclined casting system with prescribed performance. Mathematical Biosciences and Engineering, 2024, 21(2): 2282-2301. doi: 10.3934/mbe.2024100
    [4] Yue Liu, Wing-Cheong Lo . Analysis of spontaneous emergence of cell polarity with delayed negative feedback. Mathematical Biosciences and Engineering, 2019, 16(3): 1392-1413. doi: 10.3934/mbe.2019068
    [5] T. J. Newman . Modeling Multicellular Systems Using Subcellular Elements. Mathematical Biosciences and Engineering, 2005, 2(3): 613-624. doi: 10.3934/mbe.2005.2.613
    [6] Akinori Awazu . Input-dependent wave propagations in asymmetric cellular automata: Possible behaviors of feed-forward loop in biological reaction network. Mathematical Biosciences and Engineering, 2008, 5(3): 419-427. doi: 10.3934/mbe.2008.5.419
    [7] Na Zhang, Jianwei Xia, Tianjiao Liu, Chengyuan Yan, Xiao Wang . Dynamic event-triggered adaptive finite-time consensus control for multi-agent systems with time-varying actuator faults. Mathematical Biosciences and Engineering, 2023, 20(5): 7761-7783. doi: 10.3934/mbe.2023335
    [8] Qiushi Wang, Hongwei Ren, Zhiping Peng, Junlin Huang . Dynamic event-triggered consensus control for nonlinear multi-agent systems under DoS attacks. Mathematical Biosciences and Engineering, 2024, 21(2): 3304-3318. doi: 10.3934/mbe.2024146
    [9] Cristina De Ambrosi, Annalisa Barla, Lorenzo Tortolina, Nicoletta Castagnino, Raffaele Pesenti, Alessandro Verri, Alberto Ballestrero, Franco Patrone, Silvio Parodi . Parameter space exploration within dynamic simulations of signaling networks. Mathematical Biosciences and Engineering, 2013, 10(1): 103-120. doi: 10.3934/mbe.2013.10.103
    [10] Hany Bauomy . Safety action over oscillations of a beam excited by moving load via a new active vibration controller. Mathematical Biosciences and Engineering, 2023, 20(3): 5135-5158. doi: 10.3934/mbe.2023238
  • With the rapid development of the high-speed train industry, the high-speed train control system has now been exposed to a complicated network environment full of dangers. This paper provides a speculative parallel data detection algorithm to rapidly detect the potential threats and ensure data transmission security in the railway network. At first, the structure of the high-speed train control data received by the railway control center was analyzed and divided tentatively into small chunks to eliminate the inside dependencies. Then the traditional threat detection algorithm based on deterministic finite automaton was reformed by the speculative parallel optimization so that the inline relationship's influences that affected the data detection order could be avoided. At last, the speculative parallel detection algorithm would inspect the divided data chunks on a distributed platform. With the help of both the speculative parallel technique and the distributed platform, the detection deficiency for train control data was improved significantly. The results showed that the proposed algorithm exhibited better performance and scalability when compared with the traditional, non-parallel detection method, and massive train control data could be inspected and processed promptly. Now it has been proved by practical use that the proposed algorithm was stable and reliable. Our local train control center was able to quickly detect the anomaly and make a fast response during the train control data transmission by adopting the proposed algorithm.





    [1] Y. Chen, Non-safety-related software in the context of railway RAMS standards, in 2017 IEEE Second International Conference on Reliability Systems Engineering (ICRSE), (2017), 1-5. doi: 10.1109/ICRSE.2017.8030718.
