[1]
|
E. B. Claus, K. M. Walsh, J. K. Wiencke, A. M. Molinaro, J. L. Wiemels, J. M. Schildkraut, et al., Survival and low-grade glioma: the emergence of genetic information, Neurosurg. Focus, 38 (2015), E6.
|
[2]
|
K. Lote, T. Egeland, B. Hager, B. Stenwig, K. Skullerud, J. Berg-Johnsen, et al., Survival, prognostic factors, and therapeutic efficacy in low-grade glioma: a retrospective study in 379 patients, J. Clin. Oncol., 15 (1997), 3129–3140.
|
[3]
|
D. Schiff, P. D. Brown, C. Giannini, Outcome in adult low-grade glioma: the impact of prognostic factors and treatment, Neurology, 69 (2007), 1366–1373. doi: 10.1212/01.wnl.0000277271.47601.a1
|
[4]
|
Z. P. Liang, P. C. Lauterbur, Principles of Magnetic Resonance Imaging: A Signal Processing Perspective, SPIE Optical Engineering Press, 2000.
|
[5]
|
F. Pignatti, M. V. Den Bent, D. Curran, C. Debruyne, R. Sylvester, P. Therasse, et al., Prognostic factors for survival in adult patients with cerebral low-grade glioma, J. Clin. Oncol., 20 (2002), 2076–2084.
|
[6]
|
T. C. Wang, Y. H. Huang, C. S. Huang, J. H. Chen, G. Y. Huang, Y. C. Chang et al., Computeraided diagnosis of breast dce-mri using pharmacokinetic model and 3-d morphology analysis, Magn. Reson. Imaging, 32 (2014), 197–205.
|
[7]
|
R. R. Agravat, M. S. Raval, Prediction of overall survival of brain tumor patients, TENCON 2019-2019 IEEE Region 10 Conference (TENCON), 2019.
|
[8]
|
Z. A. Shboul, L. Vidyaratne, M. Alam, K. M. Iftekharuddin, Glioblastoma and survival prediction, International MICCAI Brainlesion Workshop, 2017.
|
[9]
|
A. Jungo, R. Mckinley, R. Meier, U. Knecht, L. Vera, J. Perez-Beteta, et al., Towards uncertaintyassisted brain tumor segmentation and survival prediction, International MICCAI Brainlesion Workshop, 2017.
|
[10]
|
J. Sachdeva, V. Kumar, I. Gupta, N. Khandelwal, C. K. Ahuja, Segmentation, feature extraction, and multiclass brain tumor classification, J. Digital Imaging, 26 (2013), 1141–1150. doi: 10.1007/s10278-013-9600-0
|
[11]
|
L. Chato, S. Latifi, Machine learning and deep learning techniques to predict overall survival of brain tumor patients using mri images, in 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE), 2017.
|
[12]
|
S. D. Kahn, On the future of genomic data, Science, 331 (2011), 728–729. doi: 10.1126/science.1197891
|
[13]
|
H. J. Aerts, E. R. Velazquez, R. T. Leijenaar, C. Parmar, P. Lambin, Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach, Nat. Commun., 5 (2014), 1–9.
|
[14]
|
P. Grossmann, O. Stringfield, N. El-Hachem, M. M. Bui, E. R. Velazquez, C. Parmar, et al., Defining the biological basis of radiomic phenotypes in lung cancer, Elife, 6 (2017), e23421. doi: 10.7554/eLife.23421
|
[15]
|
W. Xia, Y. Chen, R. Zhang, Z. Yan, X. Zhou, B. Zhang, et al., Radiogenomics of hepatocellular carcinoma: multiregion analysis-based identification of prognostic imaging biomarkers by integrating gene data—a preliminary study, Phys. Med. Biol., 63 (2018), 035044.
|
[16]
|
S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. Kirby, et al., Segmentation labels and radiomic features for the pre-operative scans of the tcga-lgg collection, Cancer Imaging Arch., 286 (2017).
|
[17]
|
S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. Kirby, et al., Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features, Sci. Data, 4 (2017), 170117.
|
[18]
|
K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, et al., The cancer imaging archive (tcia): Maintaining and operating a public information repository, J. Digital Imaging, 26 (2013), 1045–1057.
|
[19]
|
P. Langfelder, S. Horvath, Wgcna: an r package for weighted correlation network analysis, BMC Bioinf., 9 (2008), 559.
|
[20]
|
M. Fan, P. Xia, B. Liu, L. Zhang, Y. Wang, X. Gao, et al., Tumour heterogeneity revealed by unsupervised decomposition of dynamic contrast-enhanced magnetic resonance imaging is associated with underlying gene expression patterns and poor survival in breast cancer patients, Breast Cancer Res., 21 (2019), 112.
|
[21]
|
D. R. Cox, Regression models and life tables, J. R. Stat. Soc., 34 (1972), 187–202.
|
[22]
|
F. E. Harrell Jr, K. L. Lee, D. B. Mark, Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors, Stat. Med., 15 (1996), 361–387.
|
[23]
|
F. Santosa, W. W. Symes, Linear inversion of band-limited reflection seismograms, SIAM J. Sci. Stat. Comput., 7 (1986), 1307–1330. doi: 10.1137/0907087
|
[24]
|
R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B Methodol., 58 (1996), 267–288.
|
[25]
|
C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn., 20 (1995), 273–297.
|
[26]
|
N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines and Other KernelBased Learning Methods, Cambridge university press, 2000.
|
[27]
|
R. E. Fan, P. H. Chen, C. J. Lin, Working set selection using second order information for training support vector machines, J. Mach. Learn. Res., 6 (2005), 1889–1918.
|
[28]
|
I. Guyon, A. J. Weston, S. Barnhill, V. Vapnik, Gene selection for cancer classification using svm, Mach. Learn. J., 46 (2002), 389–422. doi: 10.1023/A:1012487302797
|
[29]
|
J. Kennedy, R. Eberhart, Particle swarm optimization, Proceedings of ICNN'95-International Conference on Neural Networks, 1995.
|
[30]
|
Y. Zhou, B. Zhou, L. Pache, M. Chang, A. H. Khodabakhshi, O. Tanaseichuk, et al., Metascape provides a biologist-oriented resource for the analysis of systems-level datasets, Nat. Commun., 10 (2019), 1–10.
|
[31]
|
J. Pal, V. Patil, A. Kumar, K. Kaur, C. Sarkar, K. Somasundaram, Genetic landscape of glioma reveals defective neuroactive ligand receptor interaction pathway as a poor prognosticator in glioblastoma patients, AACR, 77 (2017), 2454–2454.
|
[32]
|
R. Wang, J. Wei, Z. Li, Y. Tian, C. Du, Bioinformatical analysis of gene expression signatures of different glioma subtypes, Oncol. Lett., 15 (2018), 2807–2814.
|
[33]
|
P. J. Heagerty, T. Lumley, M. S. Pepe, Time-dependent roc curves for censored survival data and a diagnostic marker, Biometrics, 56 (2000), 337–344. doi: 10.1111/j.0006-341X.2000.00337.x
|