Citation: Swarnali Sharma, Vitaly Volpert, Malay Banerjee. Extended SEIQR type model for COVID-19 epidemic and data analysis[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7562-7604. doi: 10.3934/mbe.2020386
[1] | World Health Organization, Coronavirus disease 2019. cited March 15, 2020. Available from: https://www.who.int/health-topics/coronavirus. |
[2] | Editorial, The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health- The latest 2019 novel coronavirus outbreak in Wuhan, China, Int. J. Infect. Dis., 91 (2020), 264-266. |
[3] | Worldometer. Available from: https://www.worldometers.info/coronavirus. |
[4] | World Health Organization, Population-based age-stratified seroepidemiological investigation protocol for covid-19 virus infection, 2020. |
[5] | N. M. Ferguson, D. Laydon, G. Nedjati-Gilani, N. Imai, K. Ainslie, M. Baguelin, et al., Impact of non-pharmaceutical interventions (npis) to reduce covid-19 mortality and healthcare demand, London: Imperial College COVID-19 Response Team, 10 (2020), 10.25561/77482. |
[6] | B. Tang, N. L. Bragazzi, Q. Li, S. Tang, Y. Xiao, J. Wu, An updated estimation of the risk of transmission of the novel coronavirus (2019-ncov), Infect. Dis. Model., 5 (2020), 248-255. |
[7] | B. J. Quilty, S. Clifford, S. Flasche, R. M. Eggo, Effectiveness of airport screening at detecting travellers infected with novel coronavirus (2019-nCoV). Euro. Surveil., 25 (2020), 200080. |
[8] | M. Shen, Z. Peng, Y. Xiao, L Zhang, Modelling the epidemic trend of the 2019 novel coronavirus outbreak in china, bioRxiv, 2020. |
[9] | A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, et al., Early dynamics of transmission and control of COVID-19: a mathematical modelling study, Lancet Infect. Dis., 20 (2020), 553-558. doi: 10.1016/S1473-3099(20)30144-4 |
[10] | J. Yuan, M. Li, G. Lv, Z. K. Lu, Monitoring transmissibility and mortality of COVID-19 in Europe, Int. J. Infec. Dis., 95 (2020), 311-325. doi: 10.1016/j.ijid.2020.03.050 |
[11] | G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. D. Filippo, A. D. Matteo, et al., Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nat. Med., (2020), 1-6. |
[12] | Q. Lin, S. Zhao, D. Gao, Y. Lou, S. Yang, S. S. Musa, et al., A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action, Int. J. Infect. Dis., 93 (2020), 211-216. doi: 10.1016/j.ijid.2020.02.058 |
[13] | T. Chen, J. Rui, Q. Wang, Z. Zhao, J. Cui, L. Yin, A mathematical model for simulating the phase-based transmissibility of a novel coronavirus, Infect. Dis. Poverty, 9 (2020) 1-8. |
[14] | J. T. Wu, K. Leung, G. M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-ncov outbreak originating in wuhan, china: a modelling study, Lancet, 395 (2020), 689-697. |
[15] | B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, et al., Estimation of the transmission risk of the 2019-nCov and its implication for public health interventions, J. Clin. Med., 9 (2020), 462. |
[16] | J. M. Read, J. R. Bridgen, D. A. Cummings, A. Ho, C. P. Jewell, Novel coronavirus 2019-nCov: early estimation of epidemiological parameters and epidemic predictions, medRxiv, 2020. |
[17] | S. Zhao, Q. Lin, J. Ran, S. S. Musa, G. Yang, W. Wang, et al., Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak, Int. J. Infect. Dis., 92 (2020), 214-217. doi: 10.1016/j.ijid.2020.01.050 |
[18] | J. Chen, Pathogenicity and transmissibility of 2019-nCoV - a quick overview and comparison with other emerging viruses, Microb. infect., 22 (2020), 69-71. doi: 10.1016/j.micinf.2020.01.004 |
