Citation: Anji Yang, Baojun Song, Sanling Yuan. Noise-induced transitions in a non-smooth SIS epidemic model with media alert[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 745-763. doi: 10.3934/mbe.2021040
[1] | Xianmin Geng, Shengli Zhou, Jiashan Tang, Cong Yang . A sufficient condition for classified networks to possess complex network features. Networks and Heterogeneous Media, 2012, 7(1): 59-69. doi: 10.3934/nhm.2012.7.59 |
[2] | Simone Göttlich, Stephan Martin, Thorsten Sickenberger . Time-continuous production networks with random breakdowns. Networks and Heterogeneous Media, 2011, 6(4): 695-714. doi: 10.3934/nhm.2011.6.695 |
[3] | Wenlian Lu, Fatihcan M. Atay, Jürgen Jost . Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays. Networks and Heterogeneous Media, 2011, 6(2): 329-349. doi: 10.3934/nhm.2011.6.329 |
[4] | Alessia Marigo, Benedetto Piccoli . A model for biological dynamic networks. Networks and Heterogeneous Media, 2011, 6(4): 647-663. doi: 10.3934/nhm.2011.6.647 |
[5] | Mirela Domijan, Markus Kirkilionis . Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3(2): 295-322. doi: 10.3934/nhm.2008.3.295 |
[6] | M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer . On algebraic graph theory and the dynamics of innovation networks. Networks and Heterogeneous Media, 2008, 3(2): 201-219. doi: 10.3934/nhm.2008.3.201 |
[7] | Michael Damron, C. L. Winter . A non-Markovian model of rill erosion. Networks and Heterogeneous Media, 2009, 4(4): 731-753. doi: 10.3934/nhm.2009.4.731 |
[8] | Regino Criado, Julio Flores, Alejandro J. García del Amo, Miguel Romance . Structural properties of the line-graphs associated to directed networks. Networks and Heterogeneous Media, 2012, 7(3): 373-384. doi: 10.3934/nhm.2012.7.373 |
[9] | Roberto Serra, Marco Villani, Alex Graudenzi, Annamaria Colacci, Stuart A. Kauffman . The simulation of gene knock-out in scale-free random Boolean models of genetic networks. Networks and Heterogeneous Media, 2008, 3(2): 333-343. doi: 10.3934/nhm.2008.3.333 |
[10] | Martin Gugat, Rüdiger Schultz, Michael Schuster . Convexity and starshapedness of feasible sets in stationary flow networks. Networks and Heterogeneous Media, 2020, 15(2): 171-195. doi: 10.3934/nhm.2020008 |
The special issue webpage is avaiable at: https://aimspress.com/mbe/article/5630/special-articles.
An outbreak of atypical pneumonia caused by a novel coronavirus was first identified in Wuhan, China in December 2019. The causative agent was initially called 2019 novel coronavirus (2019-nCoV), later renamed as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the formal name for the associated disease given by the World Health Organization (WHO) is Coronavirus Disease 2019 (COVID-19). The virus swiftly spread to all areas of China and other countries. The WHO declared the coronavirus outbreak a public health emergency of international concern (PHEIC) on January 30, 2020. Mathematical models play an increasingly important role in forecasting transmission potential, optimizing control strategies, understanding the progression of infections within hosts, managing vaccine distribution and so on. These contributions have been recognized by many public health agencies like the WHO and the U.S. CDC.
To serve the needs of the fight against the COVID-19 pandemic, it is critical to accelerate the publication of modeling studies on COVID-19. With the support of Mathematical Biosciences and Engineering (MBE), we initiated a special issue entitled "Modeling the Biological, Epidemiological, Immunological, Molecular, Virological Aspects of COVID-19" on January 31, 2020. By the deadline of September 1, 2020, a total of 118 formal submissions from researchers across 40 countries around the world had been received, among which 38 papers were finally accepted for publication after peer review. Among the accepted contributions, the average times from submission to acceptance, and from acceptance to publication are 43 days and 9 days, respectively. The special issue covers a wide range of topics using different modeling approaches and different data sources.
The works of Zhou et al. (doi: 10.3934/mbe.2020147), Yang and Wang (10.3934/mbe.2020148), Chang et al. (10.3934/mbe.2020178), Feng et al. (10.3934/mbe.2020204), Aldila et al. (10.3934/mbe.2020335), Wang (10.3934/mbe.2020380), and Johnston and Pell (10.3934/mbe.2020401) investigate the role of behavior change or social distancing driven by media coverage or governmental action in curtailing the spread of COVID-19. The information propagation about COVID-19 in Chinese social media during the early phase of the epidemic is modeled and analyzed by Yin et al. (10.3934/mbe.2020146). Some studies focus on evaluating the impact of non-pharmaceutical interventions such as quarantine, isolation, personal hygiene, travel restriction and city lockdown on curbing the disease spread (Dai et al., 10.3934/mbe.2020152; Tian et al., 10.3934/mbe.2020158; Saldaña et al., 10.3934/mbe.2020231; Bugalia et al., 10.3934/mbe.2020318; Yousif and Ali, 10.3934/mbe.2020412; Srivastav et al., 10.3934/mbe.2021010). Some concentrate on assessing the importance of the timing to relax or lift mobility restrictions (Santana-Cibrian et al., 10.3934/mbe.2020330; Iboi et al., 10.3934/mbe.2020369). Some authors estimate key epidemiological parameters including basic reproduction number and effective reproduction number, peak time and peak size, final size, serial interval (Liu et al., 10.3934/mbe.2020172; Wang et al., 10.3934/mbe.2020173; Zhao, 10.3934/mbe.2020198; Feng et al., 10.3934/mbe.2020205). Besides human-to-human transmission, Yang and Wang (10.3934/mbe.2020148), Rong et al. (10.3934/mbe.2020149), Saldaña et al. (10.3934/mbe.2020231), and Zhong and Wang (10.3934/mbe.2020357) also take environment-to-human transmission into consideration. Some address the effect of delay in diagnosis (Rong et al., 10.3934/mbe.2020149), lack of medical resources (Wang et al., 10.3934/mbe.2020165), difference in interventions (Xia et al., 10.3934/mbe.2020274), incoming travelers (Deeb and Jalloul, 10.3934/mbe.2020302), superspreading events (Santana-Cibrian et al., 10.3934/mbe.2020330), nosocomial infections (Martos et al., 10.3934/mbe.2020410), transient behavior after mass vaccination (Akhavan Kharazian and Magpantay, 10.3934/mbe.2021019). Two models are proposed to describe SARS-CoV-2 dynamics in infected hosts (Li et al., 10.3934/mbe.2020159; Hattaf and Yousfi, 10.3934/mbe.2020288).
Most studies are based on deterministic ordinary differential equation type models whereas partial differential equation models (Zhu and Zhu, 10.3934/mbe.2020174; Wang and Yamamoto, 10.3934/mbe.2020266), complex network model (Yang et al., 10.3934/mbe.2020248), stochastic models (He et al., 10.3934/mbe.2020153; Olabode et al., 10.3934/mbe.2021050), discrete models (He et al., 10.3934/mbe.2020153, Li et al., 10.3934/mbe.2020208), individual-based model (Martos et al., 10.3934/mbe.2020410), and statistical models (Zhao, 10.3934/mbe.2020198; Nie et al., 10.3934/mbe.2020265; Xia et al., 10.3934/mbe.2020274; Chowdhury et al., 10.3934/mbe.2020323) are developed and analyzed as well. Early studies mainly deal with COVID-19 case data from China, and later studies fit models to data from various countries and regions including the United Kingdom (Feng et al., 10.3934/mbe.2020204), South Korea (Feng et al., 10.3934/mbe.2020205; Xia et al., 10.3934/mbe.2020274), Mexico (Saldaña et al., 10.3934/mbe.2020231; Santana-Cibrian et al., 10.3934/mbe.2020330), the United States (Wang and Yamamoto, 10.3934/mbe.2020266), Lebanon (Deeb and Jalloul, 10.3934/mbe.2020302), India (Bugalia et al., 10.3934/mbe.2020318; Srivastav et al., 10.3934/mbe.2021010), Indonesia (Aldila et al., 10.3934/mbe.2020335), Nigeria (Iboi et al., 10.3934/mbe.2020369), Canada (Wang, 10.3934/mbe.2020380), Saudi Arabia (Yousif and Ali, 10.3934/mbe.2020412) and so on. Mobile terminal positioning data (Nie et al., 10.3934/mbe.2020265) and Google community mobility data (Wang and Yamamoto, 10.3934/mbe.2020266) have also been used. In addition, Costris-Vas et al. (10.3934/mbe.2020383) write a survey paper on evaluating the accuracy of various models from recent pandemics.
With the broad spectrum of topics, we believe that these 38 peer-reviewed papers could represent a significant contribution of mathematical modeling in the fight against COVID-19. In fact, they have already received considerable attention in the field. For example, the paper by Yang and Wang (10.3934/mbe.2020148) is ranked the first most read paper in MBE with 2765 article views, 4465 PDF downloads and 54 citations. We hope the readers of this special issue will find helpful information for their own research and decision-making. So far, the ongoing COVID-19 pandemic has resulted in more than 85.62 million cases including 1.85 million deaths (data source: https://coronavirus.jhu.edu/map.html). With the joint efforts of health-care workers, vaccine developers, epidemiologists, modelers, the public and others, we look forward to returning to normal life in the near future.
The guest editors sincerely appreciate all authors for their valuable contributions and all referees for their constructive feedback. The guest editors thank the Editor-in-Chief, Professor Yang Kuang, and Editor-in-Chief of Mathematics section, Professor Shigui Ruan, for their kind invitation, and the Editorial Assistants for their patience and help, and the publisher AIMS for the generous support. Finally, DG acknowledge the financial support from the NSF of China (12071300), and NSF of Shanghai (20ZR1440600 and 20JC1413800). DH was partially supported by an Alibaba (China) Co. Ltd. Collaborative Research grant.
[1] |
M. S. Rahman, M. L. Rahman, Media and education play a tremendous role in mounting aids awareness among married couples in bangladesh, AIDS Res. Ther., 4 (2007), 1–7. doi: 10.1186/1742-6405-4-1
![]() |
[2] | J. Cui, X. Tao, H. Zhu, An sis infection model incorporating media coverage, Rocky Mt. J. Math., 38 (2008), 1323–1334. |
[3] |
J. Cui, Y. Sun, H. Zhu, The impact of media on the control of infectious diseases, J. Dyn. Differ. Equ., 20 (2008), 31–53. doi: 10.1007/s10884-007-9075-0
![]() |
[4] |
L. Wang, D. Zhou, Z. Liu, D. Xu, X. Zhang, Media alert in an sis epidemic model with logistic growth, J. Biol. Dynam., 11 (2017), 120–137. doi: 10.1080/17513758.2016.1181212
![]() |
[5] |
R. Liu, J. Wu, H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases, Comput. Math. Methods Med., 8 (2007), 153–164. doi: 10.1080/17486700701425870
![]() |
[6] |
J. M. Tchuenche, N. Dube, C. P. Bhunu, R. J. Smith, C. T. Bauch, The impact of media coverage on the transmission dynamics of human influenza, BMC Public Health, 11 (2011), 1–16. doi: 10.1186/1471-2458-11-1
![]() |
[7] |
C. Sun, W. Yang, J. Arino, K. Khan, Effect of media-induced social distancing on disease transmission in a two patch setting, Math. Biosci., 230 (2011), 87–95. doi: 10.1016/j.mbs.2011.01.005
![]() |
[8] |
A. K. Misra, A. Sharma, J. B. Shukla, Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases, Math. Comput. Model., 53 (2011), 1221–1228. doi: 10.1016/j.mcm.2010.12.005
![]() |
[9] |
A. Wang, Y. Xiao, A Filippov system describing media effects on the spread of infectious diseases, Nonlinear Anal. Hybr. Syst., 11 (2014), 84–97. doi: 10.1016/j.nahs.2013.06.005
![]() |
[10] |
Y. Xiao, X. Xu, S. Tang, Sliding mode control of outbreaks of emerging infectious diseases, Bull. Math. Biol., 74 (2012), 2403–2422. doi: 10.1007/s11538-012-9758-5
![]() |
[11] | R. Gallotti, F. Valle, N. Castaldo, Assessing the risks of "infodemics" in response to COVID-19 epidemics, Nat. Hum. Behav., (2020). |
[12] |
Y. Zhao, L. Zhang, S. Yuan, The effect of media coverage on threshold dynamics for a stochastic SIS epidemic model, Phys. A, 512 (2018), 248–260. doi: 10.1016/j.physa.2018.08.113
![]() |
[13] |
A. C. Lowen, J. Steel, Roles of humidity and temperature in shaping in uenza seasonality, J. Virol., 88 (2014), 7692–7695. doi: 10.1128/JVI.03544-13
![]() |
[14] | I. Bashkirtseva, L. Ryashko, Sensitivity analysis of stochastic attractors and noise-induced transitions for population model with allee effect, Chaos, 21 (2011), 047514. |
[15] |
I. Bashkirtseva, L. Ryashko, Stochastic sensitivity analysis of noise-induced excitement in a prey–predator plankton system, Front. Life Sci., 5 (2011), 141–148. doi: 10.1080/21553769.2012.702666
![]() |
[16] | I. Bashkirtseva, L. Ryashko, Stochastic bifurcations and noise-induced chaos in a dynamic prey–predator plankton system, Int. J. Bifurcat. Chaos, 24 (2014), 1450109. |
[17] | X. Yu, S. Yuan, Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbation, Discrete Cont. Dyn. B, 25 (2020), 2373–2390. |
[18] |
