
Citation: Jianzhong Shi, Ying Song. Mathematical analysis of a simplified general type-2 fuzzy PID controller[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7994-8036. doi: 10.3934/mbe.2020406
[1] | Yong Xiong, Lin Pan, Min Xiao, Han Xiao . Motion control and path optimization of intelligent AUV using fuzzy adaptive PID and improved genetic algorithm. Mathematical Biosciences and Engineering, 2023, 20(5): 9208-9245. doi: 10.3934/mbe.2023404 |
[2] | Yongqiang Yao, Nan Ma, Cheng Wang, Zhixuan Wu, Cheng Xu, Jin Zhang . Research and implementation of variable-domain fuzzy PID intelligent control method based on Q-Learning for self-driving in complex scenarios. Mathematical Biosciences and Engineering, 2023, 20(3): 6016-6029. doi: 10.3934/mbe.2023260 |
[3] | Chaoyue Wang, Zhiyao Ma, Shaocheng Tong . Adaptive fuzzy output-feedback event-triggered control for fractional-order nonlinear system. Mathematical Biosciences and Engineering, 2022, 19(12): 12334-12352. doi: 10.3934/mbe.2022575 |
[4] | Colella Ylenia, De Lauri Chiara, Improta Giovanni, Rossano Lucia, Vecchione Donatella, Spinosa Tiziana, Giordano Vincenzo, Verdoliva Ciro, Santini Stefania . A Clinical Decision Support System based on fuzzy rules and classification algorithms for monitoring the physiological parameters of type-2 diabetic patients. Mathematical Biosciences and Engineering, 2021, 18(3): 2654-2674. doi: 10.3934/mbe.2021135 |
[5] | Muhammad Akram, Ayesha Khan, Uzma Ahmad, José Carlos R. Alcantud, Mohammed M. Ali Al-Shamiri . A new group decision-making framework based on 2-tuple linguistic complex $ q $-rung picture fuzzy sets. Mathematical Biosciences and Engineering, 2022, 19(11): 11281-11323. doi: 10.3934/mbe.2022526 |
[6] | Liang Liu, Wen Chen, Lei Zhang, JiaYong Liu, Jian Qin . A type of block withholding delay attack and the countermeasure based on type-2 fuzzy inference. Mathematical Biosciences and Engineering, 2020, 17(1): 309-327. doi: 10.3934/mbe.2020017 |
[7] | Sumera Naz, Muhammad Akram, Mohammed M. Ali Al-Shamiri, Mohammed M. Khalaf, Gohar Yousaf . A new MAGDM method with 2-tuple linguistic bipolar fuzzy Heronian mean operators. Mathematical Biosciences and Engineering, 2022, 19(4): 3843-3878. doi: 10.3934/mbe.2022177 |
[8] | Kangsen Huang, Zimin Wang . Research on robust fuzzy logic sliding mode control of Two-DOF intelligent underwater manipulators. Mathematical Biosciences and Engineering, 2023, 20(9): 16279-16303. doi: 10.3934/mbe.2023727 |
[9] | Muhammad Akram, Tayyaba Ihsan, Tofigh Allahviranloo, Mohammed M. Ali Al-Shamiri . Analysis on determining the solution of fourth-order fuzzy initial value problem with Laplace operator. Mathematical Biosciences and Engineering, 2022, 19(12): 11868-11902. doi: 10.3934/mbe.2022554 |
[10] | Xueyan Wang . A fuzzy neural network-based automatic fault diagnosis method for permanent magnet synchronous generators. Mathematical Biosciences and Engineering, 2023, 20(5): 8933-8953. doi: 10.3934/mbe.2023392 |
In real control problems, there exited many uncertainties, like model structure, measurement, external disturbance and so on, tradition PID and type-1 fuzzy controller can’t deal with these uncertainties [1,2,3,4,5]. Type-2 fuzzy controller can handle uncertainties more robust than PID and type-1 fuzzy controller for it was described by type-2 fuzzy sets proposed by Zadeh in 1975 [6]. Type-2 fuzzy sets mainly included interval type-2 fuzzy sets whose secondary membership degree was 1 and general type-2 fuzzy sets whose secondary membership degree was decided by a function, such as triangular, Gaussian, trapezoid. As the secondary membership degree of interval type-2 fuzzy sets was 1, so it was easily to be implemented and Karnik-Mendel (KM) algorithm was the most widely applied type reduction for interval type-2 fuzzy sets [7]. Interval type-2 fuzzy logic systems has been applied in many applications, like face recognition [8], prediction problems [9,10,11], pattern recognition [12], clustering [13], intelligent control [14], industrial [15], neuro-fuzzy systems [16], interval type-2 fuzzy PID controller [17,18], sculpting the state space [19], peer-to-peer e-commerce [20], classification [21,22], regression [23], diagnosis problems [24], metaheuristics [25], gravitational search algorithm [26], healthcare problem [27], unmanned aerial vehicles [28], deep neural network [29], pursuit evasion game [30], analytical structure of interval type-2 fuzzy controller [31,32,33] and so on.
As the secondary membership degree of general type-2 fuzzy sets was determined by a function rather than 1, so general type-2 fuzzy sets contained more uncertain information than interval type-2 fuzzy sets. And general type-2 fuzzy logic systems had more design parameters when describing reality. Thus, general type-2 fuzzy systems can obtain a better performance in some control systems with high uncertainties. Now there existed some efficient type reduction algorithms for general type-2 fuzzy sets, for example, α-plane representation method [34,35,36], zSlices-based representation method [37,38], sample method [39], geometric method [40,41], hierarchical collapsing method [42] and so on. In these algorithms, α-plane representation method was widely applied in general type-2 fuzzy sets type reduction. By α-plane representation, general type-2 fuzzy sets will be assembled by some interval type-2 fuzzy sets (α-planes). Some exiting interval type-2 fuzzy sets type reduction algorithms can be applied to these α-planes, like KM, EKM [46], IASC [47] or EIASC [48]. General type-2 fuzzy logic systems have been applied in many situations, like: mobile robots [38,46,47,48,49,50,51], water tank [52], traffic signal scheduling [53], inverted pendulum plant [54], 5-agents system [55], nonlinear power systems [56], water level and DC motor speed [57], aerospace [58], airplane flight [59], steam temperature [60], power-line inspection robots [61,62], fractional order general type-2 fuzzy controller [63,64], medical diagnosis [65,66,67], fuzzy classifier and clustering [68,69], sculpting the state space [70], similarity measures [71], forecasting [72], brain-machine interface [73] and so on. [74,75,76] made a detailed introduction on type 2 fuzzy logic applications.
The type reduction of general type-2 fuzzy sets was converted to type reduction of several interval type-2 fuzzy sets. And KM type reduction algorithm was applied to these interval type-2 fuzzy sets in most applications. KM algorithm was an iterative process without analytic solution. The number of α-planes and iterative process of KM algorithm decided the execution time of general type-2 fuzzy sets type reduction. Thus the real time of general type-2 fuzzy controller was weaker than type-1 and interval type-2 fuzzy controller. In according with these problems, a simplified general type-2 fuzzy PID (SGT2F-PID) controller is studied. The SGT2F-PID controller applies triangular function as the primary and secondary membership function. The inputs of SGT2F-PID controller are error and error derivative, and each input defines 2 fuzzy membership functions in fuzzy domains, thus only 4 rules will be derived in this SGT2F-PID controller. This paper mainly contains the following 3 contributions:
Ⅰ). The primary membership degree of apex for secondary membership degree is applied to get the centroid of SGT2F-PID controller. Then the real time of SGT2F-PID controller is almost the same as conventional type-1 fuzzy PID (T1F-PID) controller and better than interval and general type-2 fuzzy PID controller.
Ⅱ). The primary membership degree of apex for secondary membership degree is decided by the up and low bounds of footprint of uncurtains, which inherits the benefits of type-2 fuzzy PID controller. So the SGT2F-PID controller contains more design freedom and handles uncertainties better than PID or type-1 fuzzy PID controller.
Ⅲ). The accurate mathematical expression of SGT2F-PID controller is obtained and compared with mathematical expressions of interval type-2 fuzzy PID controller (IT2F-PID) and conventional T1F-PID controller. The mathematical expressions indicate that these 3 fuzzy PID controllers are all PID type controller. Furthermore, we obtain the relationship of controller gains and explain why SGT2F-PID controller can get better controlling effects.
A type-1 fuzzy set in the universe X is characterized by a membership function μA(x) as Eq (1).
A={(x,μA(x))|x∈X} | (1) |
where
A general type-2 fuzzy sets
˜A={(x,u),μ˜A(x,u)|∀x∈X,∀u∈[0,1]} | (2) |
u is the primary membership degree and
If the secondary membership degrees
˜A={(x,u),1|∀x∈X,∀u∈[0,1]} | (3) |
Figure 1 shows the definition of type-1 fuzzy sets, interval type-2 fuzzy sets and general type-2 fuzzy sets whose secondary membership function is triangular.
Liu introduced an α-plane representation for general type-2 fuzz sets [34], and pointed that α-plane denoted as
˜Aα={(x,u),μ˜A(x,u)⩾α|∀x∈X,∀u∈[0,1],0⩽α⩽1} | (4) |
If assemble all α-planes
˜A=⋃α∈[0,1]FOU(˜Aα) | (5) |
The centroid of general type-2 fuzzy sets can be calculated by the centroids of its all α-planes
C˜A(x)=⋃α∈[0,1]α/C˜Aα(x) | (6) |
C˜Aα(x)=[l˜Aα,r˜Aα] | (7) |
The general structure of fuzzy PID controller can be depicted as Figure 2 [76]. The antecedent parts can be type-1, interval type-2 or general type-2 fuzzy sets and the consequent parameters are crisp values.