[19] | R. Singh, R. Adhikari, Age-structured impact of social distancing on the covid-19 epidemic in India, arXiv preprint, (2020), arXiv: 2003.12055. |
[20] | U, Avila-Ponce de Leon, A, G. C. Perez, E, Avila-Vales, An SEIARD epidemic model for COVID-19 in Mexico: mathematical analysis and state-level forecast, Chaos Solitons Fractals, 140 (2020), 110165. |
[21] | J. H. Rojas, M. Paredes, M. Banerjee, O. Akman, A. Mubayi, Mathematical Modeling & the Transmission Dynamics of SARS-CoV-2 in Cali, Colombia: Implications to a 2020 Outbreak & public health preparedness, medRxiv, (2020), https://doi.org/10.1101/2020.05.06.20093526. |
[22] | E. Shim, G. Chowell, Regional variability in time-varying transmission potential of COVID-19 in South Korea, medRxiv, (2020), https://doi.org/10.1101/2020.07.21.20158923. |
[23] | A. Srivastava, G. Chowell, Understanding Spatial Heterogeneity of COVID-19 Pandemic Using Shape Analysis of Growth Rate Curves, medRxiv, (2020), https://doi.org/10.1101/2020.05.25.20112433. |
[24] | Y. Belgaid, M. Helal, E. Venturino, Analysis of a model for Coronavirus spread, Mathematics, 8(5), (2020), 820. |
[25] | J. Dolbeault, G. Turinici, Heterogeneous social interactions and the Covid-19 lockdown outcome in a multi-group SEIR model, Math. Model. Nat. Phenom., 15 (2020), 36. |
[26] | M. Kochanczyk, F. Grabowski, T. Lipniacki, Dinamics of Covid-19 pandemic at constant and time-dependent contact rates, Math. Model. Nat. Phenom., 15 (2020), 28. |
[27] | S. G. Krantz, P. Polyakov, A. S. R. S. Rao, True epidemic growth construction through harmonic analysis, J. Theor. Biol., 494, (2020), 110243. |
[28] | S. Sinha, Epidemiological dynamics of the COVID-19 pandemic in India: an interim assessment, Stat. Appl., 18 (2020), 333-350. |
[29] | H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, 2003. |
[30] | A. V. Emmanuelle, Lifting the COVID-19 lockdown: different scenarios for France, Math. Model. Nat. Phenom., (2020), In press. |
[31] | L. D. Domenico, G. Pullano, C. E. Sabbatini, P. Y. Boelle, V. Colizza, Expected impact of reopening schools after lockdown on COVID-19 epidemic in Ile-de-France, medRxiv, (2020), https://doi.org/10.1101/2020.05.08.20095521. |
[32] | P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6 |
[33] | O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382. |
[34] | F. Brauer, C. Castillo-Chavez, Z. Feng, Mathematical Models in Epidemiology, Springer, New York, 2019. |
[35] | M. Martcheva, An Introduction to Mathematical Epidemiology, Springer, New York, 2015. |
[36] | V. Andreasen, The final size of an epidemic and its relation to the basic reproduction number, Bull. Math.Biol., 73 (2011), 2305-2321. doi: 10.1007/s11538-010-9623-3 |
[37] | R. J. Freund, W. J. Wilson, D. L. Mohr, Statistical Methods, Elsevier, Canada, 2010. |
[38] | C. T. Kelley, Iterative Methods for Optimization, SIAM, Philadelphia, USA, 1999. |
[39] | D. Caccavo, Chinese and Italian COVID-19 outbreaks can be correctly described by a modified SIRD model, medRxiv, (2020), https://doi.org/10.1101/2020.03.19.20039388. |
[40] | N. M. Duggan, S. M. Ludy, B. C. Shannon, A. T. Reisner, S. R. Wilcox, Is novel coronavirus 2019 reinfection possible? Interpreting dynamic SARS-CoV-2 test results through a case report, Am. J. Emerg. Med., (2020), in press. |
[41] | V. Capasso, S. Gabriella, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61. doi: 10.1016/0025-5564(78)90006-8 |