S. Zhao, S. Yuan, H. Wang, Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation, J. Differ. Equations, 268 (2020), 5113–5139. doi: 10.1016/j.jde.2019.11.004
![]() |
[19] |
X. Yu, S. Yuan, T. Zhang, Asymptotic properties of stochastic nutrient-plankton food chain models with nutrient recycling, Nonlinear Anal.-Hybri., 34 (2019), 209–225. doi: 10.1016/j.nahs.2019.06.005
![]() |
[20] | C. Xu, S. Yuan, T. Zhang, Average break-even concentration in a simple chemostat model with telegraph noise, Nonlinear Anal.-Hybri. 29 (2018), 373–382. |
[21] |
C. Xu, S. Yuan, Competition in the chemostat: A stochastic multi-species model and its asymptotic behavior, Math. Biosci., 280 (2016), 1–9. doi: 10.1016/j.mbs.2016.07.008
![]() |
[22] | C. Xu, S. Yuan, T. Zhang, Competitive exclusion in a general multi-species chemostat model with stochastic perturbations, Bull. Math. Biol., DOI: 10.1007/s11538-020-00843-7. |
[23] |
Y. Zhao, S. Yuan, J. Ma, Survival and stationary distribution analysis of a stochastic competitive model of three species in a polluted environment, Bull. Math. Biol., 77 (2015), 1285–1326. doi: 10.1007/s11538-015-0086-4
![]() |
[24] |
D. Wu, H. Wang, S. Yuan, Stochastic sensitivity analysis of noise-induced transitions in a predator-prey model with environmental toxins, Math. Biosci. Eng., 16 (2019), 2141–2153. doi: 10.3934/mbe.2019104
![]() |
[25] | C. Xu, S. Yuan, T. Zhang, Stochastic sensitivity analysis for a competitive turbidostat model with inhibitory nutrients, Int. J. Bifurcat. Chaos, 26 (2016), 707–723. |
[26] | L. Gammaitoni, P. Jung, F. Marchesoni, Stochastic resonance, Rev. Mod. Phys., 70 (1998), 223. |
[27] | W. Horsthemke, Noise induced transitions, Non-Equi. Dyna. Chem. Sys., (1984), 150–160. |
[28] | K. Matsumoto, I. Tsuda, Noise-induced order, J. Stat. Phys., 31 (1983), 87–106. |
[29] | J. Gao, S. Hwang, J. Liu, When can noise induce chaos? Phys. Rev. Lett., 82 (1999), 1132–1135. |
[30] | M. A. Zaks, X. Sailer, L. S. Geier, A. Neiman, Noise induced complexity: From subthreshold oscillations to spiking in coupled excitable systems, Chaos, 15 (2005), 026117. |
[31] | S. Kim, S. H. Park, C. S. Ryu, Colored-noise-induced multistability in nonequilibrium phase transitions, Phys. Rev. E, 58 (1998), 7994-7997. |
[32] |
S. L. Souza, A. M. Batista, I. L. Caldas, R. L. Viana, T. Kapitaniak, Noise-induced basin hopping in a vibro-impact system, Chaos Soliton. Fract., 32 (2007), 758–767. doi: 10.1016/j.chaos.2005.11.056
![]() |
[33] |
M. I. Dykman, R. Mannella, P. V. E. McClintock, N. Stocks, Fluctuation-induced transitions between periodic attractors: Observation of supernarrow spectral peaks near a kinetic phase transition, Phys. Rev. Lett., 65 (1990), 48–51. doi: 10.1103/PhysRevLett.65.48
![]() |
[34] | S. Yuan, D. Wu, G. Lan, H. Wang, Noise-induced transitions in a nonsmooth producer-grazer model with stoichiometric constraints, Bull. Math. Biol., 82 (2020), 55. |
[35] | S. Kraut, U. Feudel, Multistability, noise, and attractor hopping: The crucial role of chaotic saddles, Phys. Rev. E, 66 (2002), 015207. |
[36] | I. Bashkirtseva, L. Ryashko, I.Tsvetkov, Sensitivity analysis of stochastic equilibria and cycles for the discrete dynamic systems, Dyna. Cont. Dis. Imp. Syst., 17 (2010), 501–515. |
[37] | I. Bashkirtseva, T. Ryazanova, L. Ryashko, Confidence domains in the analysis of noiseinduced transition to chaos for Goodwin model of business cycles, Int. J. Bifurc. Chaos, 24 (2014), 1440020. |
1. | Qu Qinqin, Gao Chao, Qiu Lei, Liu Yue, 2019, Congestion control strategy for power scale-free communication network by link addition, 978-1-7281-0510-9, 1714, 10.1109/ICEMI46757.2019.9101412 |