    [2] T. Wang, Y. Quan, X. Shen, T. R. Gadekallu, W. Wang, K. Dev, A Privacy-Enhanced Retrieval Technology for the Cloud-assisted Internet of Things, IEEE Trans. Ind. Inf., 2021. doi: 10.1109/TⅡ.2021.3103547. doi: 10.1109/TⅡ.2021.3103547
    [3] C. Feng, K. Yu, M. Aloqaily, M. Alazab, Z. Lv, S. Mumtaz, Attribute-based encryption with parallel outsourced decryption for edge intelligent IoV, IEEE Trans. Veh. Technol., 69 (2020), 13784-13795. doi: 10.1109/TVT.2020.3027568. doi: 10.1109/TVT.2020.3027568
    [4] C. Feng, B. Liu, Z. Guo, K. Yu, Z. Qin, K. R. Choo, Blockchain-based Cross-domain Authentication for Intelligent 5G-enabled Internet of Drones, IEEE Internet Things J., 2021. doi: 10.1109/JIOT.2021.3113321. doi: 10.1109/JIOT.2021.3113321
    [5] L. Tan, K. Yu, F. Ming, X. Chen, G. Srivastara, Secure and resilient Artificial Intelligence of Things: a HoneyNet approach for threat detection and situational awareness, IEEE Consum. Electron. Mag., 2021. doi: 10.1109/MCE.2021.3081874. doi: 10.1109/MCE.2021.3081874
    [6] K. Yu, Z. Guo, Y. Shen, W. Wang, J. C. Lin, T. Sato, Secure artificial intelligence of things for implicit group recommendations, IEEE Internet Things J., 2021. doi: 10.1109/JIOT.2021.3079574. doi: 10.1109/JIOT.2021.3079574
    [7] A. Aghdai, C. Chu, Y. Xu, D. Dai, J. Xu, J. Chao, Spotlight: Scalable transport layer load balancing for data center networks, IEEE Trans. Cloud Comput., 8 (2020), 1471-1485. doi: 10.1109/tcc.2020.3024834. doi: 10.1109/tcc.2020.3024834
    [8] K. Yu, M. Arifuzzaman, Z. Wen, D. Zhang, T. Sato, A key management scheme for secure communications of information centric advanced metering infrastructure in smart grid, IEEE Trans. Instrum. Meas., 64 (2015), 2072-2085. doi: 10.1109/TIM.2015.2444238. doi: 10.1109/TIM.2015.2444238
    [9] L. Zhang, M. Peng, W. Wang, Z. Jin, Y. Su, H. Chen, Secure and efficient data storage and sharing scheme for blockchain-based mobile-edge computing, Trans. Emerging Telecommun. Technol., (2021), 4315. doi: 10.1002/ett.4315. doi: 10.1002/ett.4315
    [10] W. Wang, H. Xu, M. Alazab, T. R. Gadekallu, Z. Han, C. Su, Blockchain-based reliable and efficient certificateless signature for ⅡoT devices, IEEE Trans. Ind. Inf., 2021. doi: 10.1109/tii.2021.3084753. doi: 10.1109/tii.2021.3084753
    [11] L. Tan, K. Yu, N. Shi, C. Yang, W. Wei, H. Lu, Towards secure and privacy-preserving data sharing for covid-19 medical records: A blockchain-empowered approach, IEEE Trans. Network Sci. Eng., 2021. doi: 10.1109/TNSE.2021.3101842. doi: 10.1109/TNSE.2021.3101842
    [12] H. Xiong, C. Jin, M. Alazab, K. Yeh, H. Wang, T. R. Gadekallu, et al., On the design of blockchain-based ECDSA with fault-tolerant batch verication protocol for blockchain-enabled IoMT, IEEE J. Biomed. Health Inf., 2021. doi: 10.1109/JBHI.2021.3112693. doi: 10.1109/JBHI.2021.3112693
    [13] J. Song, Z. Han, W. Wang, J. Chen, Y. Liu, A new secure arrangement for privacy-preserving data collection, Comput. Stand. Interfaces, (2021), 103582. doi: 10.1016/j.csi.2021.103582. doi: 10.1016/j.csi.2021.103582
    [14] Z. Liu, A. K. Nath, X. Ding, H. Fu, M. Khan, W. Yu, Multivariate modeling and two-level scheduling of analytic queries, Parallel Comput., 85 (2019), 66-78. doi: 10.1016/j.parco.2019.01.006. doi: 10.1016/j.parco.2019.01.006