In this paper, triangular primary function is applied. The inputs of general type-2 fuzzy PID controller are normalize error (E) defined in [-de-d1, de+d1] and error derivative (
The consequent parameters are symmetric and from Figure 3, 4 rules will be generated as follows, here H1 > H2 > -H2 > -H1.
Rule 1: If
Rule 2: If
Rule 3: If
Rule 4: If
Around the steady state, that is in interval [-de+d1, de-d1] for error and
{ˉμ˜PE=E+de+d12×deμ−˜PE=E+de−d12×de | (8) |
{ˉμ˜NE=de+d1−E2×deμ−˜NE=de−d1−E2×de | (9) |
{ˉμ˜P˙E=˙E+d˙e+d22×d˙eμ−˜P˙E=˙E+d˙e−d22×d˙e | (10) |
{ˉμ˜N˙E=d˙e+d2−˙E2×d˙eμ−˜N˙E=d˙e−d2−˙E2×d˙e | (11) |
By fuzzy inference of interval type-2 fuzzy logic systems and product operation, the fired membership degrees of fuzzy rules can be described as Eq (12).
Rule 1: [ˉf1,f−1]=[ˉμ˜N˙E×ˉμ˜NE,μ−˜N˙E×μ−˜NE] | (12.1) |
Rule 2: [ˉf2,f−2]=[ˉμ˜P˙E×ˉμ˜NE,μ−˜P˙E×μ−˜NE] | (12.1) |
Rule 3: [ˉf3,f−3]=[ˉμ˜N˙E×ˉμ˜PE,μ−˜N˙E×μ−˜PE] | (12.1) |
Rule 4: [ˉf4,f−4]=[ˉμ˜P˙E×ˉμ˜PE,μ−˜P˙E×μ−˜PE] | (12.1) |
The triangular membership function of type-1 fuzzy PID controller is depicted as Figure 4, also for simplify,
In interval [-de, de] for error and
μPE=E+de2×de | (13) |
μNE=−E+de2×de | (14) |
μP˙E=˙E+d˙e2×d˙e | (15) |
μN˙E=−˙E+d˙e2×d˙e | (16) |
So the fired membership degrees of fuzzy rules for type-1 fuzzy PID controller can be described as Eq (17).
Rule 1: f1=μN˙E×μNE | (17.1) |
Rule 2: f2=μP˙E×μNE | (17.1) |
Rule 3: f3=μN˙E×μPE | (17.1) |
Rule 4: f4=μP˙E×μPE | (17.1) |
Figure 5 shows an example of membership degrees for fuzzy rules corresponding to consequent parameters using TIF-PID.
From Figure 5 and defuzzification process of type-1 fuzzy sets, the output of type-1 fuzzy inference U(t) in Figure 2 can be calculated as Eq (18).
UT1=4∑i=1fi×yi4∑i=1fi | (18) |
where, fi is described as Eq (17) and yi = [-H1, -H2, H2, H1]. By the mathematical expression of Eqs (13–17) and yi, the final solution of UT1 can be expressed as Eq (19).
UT1=(H1−H2)×˙E+(H1+H2)×E2de=(H1−H2)×GCE×˙e+(H1+H2)×GE×e2de | (19) |
According to Eq (19) and Figure 2, the final output of T1F-PID controller can be expressed as Eq (20).
uT1=GPD×UT1+GPI×∫UT1 | (20) |
Combine Eq (19) and Eq (20), the output of T1F-PID controller is a PID type controller as Eq (21).
uT1=KT1P×e+KT1I×∫e+KT1D×˙e | (21) |
where:
KT1P=GPD(H1+H2)×GE+GPI(H1−H2)×GCE2de |
KT1I=GPI(H1+H2)×GE2de |
KT1D=GPD(H1−H2)×GCE2de |
Figure 6 shows the shape of control surface of type-1 fuzzy controller, here H1 = 1 and H2 = 0.
For KM algorithm didn’t have analytic solution, so NT type reduction [78,79] algorithm will be applied to get the mathematical expression of IT2F-PID controller. Figure 7 shows an example of upper and lower bounds for fuzzy rules corresponding to consequent parameters using IT2F-PID controller.
From Figure 7, by defuzzification process and NT algorithm, the output of interval type-2 fuzzy inference U(t) in Figure 2 can be calculated as Eq (22).
UIT2=4∑i=1(f−i+ˉfi)×yi4∑i=1(f−i+ˉfi) | (22) |
where,
UIT2=de[(H1−H2)˙E+(H1+H2)E]2(de2+d12)=de[(H1−H2)GCE×˙e+(H1+H2)GE×e]2(de2+d12) | (23) |
According to Eq (23) and Figure 2, the final output of IT2F-PID controller can be expressed as Equation (24).
uIT2=GPD×UIT2+GPI×∫UIT2 | (24) |
Combine Eq (23) and Eq (24), the output of IT2F-PID controller can be calculated as Eq (25).
uIT2=KIT2P×e+KIT2I×∫e+KIT2D×˙e | (25) |
where:
KIT2P=de×[GPD(H1+H2)×GE+GPI(H1−H2)×GCE]2(de2+d12) |
KIT2I=de×GPI(H1+H2)×GE2(de2+d12) |
KIT2D=de×GPD(H1−H2)×GCE2(de2+d12) |
Figure 8 shows the shape of control surface of interval type-2 fuzzy controller, here H1 = 1 and H2 = 0.
For type reduction of general type-2 fuzzy sets was converted to type reduction of several interval type-2 fuzzy sets, so the number of α-planes will affect the real time of GT2F-PID controller.
Figure 9 shows an example of membership degrees for fuzzy rules corresponding to consequent parameters using GT2F-PID controller.
The differences of GT2F-PID and SGT2F-PID controller can be seen from Figure 10.
From Figure 10, GT2F-PID controller firstly fixes the number of α-planes, that is D. Then derives D intervals
In this paper, the SGT2F-PID controller adapts the primary membership degree of α-plane (α = 1) as the membership degree of fuzzy rules, which is calculated as Eq (26).
fi(1)=f−i+w(ˉfi−f−i) | (26) |
here, w is an adjustable parameter.
The output of simplified general type-2 fuzzy inference U(t) in Figure 2 can be calculated as Equation (27).
USGT2=4∑i=1fi(1)×yi4∑i=1fi(1)=4∑i=1(f−i+w(ˉfi−f−i))×yi4∑i=1(f−i+w(ˉfi−f−i)) | (27) |
where,
USGT2=(de−d1+2d1×w)[(H1−H2)˙E+(H1+H2)E]2(de2−2de×d1+d12+4de×d1×w)=(de−d1+2d1×w)[(H1−H2)GCE×˙e+(H1+H2)GE×e]2(de2−2de×d1+d12+4de×d1×w) | (28) |
According to Eq (28) and Figure 2, the final output of SGT2F-PID controller can be expressed as Eq (29).
uSGT2=GPD×USGT2+GPI×∫USGT2 | (29) |
Combine Eq (28) and Eq (29), the output of SGT2F-PID controller can be calculated as Eq (30).
uSGT2=KSGT2P×e+KSGT2I×∫e+KSGT2D×˙e | (30) |
where:
KSGT2P=(de−d1+2d1×w)×[GPD(H1+H2)×GE+GPI(H1−H2)×GCE]2(de2−2de×d1+d12+4de×d1×w) |
KSGT2I=(de−d1+2d1×w)×GPI(H1+H2)×GE2(de2−2de×d1+d12+4de×d1×w) |
KSGT2D=(de−d1+2d1×w)×GPD(H1−H2)×GCE2(de2−2de×d1+d12+4de×d1×w) |
Figure 11 shows the shape of control surface of simplified general type-2 fuzzy controller, here H1 = 1, H2 = 0 and w = 0.
From the control surface curve of T1-FPID, IT2-FPID and SGT2-FPID controller, when the system error is near the endpoint, the output of SGT2-FPID controller is larger than T1-FPID and IT2-FPID, so the SGT2-FPID controller has the faster rising time. When the error is near zero, the output of SGT2-FPID controller is smoother than T1-FPID and IT2-FPID, so the SGT2-FPID controller has faster steady time and smaller overshoot.
In summary, the unified T1-FPID, IT2F-PID and SGT2F-PID controller mathematical expressions can be indicated as Eq (31).
uFPID=K(GPD(H1+H2)×GE+GPI(H1−H2)×GCE)×e+KGPI(H1+H2)GE×∫e+KGPD(H1−H2)×GCE×˙e | (31) |
where:
KT1=12de | (32.1) |
KIT2=de2(de2+d12) | (32.2) |
KSGT2=(de−d1+2d1×w)2(de2−2de×d1+d12+4de×d1×w) | (32.3) |
If calculate the derivative of KSGT2 to w, then the partial derivative is Eq (33).
∂KSGT2∂w=−d1(de2−d12)(de2−2dede12+4ded1w)2<0 | (33) |
From Eq (33), KSGT2 is a decreasing function of w and in general, w is in range [0, 1]. So the ranges of KSGT2 is denoted as Eq (34).
{KminSGT2=12(de+d1),w=1KmaxSGT2=12(de−d1),w=0 | (34) |
For de > d1, so,
when w = w1, KSGT2 = KT1 and w = w2, KSGT2 = KIT2, then w1 = (de-d1)/(2de) and w2 = 0.5.
According to the characteristics of PID controller, the advantage of proportional action is timely. If increase proportional gain, then the system response speed will be enhanced (that is reducing the rising time and steady time) but the system overshoot will be increased. The integral action can eliminate static error, if increase integral gain, the system overshoot will be decreased. The differential action also has the advantage of timely, which is belonging to ‘future control’. If increase differential gain, the steady time and system overshoot will be reduced.
From above analysis, if a control system maintains both faster response speed and smaller overshoot, the PID controller should chose larger proportional gain, integral gain and differential gain. Figure 12 shows that if w < w1, then the proportional gain, integral gain and differential gain of SGTF-PID are larger than T1F-PID and IT2F-PID.Thus the controlling efforts of SGTF-PID will be better than T1F-PID and IT2F-PID, which is proved by section 5 of four simulation examples.
