Supply chain network is important for the enterprise to improve the operation and management, but has become more complicated to optimize in reality. With the consideration of multiple objectives and constraints, this paper proposes a constrained large-scale multi-objective supply chain network (CLMSCN) optimization model. This model is to minimize the total operation cost (including the costs of production, transportation, and inventory) and to maximize the customer satisfaction under the capacity constraints. Besides, a coevolutionary algorithm based on the auxiliary population (CAAP) is proposed, which uses two populations to solve the CLMSCN problem. One population is to solve the original complex problem, and the other population is to solve the problem without any constraints. If the infeasible solutions are generated in the first population, a linear repair operator will be used to improve the feasibility of these solutions. To validate the effectivity of the CAAP algorithm, the experiment is conducted on the randomly generated instances with three different problem scales. The results show that the CAAP algorithm can outperform other compared algorithms, especially on the large-scale instances.
Citation: Xin Zhang, Zhaobin Ma, Bowen Ding, Wei Fang, Pengjiang Qian. A coevolutionary algorithm based on the auxiliary population for constrained large-scale multi-objective supply chain network[J]. Mathematical Biosciences and Engineering, 2022, 19(1): 271-286. doi: 10.3934/mbe.2022014
Supply chain network is important for the enterprise to improve the operation and management, but has become more complicated to optimize in reality. With the consideration of multiple objectives and constraints, this paper proposes a constrained large-scale multi-objective supply chain network (CLMSCN) optimization model. This model is to minimize the total operation cost (including the costs of production, transportation, and inventory) and to maximize the customer satisfaction under the capacity constraints. Besides, a coevolutionary algorithm based on the auxiliary population (CAAP) is proposed, which uses two populations to solve the CLMSCN problem. One population is to solve the original complex problem, and the other population is to solve the problem without any constraints. If the infeasible solutions are generated in the first population, a linear repair operator will be used to improve the feasibility of these solutions. To validate the effectivity of the CAAP algorithm, the experiment is conducted on the randomly generated instances with three different problem scales. The results show that the CAAP algorithm can outperform other compared algorithms, especially on the large-scale instances.
[1] | M. Aranguren, K. K. Castillo-Villar, M. Aboytes-Ojeda, A two-stage stochastic model for co-firing biomass supply chain networks, J. Clean. Prod., 319 (2021), 128582. doi: 10.1016/j.jclepro.2021.128582. doi: 10.1016/j.jclepro.2021.128582 |
[2] | C. Dong, C. Chen, X. Shi, C. T. Ng, Operations strategy for supply chain finance with asset-backed securitization: Centralization and blockchain adoption, Int. J. Prod. Econ., 241 (2021), 108261. doi: 10.1016/j.ijpe.2021.108261. doi: 10.1016/j.ijpe.2021.108261 |
[3] | D. Ramón-Lumbierres, F. J. H. Cervera, J. Minguella-Canela, A. Muguruza-Blanco, Optimal postponement in supply chain network design under uncertainty: an application for additive manufacturing, Int. J. Prod. Res., 59 (2020), 5198-5215. doi: 10.1080/00207543.2020.1775908. doi: 10.1080/00207543.2020.1775908 |
[4] | X. Zhang, Z. H. Zhan, J. Zhang, Multi-objective direction driven local search for constrained supply chain configuration problem, in Proceedings of ACM Genetic and Evolutionary Computation Conference (GECCO), Cancun, (2020), 299-300. doi: 10.1145/3377929.3389929. |
[5] | X. Zhang, Z. H. Zhan, J. Zhang, A fast efficient local search-based algorithm for multi-objective supply chain configuration problem, IEEE Access, 8 (2020), 62924-62931. doi: 10.1109/ACCESS.2020.2983473 doi: 10.1109/ACCESS.2020.2983473 |
[6] | H. Shirazi, R. Kia, P. Ghasemi, A stochastic bi-objective simulation-optimization model for plasma supply chain in case of COVID-19 outbreak, Appl. Soft. comput., 112 (2021), 107725. doi: 10.1016/j.asoc.2021.107725. doi: 10.1016/j.asoc.2021.107725 |
[7] | X. Xu, M. D. Rodgers, W. Guo, Hybrid simulation models for spare parts supply chain considering 3D printing capabilities, J. Manuf. Syst., 59 (2021), 272-282. doi: 10.1016/j.jmsy.2021.02.018. doi: 10.1016/j.jmsy.2021.02.018 |
[8] | Y. Zhang, S. A. R. Khan, Green supply chain network optimization under random and fuzzy environment, Int. J. Fuzzy Syst., 2021 (2021). doi: 10.1007/s40815-020-00979-7. doi: 10.1007/s40815-020-00979-7 |
[9] | X. Ma, X. Li, Q. Zhang, K. Tang, Z. Liang, W. Xie, et al., A survey on cooperative co-evolutionary algorithms, IEEE Trans. Evolut. Comput., 23 (2019), 421-441. doi: 10.1109/TEVC.2018.2868770. doi: 10.1109/TEVC.2018.2868770 |
[10] | R. Tanabe, H. Ishibuchi, A review of evolutionary multimodal multi-objective optimization, IEEE Trans. Evolut. Comput., 24 (2020), 193-200. doi: 10.1109/TEVC.2019.2909744. doi: 10.1109/TEVC.2019.2909744 |
[11] | P. Xu, W. Luo, X. Lin, J. Zhang, Y. Qiao, Evolutionary continuous constrained optimization using random direction repair, Inf. Sci., 566 (2021), 80-102. doi: 10.1016/j.ins.2021.02.055. doi: 10.1016/j.ins.2021.02.055 |
[12] | P. Xu, W. Luo, X. Lin, J. Zhang, Y. Qiao, X. Wang, Constraint-objective cooperative coevolution for large-scale constrained optimization, ACM Trans. Evol. Learn. Optim., 1 (2021), 1-26. doi: 10.1145/3469036. doi: 10.1145/3469036 |
[13] | Q. Gao, H. Xu, A. Li, The analysis of commodity demand predication in supply chain network based on particle swarm optimization algorithm, J. Comput. Appl. Math., 400 (2022), 113760. doi: 10.1016/j.cam.2021.113760. doi: 10.1016/j.cam.2021.113760 |
[14] | F. Goodarzian, S. F. Wamba, K. Mathiyazhagan, A. Taghipour, A new bi-objective green medicine supply chain network design under fuzzy environment: Hybrid metaheuristic algorithms, Comput. Indust. Eng., 160 (2021), 107535. doi: 10.1016/j.cie.2021.107535. doi: 10.1016/j.cie.2021.107535 |
[15] | F. Goodarzian, V. Kumar, A. Abraham, Hybrid meta-heuristic algorithms for a supply chain network considering different carbon emission regulations using big data characteristics, Soft Comput., 25 (2021), 7527-7557. doi: 10.1007/s00500-021-05711-7. doi: 10.1007/s00500-021-05711-7 |
[16] | Z. Dai, Multi-material and multi-cycle cost optimization of supply chain network and hybrid genetic algorithm, Appl. Res. Comput., 31 (2014), 2620-2624. |
[17] | J. Sun, J. Lin, Study of supply chain optimization scheduling in mass customization based on ant colony algorithm, J Comput. Appl., 11 (2006), 2631-2638. |
[18] | X. Zhang, K. J. Du, Z. H. Zhan, S. Kwong, T. L. Gu, J. Zhang, Cooperative coevolutionary bare-bones particle swarm optimization with function independent decomposition for large-scale supply chain network design with uncertainties, IEEE Trans. Cybern., 50 (2020), 4454-4468. doi: 10.1109/TCYB.2019.2937565. doi: 10.1109/TCYB.2019.2937565 |
[19] | M. Z. Akkad, T. Bányai, Multi-objective approach for optimization of city logistics considering energy efficiency, Sustainability, 12 (2020), 7366. doi: 10.3390/su12187366. doi: 10.3390/su12187366 |
[20] | N. I. Saragih, S. N. Bahagia, Suprayogi, I. Syabri, A heuristic method for location-inventory-routing problem in a three-echelon supply chain system, Comput. Ind. Eng., 127 (2019), 875-886. doi: 10.1016/j.cie.2018.11.026. doi: 10.1016/j.cie.2018.11.026 |
[21] | Y. Tian, T. Zhang, J. Xiao, X. Zhang, Y. Jin, A coevolutionary framework for constrained multi-objective optimization problems, IEEE Trans. Evolut. Comput., 25 (2021), 102-116. doi: 10.1109/TEVC.2020.3004012. doi: 10.1109/TEVC.2020.3004012 |
[22] | K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ, IEEE Trans. Evolut. Comput., 6 (2002), 182-197. doi: 10.1109/4235.996017. doi: 10.1109/4235.996017 |
[23] | K. Deb, K. Sindhya, T. Okabe, Self-adaptive simulated binary crossover for real-parameter optimization, in Proceedings of ACM Genetic and Evolutionary Computation Conference (GECCO), (2007), 1187-1194. doi: 10.1145/1276958.1277190. |
[24] | K. Liagkouras, K. Metaxiotis, An elitist polynomial mutation operator for improved performance of MOEAs in computer networks, in International Conference on Computer Communication and Networks (ICCCN), (2013), 1-5. doi: 10.1109/ICCCN.2013.6614105. |
[25] | B. Chen, W. Zeng, Y. Lin, D. Zhang, A new local search-based multi-objective optimization algorithm, IEEE Trans. Evolut. Comput., 19 (2015), 50-73. doi: 10.1109/TEVC.2014.2301794. doi: 10.1109/TEVC.2014.2301794 |
[26] | Q. Zhang, H. Li, MOEA/D: A multi-objective evolutionary algorithm based on decomposition, IEEE Trans. Evolut. Comput., 11 (2007), 712-731. doi: 10.1109/TEVC.2007.892759. doi: 10.1109/TEVC.2007.892759 |
[27] | Z. Zhan, J. Li, J. Cao, J. Zhang, H. S. Chung, Y. Shi, Multiple populations for multiple objectives: a coevolutionary technique for solving multi-objective optimization problems, IEEE Trans. Evolut. Comput., 43 (2013), 445-463. doi: 10.1109/TSMCB.2012.2209115. doi: 10.1109/TSMCB.2012.2209115 |
[28] | E. Zitzler, L. Thiele, Multi-objective evolutionary algorithms: a comparative case study and the strength Pareto approach, IEEE Trans. Evolut. Comput., 3 (1999), 257-271. doi: 10.1109/4235.797969. doi: 10.1109/4235.797969 |
[29] | K. Deb, An efficient constraint handling method for genetic algorithms, Comput. Methods Appl. Mech. Eng., 186 (2000), 311-338. doi: 10.1016/S0045-7825(99)00389-8. doi: 10.1016/S0045-7825(99)00389-8 |