    [15] K. Yu, L. Tan, L. Lin, X. Cheng, Z. Yi, T. Sato, Deep-learning-empowered breast cancer auxiliary diagnosis for 5GB remote E-health, IEEE Wireless Commun., 28 (2021), 54-61. doi: 10.1109/MWC.001.2000374. doi: 10.1109/MWC.001.2000374
    [16] W. Wu, S. Xu, Intrusion detection based on dynamic gemini population DE-K-mediods clustering on hadoop platform, Int. J. Pattern Recognit. Artif. Intell., 35 (2021), 2150001. doi: 10.1142/S0218001421500014. doi: 10.1142/S0218001421500014
    [17] Y. Gong, L. Zhang, R. Liu, K. Yu, G. Srivastava, Nonlinear MIMO for industrial Internet of Things in cyber-physical systems, IEEE Trans. Ind. Inf., 17 (2020), 5533-5541. doi: 10.1109/TⅡ.2020.3024631. doi: 10.1109/TⅡ.2020.3024631
    [18] Y. Song, Y. Wen, D. Zhang, J. Zhang, Fast prediction model of coupling coefficient between pantograph arcing and GSM-R antenna, IEEE Trans. Veh. Technol., 69 (2020), 11612-11618. doi: 10.1109/TVT.2020.3015057. doi: 10.1109/TVT.2020.3015057
    [19] N. M. Balamurugan, S. Mohan, M. Adimoolam, A. John, T. R. Gadekallu, W. Wang, DOA tracking for seamless connectivity in beamformed IoT-based drones, Comput. Stand. Interfaces, 79 (2022), 103564. doi: 10.1016/j.csi.2021.103564. doi: 10.1016/j.csi.2021.103564
    [20] F. Z. Beana, N. Benamrane, M. A. Hamaida, A. M. Chaabani, A. T. Ahmed, Network Intrusion Detection System using neural network and condensed nearest neighbors with selection of NSL-KDD influencing features, in 2020 IEEE International Conf. Internet Things Intell. Syst.(IoTaIS), Bali, (2021), 23-29. doi: 10.1109/IoTaIS50849.2021.9359689.
    [21] M. D. Mauro, G. Galatro, A. Liotta, Experimental review of neural-based approaches for network intrusion management, IEEE Trans. Network Serv. Manage., 2020. doi: 10.1109/TNSM.2020.3024225. doi: 10.1109/TNSM.2020.3024225
    [22] M. Injadat, A. Moubayed, A. B. Nassif, A. Shami, Multi-stage optimized machine learning framework for network intrusion detection, IEEE Trans. Network Serv. Manage., 2020. doi: 10.1109/TNSM.2020.3014929. doi: 10.1109/TNSM.2020.3014929
    [23] Z. Guo, K. Yu, A. Jolfaei, A. K. Bashir, A. O. Almagrabi, N. Kumar, A fuzzy detection system for rumors through explainable adaptive learning, IEEE Trans. Fuzzy Syst., 2021. doi: 10.1109/TFUZZ.2021.3052109. doi: 10.1109/TFUZZ.2021.3052109
    [24] Z. Guo, K. Yu, Y. Li, G. Srivastava, J. C. Lin, Deep learning-embedded social internet of things for ambiguity-aware social recommendations, IEEE Trans. Network Sci. Eng., 2021. doi: 10.1109/TNSE.2021.3049262. doi: 10.1109/TNSE.2021.3049262
    [25] L. Ding, K. Huang, D. Zhang, Multi-stride regular expression matching using parallel character index, J. Comput. Res. Dev., 52 (2015), 681-690. doi: 10.7544/issn1000-1239.2015.20131255. doi: 10.7544/issn1000-1239.2015.20131255
    [26] S. Lu, Z. Zuo, L. Wang, Progress in parallelization of static program analysis, J. Software, 31 (2020), 1241-1254. doi: 10.13328/j.cnki.jos.005950. doi: 10.13328/j.cnki.jos.005950
    [27] R. Yang, C. Hu, X. Sun, P. Garraghan, T. Wo, Z. Wen, et al., Performance-aware speculative resource oversubscription for large-scale clusters, IEEE Trans. Parallel Distrib. Syst., 31 (2020), 1499-1571. doi: 10.1109/TPDS.2020.2970013. doi: 10.1109/TPDS.2020.2970013
    [28] H. Dong, H. Zhu, Y. Li, Y. Lv, S. Gao, Q. Zhang, et al., Parallel intelligent systems for integrated high-speed railway operation control and dynamic scheduling, IEEE trans. Cybern., 48 (2018), 3381-3389. doi: 10.1109/TCYB.2018.2852772. doi: 10.1109/TCYB.2018.2852772