In simulations, 3 plants and a practical inverted pendulum system are tested to demonstrate the robustness and efficiency of SGT2F-PID. The controlling efforts of SGTF-PID are also compared with PID, T1F-PID, and IT2F-PID controller using NT type reduction algorithm.
G(s)=1s2+2ζωns+ω2ne−Ls | (35) |
The tuning PID controller parameters are KP = 0.4088, KI = 0.1084, KD = 0.3547 under case 1 plant parameters. Fuzzy PID controller parameters are GE = 0.7757, GCE = 0.7442, GPD = 3.5336, GPI = 0.6996,
Case 1: ζ = 1.125, ωn = 0.45, L = 0.4.
Case 2: ζ = 1.6875, ωn = 0.225, L = 0.4.
Case 3: ζ = 0.5624, ωn = 0.675, L = 0.4.
Case 4: ζ = 1.6875, ωn = 0.675, L = 0.6.
Table 1 summarizes some controlling performance comparisons of SGT2F-PID controller with other 3 controllers. In Table 1, ts is steady state time, tris rising time, OS is system overshoot and three error integral criterions ISE, ITSE, ITAE.
ISE=∫ts0e(t)2dt |
ITSE=∫ts0t×e(t)2dt |
ITAE=∫ts0t×|e(t)|dt |
P1 | PID | T1F-PID | IT2F-PID | SGT2F-PID | ||
case 1 | ts(s) | 12.3 | 6.1 | 6.69 | 4.96 | |
tr(s) | 5.05 | 2.01 | 2.3 | 2.07 | ||
OS (%) | 5.1 | 22.2 | 19.1 | 14.9 | ||
ISE | 1.44 | 1.15 | 1.24 | 1.13 | ||
ITSE | 1.49 | 0.84 | 0.96 | 0.74 | ||
ITAE | 5.37 | 2.23 | 2.53 | 1.58 | ||
case 2 | ts(s) | 17.68 | 8.5 | 9.3 | 7.01 | |
tr(s) | 3.18 | 1.84 | 2.07 | 1.88 | ||
OS (%) | 29.8 | 39.2 | 35.1 | 28.0 | ||
ISE | 1.59 | 1.26 | 1.32 | 1.15 | ||
ITSE | 3.27 | 1.26 | 1.35 | 0.87 | ||
ITAE | 14.77 | 4.07 | 4.49 | 2.55 | ||
Case3 | ts(s) | > 20 | 9.18 | 9.72 | 7.95 | |
tr(s) | > 20 | 1.94 | 2.25 | 2.01 | ||
OS (%) | - | 17.8 | 11.7 | 11.0 | ||
ISE | 1.74 | 1.13 | 1.21 | 1.11 | ||
ITSE | 3.78 | 0.86 | 0.93 | 0.76 | ||
ITAE | 20.26 | 2.98 | 3.04 | 2.27 | ||
case 4 | ts(s) | > 20 | 8.85 | 9.61 | 8.0 | |
tr(s) | 12.06 | 3.05 | 3.59 | 3.06 | ||
OS (%) | 2.3 | 9.9 | 9.9 | 7.1 | ||
ISE | 2.67 | 1.47 | 1.61 | 1.46 | ||
ITSE | 5.73 | 1.30 | 1.60 | 1.23 | ||
ITAE | 17.08 | 3.87 | 4.77 | 3.10 |
G(s)=KTs−1e−Ls | (36) |
The tuning PID controller parameters are KP = 9.999, KI = 0.9483, KD = 0.2785 under case 1 plant parameters. Fuzzy PID controller parameters are GE = 1.9956, GCE = 0.9387, GPD = 0.2532, GPI = 20.0573,
Case 1: K = 1, T = 10, L = 0.2.
Case 2: K = 1, T = 10, L = 0.4.
Case 3: K = 1, T = 20, L = 0.2.
Case 4: K = 2, T = 20, L = 0.35.
Table 2. shows the P2 controlling performance comparisons of SGT2F-PID controller with other 3 controllers.
P2 | PID | T1F-PID | IT2F-PID | SGT2F-PID | ||
case 1 | ts(s) | 22.9 | 9.36 | 10.49 | 3.94 | |
tr(s) | 1.78 | 2.0 | 2.31 | 2.49 | ||
OS (%) | 16.7 | 27.9 | 28.2 | 5.2 | ||
ISE | 0.71 | 1.09 | 1.23 | 1.09 | ||
ITSE | 1.53 | 0.96 | 1.23 | 0.72 | ||
ITAE | 16.02 | 3.62 | 4.70 | 1.37 | ||
case 2 | ts(s) | 22.71 | 13.44 | 14.91 | 9.72 | |
tr(s) | 1.56 | 1.95 | 2.2 | 2.14 | ||
OS (%) | 19.1 | 44.9 | 46.9 | 30.5 | ||
ISE | 0.90 | 1.44 | 1.60 | 1.26 | ||
ITSE | 1.64 | 1.92 | 2.51 | 1.10 | ||
ITAE | 15.86 | 7.56 | 10.00 | 3.77 | ||
case 3 | ts(s) | 26.3 | 18.33 | 19.76 | 8.14 | |
tr(s) | 3.37 | 2.62 | 3.01 | 2.96 | ||
OS (%) | 20.4 | 43.5 | 40.04 | 17.01 | ||
ISE | 1.27 | 1.78 | 1.91 | 1.44 | ||
ITSE | 4.13 | 3.63 | 4.02 | 1.36 | ||
ITAE | 29.76 | 15.44 | 17.88 | 3.69 | ||
case 4 | ts(s) | 20.94 | 9.25 | 12.28 | 5.68 | |
tr(s) | 1.71 | 1.98 | 2.27 | 2.25 | ||
OS (%) | 12.8 | 35.3 | 36.2 | 16.7 | ||
ISE | 0.75 | 1.27 | 1.41 | 1.17 | ||
ITSE | 0.96 | 1.30 | 1.65 | 0.82 | ||
ITAE | 11.26 | 4.60 | 6.28 | 1.84 |
d2y(t)dt2+2εσdy(t)dt+σ2y2(t)=σ2u(t−L) | (37) |
PID controller parameters are KP = 0.8028, KI = 1.8548, KD = 0.4609 selected from article [1] optimized by hybridized ABC-GA algorithm. Fuzzy PID controller parameters are GE = 0.8359, GCE = 0.1944, GPD = 20.5501, GPI = 20.2681,
Case 1: ε = 1, σ = 1, L = 0.
Case 2: ε = 1, σ = 1, L = 0.1.
Case 3: ε = 1, σ = 0.7, L = 0.
Case 4: ε = 1.3, σ = 1, L = 0.
Table 3 shows the P3 controlling performance comparisons of SGT2F-PID controller with other 3 controllers.
P3 | PID | T1F-PID | IT2F-PID | SGT2F-PID | ||
case 1 | ts(s) | 6.32 | 2.69 | 2.91 | 0.52 | |
tr(s) | 1.41 | 0.62 | 0.69 | 0.6 | ||
OS (%) | 16.3 | 21.9 | 20.6 | 13.1 | ||
ISE | 0.52 | 0.28 | 0.31 | 0.25 | ||
ITSE | 0.26 | 0.07 | 0.08 | 0.04 | ||
ITAE | 1.34 | 0.33 | 0.38 | 0.15 | ||
case 2 | ts(s) | 6.65 | 4.08 | 4.34 | 2.84 | |
tr(s) | 1.42 | 0.61 | 0.69 | 0.58 | ||
OS (%) | 20.1 | 38.5 | 34.0 | 27.2 | ||
ISE | 0.62 | 0.41 | 0.43 | 0.34 | ||
ITSE | 0.36 | 0.16 | 0.16 | 0.08 | ||
ITAE | 1.73 | 0.64 | 0.7 | 0.30 | ||
case 3 | ts(s) | 7.52 | 3.15 | 3.44 | 2.07 | |
tr(s) | 1.3 | 0.6 | 0.67 | 0.58 | ||
OS (%) | 22.6 | 27.2 | 26.0 | 16.1 | ||
ISE | 0.54 | 0.29 | 0.33 | 0.25 | ||
ITSE | 0.33 | 0.09 | 0.11 | 0.04 | ||
ITAE | 1.93 | 0.43 | 0.51 | 0.18 | ||
case 4 | ts(s) | 2.73 | 2.19 | 2.37 | 1.56 | |
tr(s) | 1.27 | 0.53 | 0.6 | 0.55 | ||
OS (%) | 5.7 | 12.1 | 11.1 | 4.1 | ||
ISE | 0.36 | 0.21 | 0.23 | 0.20 | ||
ITSE | 0.10 | 0.03 | 0.04 | 0.02 | ||
ITAE | 0.33 | 0.15 | 0.17 | 0.07 |
The inverted pendulum system was often applied to demonstrate the reliability of a new controller, as shown in Figure 25.
The inverted pendulum system is consisted of a cart and a pendulum, the controlling aim is to keep pendulum angle at a certain value under external force. Equation (38) describes the state equations of the inverted pendulum system [80].
[˙x1˙x2]=[x2gsin(x1)−(mp+Δmp)lx22sin(x1)cos(x1)(mp+Δmp+mc)4l3−((mp+Δmp)lcos(x1)2(mp+Δmp+mc)]+ΔA[x1x2]+[0cos(x1)(mp+Δmp+mc)4l3−((mp+Δmp)lcos(x1)2(mp+Δmp+mc)]u | (38) |
In (38), x1is the pendulum angle θ and x2 is the pendulum angular velocity
PID controller parameters are KP = 40, KI = 100, KD = 8. Fuzzy PID controller parameters are GE = 0.1009, GCE = 0.1944, GPD = 30.5501, GPI = 30.2681,
Case 1: Normal case.
The initial conditions x1 = 0.1rad and x2 = 0rad/s, the setting value is x1 = 0rad. In normal case, Δmp = 0 and
Case 2: Normal case.
The initial conditions x1 = 0.4rad and x2 = 0rad/s, the setting value is x1 = 0rad. In normal case, Δmp = 0 and
From case 3 to case 6, we will indicate the controlling effects of SGT2-FPID controller when the system adding uncertainties.
Case 3: Pendulum mass uncertainty.
Here, we will add pendulum mass uncertainty (Δmp = 2.7kg) at 2s.
Case 4: Measurement uncertainty in pendulum angle.
Here, we will add measurement uncertainty in pendulum angle θ (∆x1 = 0.052) at 3s.
Case 5: Structure uncertainty. Here, we will add structural uncertainty in the inverted pendulum as 2s (
Case 6: External disturbance uncertainty.
Here, we will add an external disturbance of controlling force at 2s (∆d = 29N).
Table 4 shows the P4 controlling performance comparisons of SGT2F-PID controller with other 5 controllers for case 1 and case 2. As compares with controlling performances of [80] and [81], another two error integral criterions are added as follows.
RMSE=√1NN∑i=1e(i)2 |
IAE=∫ts0|e(t)|dt |
P4 | IT2F-PID [80] | IT2F-PD+I [81] | PID | T1F-PID | IT2F-PID | SGT2F-PID | ||
case 1 | ISE | 0.036 | - | 2.78 × 10-4 | 3.32 × 10-4 | 2.53 × 10-4 | 1.9 × 10-4 | |
ITSE | - | - | 2.34 × 10-5 | 2.0 × 10-5 | 7.22 × 10-6 | 3.64 × 10-6 | ||
ITAE | - | - | 0.0036 | 9.35 × 10-4 | 4.52 × 10-4 | 1.62 × 10-4 | ||
RMSE | 0.0085 | - | 0.0118 | 0.0129 | 0.013 | 0.0097 | ||
IAE | 1.8001 | - | 0.0101 | 0.0076 | 0.0051 | 0.0033 | ||
case 2 | ISE | - | 1.5844 | 0.0045 | 0.0064 | 0.0069 | 0.005 | |
ITSE | - | - | 3.33 × 10-4 | 2.34 × 10-4 | 2.43 × 10-4 | 1.23 × 10-4 | ||
ITAE | - | - | 0.0119 | 0.003 | 0.0029 | 0.0014 | ||
RMSE | - | 0.0514 | 0.0472 | 0.0568 | 0.0586 | 0.0499 | ||
IAE | - | 7.4692 | 0.0379 | 0.029 | 0.0287 | 0.0191 |
Table 5 shows the P4 controlling performance comparisons of SGT2F-PID controller with other 4 controllers for case 3 to case 6.
P4 | IT2F-PD+I [81] | PID | T1F-PID | IT2F-PID | SGT2F-PID | ||
case 3 | ISE | 1.9203 | 0.0045 | 0.0064 | 0.0069 | 0.005 | |
ITSE | - | 3.56 × 10-4 | 2.34 × 10-4 | 2.43 × 10-4 | 1.25 × 10-4 | ||
ITAE | - | 0.0288 | 0.0035 | 0.0037 | 0.0019 | ||
RMSE | 0.04 | 0.0273 | 0.0328 | 0.0338 | 0.0288 | ||
IAE | 14.7056 | 0.0419 | 0.0292 | 0.0290 | 0.0192 | ||
case 4 | ISE | 2.527 | 0.0046 | 0.0066 | 0.007 | 0.0051 | |
ITSE | - | 6.47 × 10-4 | 5.9 × 10-4 | 5.5 × 10-4 | 4.0 × 10-4 | ||
ITAE | - | 0.0316 | 0.0172 | 0.0154 | 0.011 | ||
RMSE | 0.0649 | 0.0276 | 0.0331 | 0.0341 | 0.0291 | ||
IAE | 13.3876 | 0.044 | 0.033 | 0.032 | 0.022 | ||
case 5 | ISE | 0.094 | 2.78 × 10-4 | 3.32 × 10-4 | 2.53 × 10-4 | 1.90 × 10-4 | |
ITSE | - | 2.34 × 10-5 | 2.04 × 10-5 | 7.73 × 10-6 | 3.64 × 10-6 | ||
ITAE | - | 0.0036 | 0.0010 | 5.08 × 10-4 | 1.89 × 10-4 | ||
RMSE | 0.0125 | 0.0068 | 0.0074 | 0.0065 | 0.0056 | ||
IAE | 2.2475 | 0.0101 | 0.0077 | 0.0052 | 0.0033 | ||
case 6 | ISE | - | 0.0046 | 0.0065 | 0.0069 | 0.005 | |
ITSE | - | 7.53 × 10-4 | 3.67 × 10-4 | 3.79 × 10-4 | 1.75 × 10-4 | ||
ITAE | - | 0.0447 | 0.0169 | 0.0185 | 0.0091 | ||
RMSE | - | 0.0278 | 0.0329 | 0.0340 | 0.0289 | ||
IAE | - | 0.0508 | 0.0345 | 0.0347 | 0.022 |
We discuss 3 kinds of fuzzy PID controllers and derive the mathematical expressions of TIF-PID, IT2F-PID and SGT2F-PID described by Eq (21), Eq (25) and Eq (30). The SGT2F-PID controller contains more adjustable parameters and only 4 fuzzy rules are generated. For the primary membership degree of α-plane (α = 1) is used to get the defuzzification result of SGT2F-PID controller, thus the SGT2F-PID controller maintains the ability of handing uncertainties as general type-2 fuzzy controller and higher real-time. By the mathematical expressions of TIF-PID, IT2F-PID and SGT2F-PID controller, the controlling performance is discussed and explains why SGT2F-PID controller has better controlling effects than TIF-PID and IT2F-PID controller.
And 4 simulations including a second order linear plant, an unstable first order linear plant and two second order nonlinear plants are tested. In addition, the controller parameters of each plant are the same when the plant parameters are changed, which demonstrate the robustness of SGT2F-PID controller. From the 4 simulation results, when the controlled object changes, the SGT2F-PID controller can still maintain small overshoot, faster response time and stable time. Also the controller performance evaluation indexes (ISE, ITSE, ITAE) of SGT2F-PID controller are better than other 3 compared controllers. The results of simulation 4 indicates that, when the controlled object exists uncertainties of measurement, structure and external disturbance, the SGT2F-PID controller can handle these uncertainties more robust than PID, TIF-PID and IT2F-PID controller.
The next researches will focus on the following 4 aspects:
Ⅰ). Although SGT2F-PID controller can achieve better control performances, but the determined parameters are more than other controllers. How to determine the appropriate parameters will be a major work.
Ⅱ). Triangular function is applied as primary and secondary membership function, other membership function like Gaussian, trapezoid will be discussed in the future.
Ⅲ). In this paper, we fix the parameters de and d1 and discuss the influence of w on the controller parameters gains. In the future, we will study the influence of de and d1 on the controller parameters gains.
Ⅳ). The fractional order simplified general type-2 fuzzy PID controller will be investigated and compared with existing PID and fuzzy PID controllers.
This study was funded by the scientific research fund project of Nanjing Institute of Technology (YKJ201523, QKJ201802).
The authors declare there is no conflict of interest.
[1] |
A. Kumar, V. Kumar, A novel interval type-2 fractional order fuzzy PID controller: Design, performance evaluation, and its optimal time domain tuning, ISA Trans., 68 (2017), 251-275. doi: 10.1016/j.isatra.2017.03.022
![]() |
[2] |
D. R. Wu, W. W. Tan, A simplified type-2 fuzzy logic controller for real-time control, ISA Trans., 45 (2006), 503-516. doi: 10.1016/S0019-0578(07)60228-6
![]() |
[3] |
J. Huang, M. H. Ri, D. R. Wu, S. Ri, Interval type-2 fuzzy logic modeling and control of a mobile two-wheeled inverted pendulum, IEEE Trans. Fuzzy Syst., 26 (2018), 2030-2038. doi: 10.1109/TFUZZ.2017.2760283
![]() |
[4] |
T. Kumbasar, I. Eksin, M. Guzelkaya, E. Yesil, Interval type-2 fuzzy inverse controller design in nonlinear IMC structure, Eng. Appl. Artif. Intell., 24 (2011), 996-1005. doi: 10.1016/j.engappai.2011.04.016
![]() |
[5] |
T. Kumbasar, I. Eksin, M. Guzelkaya, E. Yesil, An inverse controller design method for interval type-2 fuzzy models, Soft Comput., 21 (2017), 2665-2686. doi: 10.1007/s00500-015-1966-0
![]() |
[6] |
L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inf. Sci., 8 (1975), 199-249. doi: 10.1016/0020-0255(75)90036-5
![]() |
[7] |
N. N. Karnik, J. M. Mendel, Centroid of a type-2 fuzzy set, Inf. Sci., 132 (2001), 195-220. doi: 10.1016/S0020-0255(01)00069-X
![]() |
[8] |
P. Melin, O. Mendoza, O. Castillo, Face recognition with an improved interval type-2 fuzzy logic sugeno integral and modular neural networks, IEEE Trans. Syst., Man, Cybern. A, Syst. Humans., 41 (2011), 1001-1012. doi: 10.1109/TSMCA.2010.2104318
![]() |
[9] |
O. Castillo, J. R. Castro, P. Melin, A. Rodriguez-Diaz, Application of interval type-2 fuzzy neural networks in non-linear identification and time series prediction, Soft Comput., 18 (2014), 1213-1224. doi: 10.1007/s00500-013-1139-y
![]() |
[10] |
V. Uslan, H. Seker, R. John, Overlapping clusters and support vector machines based interval type-2 fuzzy system for the prediction of peptide binding affinity, IEEE Access, 7 (2019), 49756-49764. doi: 10.1109/ACCESS.2019.2910078
![]() |
[11] |
I. Eyoh, R. John, G. D. Maere, Hybrid learning for interval type-2 intuitionistic fuzzy logic systems as applied to identification and prediction problems, IEEE Trans. Fuzzy Syst., 26 (2018), 2672-2685. doi: 10.1109/TFUZZ.2018.2803751
![]() |
[12] |
P. Melin, O. Castillo, A review on the applications of type-2 fuzzy logic in classification and pattern recognition, Expert Syst. Appl., 40 (2013), 5413-5423. doi: 10.1016/j.eswa.2013.03.020
![]() |
[13] |
P. Melin, O. Castillo, A review on type-2 fuzzy logic applications in clustering, classification and pattern recognition, Appl. Soft Comput., 21 (2014), 568-577. doi: 10.1016/j.asoc.2014.04.017
![]() |
[14] |
O. Castillo, P. Melin, A review on interval type-2 fuzzy logic applications in intelligent control, Inf. Sci., 279 (2014), 615-631. doi: 10.1016/j.ins.2014.04.015
![]() |
[15] | D. Türkay, A. Baykasoglu, K. Altun K, A. Durmusoglu, I. B. Türksen, Industrial applications of type-2 fuzzy sets and systems: a concise review, Comput. Ind., 62 (2011), 125-137. |
[16] |
S. Hassa, M. A. Khanesar, E. Kayacan, J. Jaafar, A. Khosravi, Optimal design of adaptive type-2 neuro-fuzzy systems: a review, Appl. Soft Comput., 44 (2016), 134-143. doi: 10.1016/j.asoc.2016.03.023
![]() |
[17] |
T. Kumbasar, A simple design method for interval type-2 fuzzy pid controllers, Soft Comput., 18 (2014), 1293-1304. doi: 10.1007/s00500-013-1144-1
![]() |
[18] |
T. Kumbasar, H. Hagra, Big bang-big crunch optimization based interval type-2 fuzzy PID cascade controller design strategy, Inf. Sci., 282 (2014), 277-295. doi: 10.1016/j.ins.2014.06.005
![]() |
[19] | J. M. Mendel, R. Chimatapu, H. Hagras, Comparing the performance potentials of singleton and non-singleton type-1 and interval type-2 fuzzy systems in terms of sculpting the state space. IEEE Trans. Fuzzy Syst., 28 (2020), 783-794. |
[20] |
G. Acampora, D. Alghazzawi, H. Hagras, An interval type-2 fuzzy logic based framework for reputation management in peer-to-peer e-commerce, Inf. Sci., 333 (2016), 88-107. doi: 10.1016/j.ins.2015.11.015
![]() |
[21] |
M. Antonelli, D. Bernardo, H. Hagras, Multiobjective evolutionary optimization of type-2 fuzzy rule-based systems for financial data classification, IEEE Trans. Fuzzy Syst., 25 (2017), 249-264. doi: 10.1109/TFUZZ.2016.2578341
![]() |
[22] |
E. Ramirez, P. Melin, G. Prado-Arechiga, Hybrid model based on neural networks, type-1 and type-2 fuzzy systems for 2-lead cardiac arrhythmia classification, Expert Syst. Appl., 126 (2019), 295-307. doi: 10.1016/j.eswa.2019.02.035
![]() |
[23] |
I. Eyoh, R. John, G. D. Maere, Interval type-2 a-intuitionistic fuzzy logic for regression problems, IEEE Trans. Fuzzy Syst., 26 (2018), 2396-2408. doi: 10.1109/TFUZZ.2017.2775599
![]() |
[24] | E. Ontiveros-Robles, P. Melin, A hybrid design of shadowed type-2 fuzzy inference systems applied in diagnosis problems, Eng. Appl. Artif. Intell., 85 (2019), 43-55. |
[25] |
O. Castillo, P. Melin, E. Ontiveros, C. Peraza, P. Ochoa, F. Valdez, et al., A high-speed interval type 2 fuzzy system approach for dynamic parameter adaptation in metaheuristics, Eng. Appl. Artif. Intell., 85 (2019), 666-680. doi: 10.1016/j.engappai.2019.07.020
![]() |
[26] |
Olivas, F. Valdez, P. Melin, A. Sombra, O. Castillo, Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm, Inf. Sci., 476 (2019), 159-175. doi: 10.1016/j.ins.2018.10.025
![]() |
[27] |
A. C. Tolga, I. B. Parlak, O. Castillo, Finite-interval-valued type-2 Gaussian fuzzy numbers applied to fuzzy TODIM in a healthcare problem, Eng. Appl. Artif. Intell., 87 (2020), 103352. doi: 10.1016/j.engappai.2019.103352
![]() |
[28] |
A. Sarabakha, C. H. Fu, E. Kayacan, T. Kumbasar, Type-2 fuzzy logic controllers made even simpler: from design to deployment for UAVs, IEEE Trans. Ind. Electron., 65 (2018), 5069-5077. doi: 10.1109/TIE.2017.2767546
![]() |
[29] |
A. Beke, T. Kumbasar, learning with type-2 fuzzy activation functions to improve the performance of deep neural networks, Eng. Appl. Artif. Intell., 85 (2019), 372-384. doi: 10.1016/j.engappai.2019.06.016
![]() |
[30] |
A. Beke, T. Kumbasar, Type-2 fuzzy logic based linguistic pursuing strategy design and its deployment to a real-world pursuit evasion game, IEEE T. Cybern., 50 (2020), 211-221. doi: 10.1109/TCYB.2018.2868405
![]() |
[31] | H. B. Zhou, H. Ying, A method for deriving the analytical structure of a broad class of typical interval type-2 Mamdani fuzzy controllers. IEEE Trans. Fuzzy Syst., 21 (2013), 447-458. |
[32] | X. Y. Du, H. Ying, Derivation and analysis of the analytical structures of the interval type-2 fuzzy-PI and PD controllers. IEEE Trans. Fuzzy Syst., 18 (2010), 802-814. |
[33] | H. B. Zhou, H. Ying, C. L. Zhang, Effects of increasing the footprints of uncertainty on analytical structure of the classes of interval type-2 mamdani and TS fuzzy controllers. IEEE Trans. Fuzzy Syst., 27 (2019), 1881-1890. |
[34] |
F. L. Liu, An efficient centroid type-reduction strategy for general type-2 fuzzy logic system, Inf. Sci., 178 (2008), 2224-2236. doi: 10.1016/j.ins.2007.11.014
![]() |
[35] |
J. M. Mendel, F. L. Liu, D. Y. Zhai, α-Plane representation for type-2 fuzzy sets: theory and applications, IEEE Trans. Fuzzy Syst., 17 (2009), 1189-1207. doi: 10.1109/TFUZZ.2009.2024411
![]() |
[36] |
J. M. Mendel, Comments on "α-Plane representation for type-2 fuzzy sets: theory and applications", IEEE Trans. Fuzzy Syst., 18 (2010), 229-230. doi: 10.1109/TFUZZ.2009.2039368
![]() |
[37] | C. Wagner, H. Hagras, zSlices-towards bridging the gap between interval and general type-2 fuzzy logic, IEEE Int. Conf. Fuzzy Syst., (2008), 489-457. |
[38] |
C. Wagner, H. Hagras, Towards general type-2 fuzzy logic systems based on zSlices, IEEE Trans. Fuzzy Syst., 18 (2010), 637-660. doi: 10.1109/TFUZZ.2010.2045386
![]() |
[39] |
S. Greenfield, F. Chiclana, R. John, S. Coupland, The sampling method of defuzzification for type-2 fuzzy sets: Experimental evaluation, Inf. Sci., 189 (2012), 77-92. doi: 10.1016/j.ins.2011.11.042
![]() |
[40] |
S. Coupland, R. John, Geometric type-1 and type-2 fuzzy logic systems, IEEE Trans. Fuzzy Syst., 15 (2007), 3-15. doi: 10.1109/TFUZZ.2006.889764
![]() |
[41] |
S. Coupland, R. John, A fast geometric method for defuzzification of type-2 fuzzy sets, IEEE Trans. Fuzzy Syst., 16 (2008), 929-941. doi: 10.1109/TFUZZ.2008.924345
![]() |
[42] |
A. D. Torshizi, M. H. F. Zarandi, Hierarchical collapsing method for direct defuzzification of general type-2 fuzzy sets, Inf. Sci., 277 (2014), 842-861. doi: 10.1016/j.ins.2014.03.018
![]() |
[43] |
D. R. Wu, J. M. Mendel, Enhanced Karnik-Mendel algorithms, IEEE Trans. Fuzzy Syst., 17 (2009), 923-934. doi: 10.1109/TFUZZ.2008.924329
![]() |
[44] | K. Duran, H. Bernal, M. Melgarejo, Improved iterative algorithm for computing the generalized centroid of an interval type-2 fuzzy set, IEEE Fuzzy Infor. Process. Soc., (2008), 1-5. |
[45] | D. R. Wu, M. Nie, Comparison and practical implementation of type-reduction algorithms for type-2 fuzzy sets and systems, IEEE Int. Conf. Fuzzy Syst., (2011), 2131-2138. |
[46] |
T. Kumbasar, H. Hagras, A self-tuning zSlices-based general type-2 fuzzy PI controller, IEEE Trans. Fuzzy Syst., 23 (2015), 991-1013. doi: 10.1109/TFUZZ.2014.2336267
![]() |
[47] |
M. A.S anchez, O. Castillo, J. R. Castro, Generalized type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems, Expert Syst. Appl., 42 (2015), 5904-5914. doi: 10.1016/j.eswa.2015.03.024
![]() |
[48] | L. Amador-Angulo, O. Castillo, J. R. Castro, A generalized type-2 fuzzy logic system for the dynamic adaptation the parameters in a bee colony optimization algorithm applied in an autonomous mobile robot control, IEEE Int. Conf. Fuzzy Syst., (2016), 537-544. |
[49] |
F. Baghbani, M.-R. A T, A. Alireza, Indirect adaptive robust mixed H2/H∞ general type-2 fuzzy control of uncertain nonlinear systems, Appl. Soft Comput., 72 (2018), 392-418. doi: 10.1016/j.asoc.2018.06.049
![]() |
[50] |
T. Zhao, Q. Yu, S. Y. Dian, R. Guo, S. C. Li, Non-singleton general type-2 fuzzy control for a two-wheeled self-balancing robot, Int. J. Fuzzy Syst., 21 (2019), 1724-1737. doi: 10.1007/s40815-019-00664-4
![]() |
[51] |
S. Y. Dian, J. Han, R. Guo, S. C. Li, T. Zhao, Y. Hu, et al., Double closed-loop general type-2 fuzzy sliding model control for trajectory tracking of wheeled mobile robots, Int. J. Fuzzy Syst., 21 (2019), 2032-2042. doi: 10.1007/s40815-019-00685-z
![]() |
[52] |
O. Castillo, L. Amador-Angulo, J. R. Castro, M. Garcia-Valdez, A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems, Inf. Sci., 354 (2016), 257-274. doi: 10.1016/j.ins.2016.03.026
![]() |
[53] | M. H. Khooban, N. V afamand, A. Liaghat, T. Dragicevic, An optimal general type-2 fuzzy controller for urban traffic network, ISA Trans., 66 (2016), 335-343. |
[54] |
E. Ontiveros, P. Melin, O. Castillo, High order α-planes integration: a new approach to computational cost reduction of general type-2 fuzzy systems, Eng. Appl. Artif. Intell., 74 (2018), 186-197. doi: 10.1016/j.engappai.2018.06.013
![]() |
[55] | A. Mohammadzadeh, O. Kaynak, A novel general type-2 fuzzy controller for fractional-order multi-agent systems under unknown time-varying topology, J. Franklin Inst., 36 (2019), 5151-5171. |
[56] |
M. H. Khooban, T. Niknam, M. Sha-Sadeghi, A time-varying general type-II fuzzy sliding mode controller for a class of nonlinear power systems, J. Intell. Fuzzy Syst., 30 (2016), 2927-2937. doi: 10.3233/IFS-151796
![]() |
[57] | E. Ontiveros-Robles, P. Melin, O. Castillo, Comparative analysis of noise robustness of type 2 fuzzy logic controllers, Kybernetika., 54 (2008), 175-201. |
[58] |
O. Castillo, L. Cervantes, J. Soria, M. Sanchez, J. R. Castro, A generalized type-2 fuzzy granular approach with applications to aerospace, Inf. Sci., 354 (2016), 165-177. doi: 10.1016/j.ins.2016.03.001
![]() |
[59] |
L. Cervantes, O. Castillo, Type-2 fuzzy logic aggregation of multiple fuzzy controllers for airplane flight control, Inf. Sci., 324 (2015), 247-256. doi: 10.1016/j.ins.2015.06.047
![]() |
[60] |
J. Z. Shi, S. H. Liang, Y. Yang, R. Li, An improved general type 2 fuzzy sets type reduction and its application in general type 2 fuzzy controller design, Soft Comput., 23 (2019), 13513-13530. doi: 10.1007/s00500-019-03889-5
![]() |
[61] |
T. Zhao, Y. Chen, S. Y. Dian, R. Guo, S. C. Li, General type-2 fuzzy gain scheduling PID controller with application to power-line inspection robots, Int. J. Fuzzy Syst., 22 (2020), 181-200. doi: 10.1007/s40815-019-00780-1
![]() |
[62] |
T. Zhao, J. Liu, S. Y. Dian, R. Guo, S. C. Li, Sliding-mode-control-theory-based adaptive general type-2 fuzzy neural network control for power-line inspection robots, Neurocomputing, 401 (2020), 281-294. doi: 10.1016/j.neucom.2020.03.050
![]() |
[63] |
A. Mohammadzadeh, O. Kaynak, A novel general type-2 fuzzy controller for fractional-order multi-agent systems under unknown time-varying topology, J. Franklin Inst., 356 (2019), 5151-5171. doi: 10.1016/j.jfranklin.2019.05.006
![]() |
[64] |
J. Z. Shi, A fractional order general type-2 fuzzy PID controller design algorithm, IEEE Access., 8 (2020), 52151-52172. doi: 10.1109/ACCESS.2020.2980686
![]() |
[65] |
E. Ontiveros, P. Melin, O. Castillo, Comparative study of interval type-2 and general type-2 fuzzy systems in medical diagnosis, Inf. Sci., 525 (2020), 37-53. doi: 10.1016/j.ins.2020.03.059
![]() |
[66] |
A. Mohammadzadeh, T. Kumbasar, A new fractional-order general type-2 fuzzy predictive control system and its application for glucose level regulation, Appl. Soft Comput., 91 (2020), 106241. doi: 10.1016/j.asoc.2020.106241
![]() |
[67] |
M. H. Fazel Zarandi, S. Soltanzadeh, A. Mohammadi, O. Castillo, Designing a general type-2 fuzzy expert system for diagnosis of depression, Appl. Soft Comput., 80 (2019), 329-341. doi: 10.1016/j.asoc.2019.03.027
![]() |
[68] |
H. Shahparas, E. G. Mansoori, Developing an online general type-2 fuzzy classifier using evolving type-1 rules, Int. J. Approx. Reason., 113 (2019), 336-353. doi: 10.1016/j.ijar.2019.07.011
![]() |
[69] |
S. M. M. Golsefid, M. H. Fazel Zarandia, I. B. Turksen, Multi-central general type-2 fuzzy clustering approach for pattern recognitions, Inf. Sci., 328 (2016), 172-188. doi: 10.1016/j.ins.2015.08.027
![]() |
[70] |
J. M. Mendel, Comparing the performance potentials of interval and general type-2 rule-based fuzzy systems in terms of sculpting the state space, IEEE Trans. Fuzzy Syst., 27 (2019), 58-71. doi: 10.1109/TFUZZ.2018.2856184
![]() |
[71] |
D. R. Wu, J. M. Mendel, Similarity measures for closed general type-2 fuzzy sets: overview, comparisons, and a geometric approach, IEEE Trans. Fuzzy Syst., 27 (2019), 515-526. doi: 10.1109/TFUZZ.2018.2862869
![]() |
[72] |
Y. Chen, D. Z. Wang, Forecasting by general type-2 fuzzy logic systems optimized with QPSO algorithms, Int. J. Control Autom., 15 (2017), 2950-2958. doi: 10.1007/s12555-017-0793-0
![]() |
[73] |
J. Andreu-Perez, F. Cao, H. Hagras, G. Yang, A self-adaptive online brain-machine interface of a humanoid robot through a general type-2 fuzzy inference system, IEEE Trans. Fuzzy Syst., 26 (2018), 101-116. doi: 10.1109/TFUZZ.2016.2637403
![]() |
[74] |
K. Mittal, A. Jain, K. S. Vaisla, O. Castillo, J. Kacprzyk, A comprehensive review on type 2 fuzzy logic applications: Past, present and future, Eng. Appl. Artif. Intell., 95 (2020), 103916. doi: 10.1016/j.engappai.2020.103916
![]() |
[75] | J. M. Mendel, H. Hagras, W. W. Tan, W. W. Melek, H. Ying, Introduction to Type-2 Fuzzy Logic Control: Theory and Applications, John Wiley and IEEE Press, Hoboken, NJ, 2014. |
[76] | J. M. Mendel, Uncertain Rule Based Fuzzy Logic Systems: Introduction and New Directions: 2nd edition, Springer Press, New York, 2017. |
[77] | J. M. Mendel, M. R. Rajati, P. Sussner, On clarifying some definitions and notations used for type-2 fuzzy sets as well as some recommended changes, Inf. Sci., 340 (2016), 347-345. |
[78] | M. Nie, W. W. Tan, Towards an efficient type-reduction method for interval type-2 fuzzy logic systems, IEEE Int. Conf. Fuzzy Syst., (2008), 1425-1432. |
[79] |
J. M. Mendel, X. W. Liu, Simplified interval type-2 fuzzy logic systems, IEEE Trans. Fuzzy Syst., 21 (2013), 1056-1069. doi: 10.1109/TFUZZ.2013.2241771
![]() |
[80] | A. M. El-Nagar, M. El-Bardini M, Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system, ISA Trans., 53 (2014), 732-743. |
[81] | A. M. El-Nagar, M. El-Bardini M, Practical realization for the interval type-2 fuzzy PD+I controller using a low-cost microcontroller, Arabian J. Sci. Eng., 39 (2014), 6463-6476. |
1. | Min Yang, Qiangyi Li, Information Security Risk Management Model for Big Data, 2022, 2022, 1687-5699, 1, 10.1155/2022/3383251 | |
2. | Shan Zhao, Kaibo Shi, Interpolation Functions Of General Type-2 Fuzzy Systems, 2024, 1562-2479, 10.1007/s40815-024-01872-3 | |
3. | Gerardo Maximiliano Méndez, Ismael López-Juárez, María Aracelia Alcorta García, Dulce Citlalli Martinez-Peon, Pascual Noradino Montes-Dorantes, The Enhanced Wagner–Hagras OLS–BP Hybrid Algorithm for Training IT3 NSFLS-1 for Temperature Prediction in HSM Processes, 2023, 11, 2227-7390, 4933, 10.3390/math11244933 | |
4. | Ritu Raj, One-dimensional input space modelling of a simplified general type-2 Mamdani and Takagi–Sugeno Fuzzy Proportional Integral Derivative controller, 2025, 147, 09521976, 110289, 10.1016/j.engappai.2025.110289 | |
5. | Mohamed Amine Hartani, Aissa Benhammou, Abdallah Laidi, 2025, 10.5772/intechopen.1006834 |
P1 | PID | T1F-PID | IT2F-PID | SGT2F-PID | ||
case 1 | ts(s) | 12.3 | 6.1 | 6.69 | 4.96 | |
tr(s) | 5.05 | 2.01 | 2.3 | 2.07 | ||
OS (%) | 5.1 | 22.2 | 19.1 | 14.9 | ||
ISE | 1.44 | 1.15 | 1.24 | 1.13 | ||
ITSE | 1.49 | 0.84 | 0.96 | 0.74 | ||
ITAE | 5.37 | 2.23 | 2.53 | 1.58 | ||
case 2 | ts(s) | 17.68 | 8.5 | 9.3 | 7.01 | |
tr(s) | 3.18 | 1.84 | 2.07 | 1.88 | ||
OS (%) | 29.8 | 39.2 | 35.1 | 28.0 | ||
ISE | 1.59 | 1.26 | 1.32 | 1.15 | ||
ITSE | 3.27 | 1.26 | 1.35 | 0.87 | ||
ITAE | 14.77 | 4.07 | 4.49 | 2.55 | ||
Case3 | ts(s) | > 20 | 9.18 | 9.72 | 7.95 | |
tr(s) | > 20 | 1.94 | 2.25 | 2.01 | ||
OS (%) | - | 17.8 | 11.7 | 11.0 | ||
ISE | 1.74 | 1.13 | 1.21 | 1.11 | ||
ITSE | 3.78 | 0.86 | 0.93 | 0.76 | ||
ITAE | 20.26 | 2.98 | 3.04 | 2.27 | ||
case 4 | ts(s) | > 20 | 8.85 | 9.61 | 8.0 | |
tr(s) | 12.06 | 3.05 | 3.59 | 3.06 | ||
OS (%) | 2.3 | 9.9 | 9.9 | 7.1 | ||
ISE | 2.67 | 1.47 | 1.61 | 1.46 | ||
ITSE | 5.73 | 1.30 | 1.60 | 1.23 | ||
ITAE | 17.08 | 3.87 | 4.77 | 3.10 |
P2 | PID | T1F-PID | IT2F-PID | SGT2F-PID | ||
case 1 | ts(s) | 22.9 | 9.36 | 10.49 | 3.94 | |
tr(s) | 1.78 | 2.0 | 2.31 | 2.49 | ||
OS (%) | 16.7 | 27.9 | 28.2 | 5.2 | ||
ISE | 0.71 | 1.09 | 1.23 | 1.09 | ||
ITSE | 1.53 | 0.96 | 1.23 | 0.72 | ||
ITAE | 16.02 | 3.62 | 4.70 | 1.37 | ||
case 2 | ts(s) | 22.71 | 13.44 | 14.91 | 9.72 | |
tr(s) | 1.56 | 1.95 | 2.2 | 2.14 | ||
OS (%) | 19.1 | 44.9 | 46.9 | 30.5 | ||
ISE | 0.90 | 1.44 | 1.60 | 1.26 | ||
ITSE | 1.64 | 1.92 | 2.51 | 1.10 | ||
ITAE | 15.86 | 7.56 | 10.00 | 3.77 | ||
case 3 | ts(s) | 26.3 | 18.33 | 19.76 | 8.14 | |
tr(s) | 3.37 | 2.62 | 3.01 | 2.96 | ||
OS (%) | 20.4 | 43.5 | 40.04 | 17.01 | ||
ISE | 1.27 | 1.78 | 1.91 | 1.44 | ||
ITSE | 4.13 | 3.63 | 4.02 | 1.36 | ||
ITAE | 29.76 | 15.44 | 17.88 | 3.69 | ||
case 4 | ts(s) | 20.94 | 9.25 | 12.28 | 5.68 | |
tr(s) | 1.71 | 1.98 | 2.27 | 2.25 | ||
OS (%) | 12.8 | 35.3 | 36.2 | 16.7 | ||
ISE | 0.75 | 1.27 | 1.41 | 1.17 | ||
ITSE | 0.96 | 1.30 | 1.65 | 0.82 | ||
ITAE | 11.26 | 4.60 | 6.28 | 1.84 |
P3 | PID | T1F-PID | IT2F-PID | SGT2F-PID | ||
case 1 | ts(s) | 6.32 | 2.69 | 2.91 | 0.52 | |
tr(s) | 1.41 | 0.62 | 0.69 | 0.6 | ||
OS (%) | 16.3 | 21.9 | 20.6 | 13.1 | ||
ISE | 0.52 | 0.28 | 0.31 | 0.25 | ||
ITSE | 0.26 | 0.07 | 0.08 | 0.04 | ||
ITAE | 1.34 | 0.33 | 0.38 | 0.15 | ||
case 2 | ts(s) | 6.65 | 4.08 | 4.34 | 2.84 | |
tr(s) | 1.42 | 0.61 | 0.69 | 0.58 | ||
OS (%) | 20.1 | 38.5 | 34.0 | 27.2 | ||
ISE | 0.62 | 0.41 | 0.43 | 0.34 | ||
ITSE | 0.36 | 0.16 | 0.16 | 0.08 | ||
ITAE | 1.73 | 0.64 | 0.7 | 0.30 | ||
case 3 | ts(s) | 7.52 | 3.15 | 3.44 | 2.07 | |
tr(s) | 1.3 | 0.6 | 0.67 | 0.58 | ||
OS (%) | 22.6 | 27.2 | 26.0 | 16.1 | ||
ISE | 0.54 | 0.29 | 0.33 | 0.25 | ||
ITSE | 0.33 | 0.09 | 0.11 | 0.04 | ||
ITAE | 1.93 | 0.43 | 0.51 | 0.18 | ||
case 4 | ts(s) | 2.73 | 2.19 | 2.37 | 1.56 | |
tr(s) | 1.27 | 0.53 | 0.6 | 0.55 | ||
OS (%) | 5.7 | 12.1 | 11.1 | 4.1 | ||
ISE | 0.36 | 0.21 | 0.23 | 0.20 | ||
ITSE | 0.10 | 0.03 | 0.04 | 0.02 | ||
ITAE | 0.33 | 0.15 | 0.17 | 0.07 |
P4 | IT2F-PID [80] | IT2F-PD+I [81] | PID | T1F-PID | IT2F-PID | SGT2F-PID | ||
case 1 | ISE | 0.036 | - | 2.78 × 10-4 | 3.32 × 10-4 | 2.53 × 10-4 | 1.9 × 10-4 | |
ITSE | - | - | 2.34 × 10-5 | 2.0 × 10-5 | 7.22 × 10-6 | 3.64 × 10-6 | ||
ITAE | - | - | 0.0036 | 9.35 × 10-4 | 4.52 × 10-4 | 1.62 × 10-4 | ||
RMSE | 0.0085 | - | 0.0118 | 0.0129 | 0.013 | 0.0097 | ||
IAE | 1.8001 | - | 0.0101 | 0.0076 | 0.0051 | 0.0033 | ||
case 2 | ISE | - | 1.5844 | 0.0045 | 0.0064 | 0.0069 | 0.005 | |
ITSE | - | - | 3.33 × 10-4 | 2.34 × 10-4 | 2.43 × 10-4 | 1.23 × 10-4 | ||
ITAE | - | - | 0.0119 | 0.003 | 0.0029 | 0.0014 | ||
RMSE | - | 0.0514 | 0.0472 | 0.0568 | 0.0586 | 0.0499 | ||
IAE | - | 7.4692 | 0.0379 | 0.029 | 0.0287 | 0.0191 |
P4 | IT2F-PD+I [81] | PID | T1F-PID | IT2F-PID | SGT2F-PID | ||
case 3 | ISE | 1.9203 | 0.0045 | 0.0064 | 0.0069 | 0.005 | |
ITSE | - | 3.56 × 10-4 | 2.34 × 10-4 | 2.43 × 10-4 | 1.25 × 10-4 | ||
ITAE | - | 0.0288 | 0.0035 | 0.0037 | 0.0019 | ||
RMSE | 0.04 | 0.0273 | 0.0328 | 0.0338 | 0.0288 | ||
IAE | 14.7056 | 0.0419 | 0.0292 | 0.0290 | 0.0192 | ||
case 4 | ISE | 2.527 | 0.0046 | 0.0066 | 0.007 | 0.0051 | |
ITSE | - | 6.47 × 10-4 | 5.9 × 10-4 | 5.5 × 10-4 | 4.0 × 10-4 | ||
ITAE | - | 0.0316 | 0.0172 | 0.0154 | 0.011 | ||
RMSE | 0.0649 | 0.0276 | 0.0331 | 0.0341 | 0.0291 | ||
IAE | 13.3876 | 0.044 | 0.033 | 0.032 | 0.022 | ||
case 5 | ISE | 0.094 | 2.78 × 10-4 | 3.32 × 10-4 | 2.53 × 10-4 | 1.90 × 10-4 | |
ITSE | - | 2.34 × 10-5 | 2.04 × 10-5 | 7.73 × 10-6 | 3.64 × 10-6 | ||
ITAE | - | 0.0036 | 0.0010 | 5.08 × 10-4 | 1.89 × 10-4 | ||
RMSE | 0.0125 | 0.0068 | 0.0074 | 0.0065 | 0.0056 | ||
IAE | 2.2475 | 0.0101 | 0.0077 | 0.0052 | 0.0033 | ||
case 6 | ISE | - | 0.0046 | 0.0065 | 0.0069 | 0.005 | |
ITSE | - | 7.53 × 10-4 | 3.67 × 10-4 | 3.79 × 10-4 | 1.75 × 10-4 | ||
ITAE | - | 0.0447 | 0.0169 | 0.0185 | 0.0091 | ||
RMSE | - | 0.0278 | 0.0329 | 0.0340 | 0.0289 | ||
IAE | - | 0.0508 | 0.0345 | 0.0347 | 0.022 |
P1 | PID | T1F-PID | IT2F-PID | SGT2F-PID | ||
case 1 | ts(s) | 12.3 | 6.1 | 6.69 | 4.96 | |
tr(s) | 5.05 | 2.01 | 2.3 | 2.07 | ||
OS (%) | 5.1 | 22.2 | 19.1 | 14.9 | ||
ISE | 1.44 | 1.15 | 1.24 | 1.13 | ||
ITSE | 1.49 | 0.84 | 0.96 | 0.74 | ||
ITAE | 5.37 | 2.23 | 2.53 | 1.58 | ||
case 2 | ts(s) | 17.68 | 8.5 | 9.3 | 7.01 | |
tr(s) | 3.18 | 1.84 | 2.07 | 1.88 | ||
OS (%) | 29.8 | 39.2 | 35.1 | 28.0 | ||
ISE | 1.59 | 1.26 | 1.32 | 1.15 | ||
ITSE | 3.27 | 1.26 | 1.35 | 0.87 | ||
ITAE | 14.77 | 4.07 | 4.49 | 2.55 | ||
Case3 | ts(s) | > 20 | 9.18 | 9.72 | 7.95 | |
tr(s) | > 20 | 1.94 | 2.25 | 2.01 | ||
OS (%) | - | 17.8 | 11.7 | 11.0 | ||
ISE | 1.74 | 1.13 | 1.21 | 1.11 | ||
ITSE | 3.78 | 0.86 | 0.93 | 0.76 | ||
ITAE | 20.26 | 2.98 | 3.04 | 2.27 | ||
case 4 | ts(s) | > 20 | 8.85 | 9.61 | 8.0 | |
tr(s) | 12.06 | 3.05 | 3.59 | 3.06 | ||
OS (%) | 2.3 | 9.9 | 9.9 | 7.1 | ||
ISE | 2.67 | 1.47 | 1.61 | 1.46 | ||
ITSE | 5.73 | 1.30 | 1.60 | 1.23 | ||
ITAE | 17.08 | 3.87 | 4.77 | 3.10 |
P2 | PID | T1F-PID | IT2F-PID | SGT2F-PID | ||
case 1 | ts(s) | 22.9 | 9.36 | 10.49 | 3.94 | |
tr(s) | 1.78 | 2.0 | 2.31 | 2.49 | ||
OS (%) | 16.7 | 27.9 | 28.2 | 5.2 | ||
ISE | 0.71 | 1.09 | 1.23 | 1.09 | ||
ITSE | 1.53 | 0.96 | 1.23 | 0.72 | ||
ITAE | 16.02 | 3.62 | 4.70 | 1.37 | ||
case 2 | ts(s) | 22.71 | 13.44 | 14.91 | 9.72 | |
tr(s) | 1.56 | 1.95 | 2.2 | 2.14 | ||
OS (%) | 19.1 | 44.9 | 46.9 | 30.5 | ||
ISE | 0.90 | 1.44 | 1.60 | 1.26 | ||
ITSE | 1.64 | 1.92 | 2.51 | 1.10 | ||
ITAE | 15.86 | 7.56 | 10.00 | 3.77 | ||
case 3 | ts(s) | 26.3 | 18.33 | 19.76 | 8.14 | |
tr(s) | 3.37 | 2.62 | 3.01 | 2.96 | ||
OS (%) | 20.4 | 43.5 | 40.04 | 17.01 | ||
ISE | 1.27 | 1.78 | 1.91 | 1.44 | ||
ITSE | 4.13 | 3.63 | 4.02 | 1.36 | ||
ITAE | 29.76 | 15.44 | 17.88 | 3.69 | ||
case 4 | ts(s) | 20.94 | 9.25 | 12.28 | 5.68 | |
tr(s) | 1.71 | 1.98 | 2.27 | 2.25 | ||
OS (%) | 12.8 | 35.3 | 36.2 | 16.7 | ||
ISE | 0.75 | 1.27 | 1.41 | 1.17 | ||
ITSE | 0.96 | 1.30 | 1.65 | 0.82 | ||
ITAE | 11.26 | 4.60 | 6.28 | 1.84 |
P3 | PID | T1F-PID | IT2F-PID | SGT2F-PID | ||
case 1 | ts(s) | 6.32 | 2.69 | 2.91 | 0.52 | |
tr(s) | 1.41 | 0.62 | 0.69 | 0.6 | ||
OS (%) | 16.3 | 21.9 | 20.6 | 13.1 | ||
ISE | 0.52 | 0.28 | 0.31 | 0.25 | ||
ITSE | 0.26 | 0.07 | 0.08 | 0.04 | ||
ITAE | 1.34 | 0.33 | 0.38 | 0.15 | ||
case 2 | ts(s) | 6.65 | 4.08 | 4.34 | 2.84 | |
tr(s) | 1.42 | 0.61 | 0.69 | 0.58 | ||
OS (%) | 20.1 | 38.5 | 34.0 | 27.2 | ||
ISE | 0.62 | 0.41 | 0.43 | 0.34 | ||
ITSE | 0.36 | 0.16 | 0.16 | 0.08 | ||
ITAE | 1.73 | 0.64 | 0.7 | 0.30 | ||
case 3 | ts(s) | 7.52 | 3.15 | 3.44 | 2.07 | |
tr(s) | 1.3 | 0.6 | 0.67 | 0.58 | ||
OS (%) | 22.6 | 27.2 | 26.0 | 16.1 | ||
ISE | 0.54 | 0.29 | 0.33 | 0.25 | ||
ITSE | 0.33 | 0.09 | 0.11 | 0.04 | ||
ITAE | 1.93 | 0.43 | 0.51 | 0.18 | ||
case 4 | ts(s) | 2.73 | 2.19 | 2.37 | 1.56 | |
tr(s) | 1.27 | 0.53 | 0.6 | 0.55 | ||
OS (%) | 5.7 | 12.1 | 11.1 | 4.1 | ||
ISE | 0.36 | 0.21 | 0.23 | 0.20 | ||
ITSE | 0.10 | 0.03 | 0.04 | 0.02 | ||
ITAE | 0.33 | 0.15 | 0.17 | 0.07 |
P4 | IT2F-PID [80] | IT2F-PD+I [81] | PID | T1F-PID | IT2F-PID | SGT2F-PID | ||
case 1 | ISE | 0.036 | - | 2.78 × 10-4 | 3.32 × 10-4 | 2.53 × 10-4 | 1.9 × 10-4 | |
ITSE | - | - | 2.34 × 10-5 | 2.0 × 10-5 | 7.22 × 10-6 | 3.64 × 10-6 | ||
ITAE | - | - | 0.0036 | 9.35 × 10-4 | 4.52 × 10-4 | 1.62 × 10-4 | ||
RMSE | 0.0085 | - | 0.0118 | 0.0129 | 0.013 | 0.0097 | ||
IAE | 1.8001 | - | 0.0101 | 0.0076 | 0.0051 | 0.0033 | ||
case 2 | ISE | - | 1.5844 | 0.0045 | 0.0064 | 0.0069 | 0.005 | |
ITSE | - | - | 3.33 × 10-4 | 2.34 × 10-4 | 2.43 × 10-4 | 1.23 × 10-4 | ||
ITAE | - | - | 0.0119 | 0.003 | 0.0029 | 0.0014 | ||
RMSE | - | 0.0514 | 0.0472 | 0.0568 | 0.0586 | 0.0499 | ||
IAE | - | 7.4692 | 0.0379 | 0.029 | 0.0287 | 0.0191 |
P4 | IT2F-PD+I [81] | PID | T1F-PID | IT2F-PID | SGT2F-PID | ||
case 3 | ISE | 1.9203 | 0.0045 | 0.0064 | 0.0069 | 0.005 | |
ITSE | - | 3.56 × 10-4 | 2.34 × 10-4 | 2.43 × 10-4 | 1.25 × 10-4 | ||
ITAE | - | 0.0288 | 0.0035 | 0.0037 | 0.0019 | ||
RMSE | 0.04 | 0.0273 | 0.0328 | 0.0338 | 0.0288 | ||
IAE | 14.7056 | 0.0419 | 0.0292 | 0.0290 | 0.0192 | ||
case 4 | ISE | 2.527 | 0.0046 | 0.0066 | 0.007 | 0.0051 | |
ITSE | - | 6.47 × 10-4 | 5.9 × 10-4 | 5.5 × 10-4 | 4.0 × 10-4 | ||
ITAE | - | 0.0316 | 0.0172 | 0.0154 | 0.011 | ||
RMSE | 0.0649 | 0.0276 | 0.0331 | 0.0341 | 0.0291 | ||
IAE | 13.3876 | 0.044 | 0.033 | 0.032 | 0.022 | ||
case 5 | ISE | 0.094 | 2.78 × 10-4 | 3.32 × 10-4 | 2.53 × 10-4 | 1.90 × 10-4 | |
ITSE | - | 2.34 × 10-5 | 2.04 × 10-5 | 7.73 × 10-6 | 3.64 × 10-6 | ||
ITAE | - | 0.0036 | 0.0010 | 5.08 × 10-4 | 1.89 × 10-4 | ||
RMSE | 0.0125 | 0.0068 | 0.0074 | 0.0065 | 0.0056 | ||
IAE | 2.2475 | 0.0101 | 0.0077 | 0.0052 | 0.0033 | ||
case 6 | ISE | - | 0.0046 | 0.0065 | 0.0069 | 0.005 | |
ITSE | - | 7.53 × 10-4 | 3.67 × 10-4 | 3.79 × 10-4 | 1.75 × 10-4 | ||
ITAE | - | 0.0447 | 0.0169 | 0.0185 | 0.0091 | ||
RMSE | - | 0.0278 | 0.0329 | 0.0340 | 0.0289 | ||
IAE | - | 0.0508 | 0.0345 | 0.0347 | 0.022 |