    [29] H. Li, K. Yu, B. Liu, C. Feng, Z. Qin, G. Srivastava, An efficient ciphertext-policy weighted attribute-based encryption for the Internet of health things, IEEE J. Biomed. Health Inf., 2021. doi: 10.1109/JBHI.2021.3075995. doi: 10.1109/JBHI.2021.3075995
    [30] C. Feng, B. Liu, K. Yu, S. K. Goudos, S. Wan, Blockchain-empowered decentralized cross-domain federated learning for 5G-enabled UAVs, IEEE Trans. Ind. Inf., 2021. doi: 10.1109/TⅡ.2021.3116132. doi: 10.1109/TⅡ.2021.3116132
    [31] L. Zhen, Y. Zhang, K. Yu, N. Kumar, A. Barnawi, Y. Xie, Early collision detection for massive random access in satellite-based internet of things, IEEE Trans. Veh. Technol., 2021. doi: 10.1109/TVT.2021.3076015. doi: 10.1109/TVT.2021.3076015
    [32] W. Shang, J. Chen, H. Bi, Y. Sui, Y. Chen, H. Yu, Impacts of covid-19 pandemic on user behaviors and environmental benefits of bike sharing: A big-data analysis, Appl. Energy, 285 (2021), 116429. doi: 10.1016/j.apenergy.2020.116429. doi: 10.1016/j.apenergy.2020.116429
    [33] Y. Sun, J. Liu, K. Yu, M. Alazab, K. Lin, PMRSS: Privacy-preserving medical record searching scheme for intelligent diagnosis in IoT healthcare, IEEE Trans. Ind. Inf., 2021. doi: 10.1109/TⅡ.2021.3070544. doi: 10.1109/TⅡ.2021.3070544
    [34] L. Liu, J. Feng, Q. Pei, C. Chen, Y. Ming, B. Shang, et al., Blockchain-enabled secure data sharing scheme in mobile-edge computing: An asynchronous advantage actor-critic learning approach, IEEE Internet Things J., 8 (2020), 2342-2353. doi: 10.1109/JIOT.2020.3048345. doi: 10.1109/JIOT.2020.3048345
    [35] J. Feng, F. R. Yu, Q. Pei, X. Chu, J. Du, L. Zhu, Cooperative computation offloading and resource allocation for blockchain-enabled mobile-edge computing: A deep reinforcement learning approach, IEEE Internet Things J., 7 (2019), 6214-6228. doi: 10.1109/jiot.2019.2961707. doi: 10.1109/jiot.2019.2961707
  • This article has been cited by:

    1. Fernando Antunes, Paula Matos Brito, Quantitative biology of hydrogen peroxide signaling, 2017, 13, 22132317, 1, 10.1016/j.redox.2017.04.039
    2. Tamar Friedlander, Roshan Prizak, Călin C. Guet, Nicholas H. Barton, Gašper Tkačik, Intrinsic limits to gene regulation by global crosstalk, 2016, 7, 2041-1723, 10.1038/ncomms12307
    3. Michał Komorowski, Dan S. Tawfik, The Limited Information Capacity of Cross-Reactive Sensors Drives the Evolutionary Expansion of Signaling, 2019, 8, 24054712, 76, 10.1016/j.cels.2018.12.006
    4. Alejandra C. Ventura, Alan Bush, Gustavo Vasen, Matías A. Goldín, Brianne Burkinshaw, Nirveek Bhattacharjee, Albert Folch, Roger Brent, Ariel Chernomoretz, Alejandro Colman-Lerner, Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range, 2014, 111, 0027-8424, E3860, 10.1073/pnas.1322761111
    5. Damon A. Clark, Raphael Benichou, Markus Meister, Rava Azeredo da Silveira, Lyle J. Graham, Dynamical Adaptation in Photoreceptors, 2013, 9, 1553-7358, e1003289, 10.1371/journal.pcbi.1003289
    6. Ilan Smoly, Haim Elbaz, Chaim Engelen, Tahel Wechsler, Gal Elbaz, Giora Ben-Ari, Alon Samach, Tamar Friedlander, John Lunn, A model estimating the level of floral transition in olive trees exposed to warm periods during winter, 2024, 0022-0957, 10.1093/jxb/erae459
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2914) PDF downloads(103) Cited by(3)

Article outline

Figures and Tables

Figures(9)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog