Citation: Mario Santana-Cibrian, Manuel A. Acuña-Zegarra, Jorge X. Velasco-Hernandez. Lifting mobility restrictions and the effect of superspreading events on the short-term dynamics of COVID-19[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 6240-6258. doi: 10.3934/mbe.2020330
[1] | J. Dehning, J. Zierenberg, F. P. Spitzner, M. Wibral, J. P. Neto, M. Wilczekand, et al., Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions, Science, 369 (2020), eabb9789. doi: 10.1126/science.abb9789 |
[2] | T. Sardar, S. S. Nadim, S. Rana, J. Chattopadhyay, Assessment of Lockdown Effect in Some States and Overall India: A Predictive Mathematical Study on COVID-19 Outbreak, Chaos Solitons Fractals, 139 (2020), 110078. doi: 10.1016/j.chaos.2020.110078 |
[3] | A. L. Bertozzi, E. Franco, G. Mohler, M. B. Short, D. Sledge, The challenges of modeling and forecasting the spread of COVID-19, Proc. Natl. Acad. U S A, 117 (2020), 16732-16738. doi: 10.1073/pnas.1914072117 |
[4] | H. S. Badr, H. Du, M. Marshall, E. Dong, M. M. Squire, L. M. Gardner, Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study, Lancet Infect. Dis., DOI: 10.1016/S1473-3099(20)30553-3. |
[5] | C. N. Ngonghala, E. Iboi, S. Eikenberry, M. Scotch, C. R. MacIntyre, M. H. Bonds, et al., Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel Coronavirus, Math. Biosci., 325 (2020), 108364. doi: 10.1016/j.mbs.2020.108364 |
[6] | M. A. Acuña-Zegarra, M. Santana-Cibrian, J. X. Velasco-Hernandez, Modeling behavioral change and COVID-19 containment in Mexico: A trade-off between lockdown and compliance, Math. Biosci., 325 (2020), 108370. doi: 10.1016/j.mbs.2020.108370 |
[7] | M. Santana-Cibrian, M. A. Acuna-Zegarra, J. X. Velasco-Hernandez, Flattening the curve and the effect of atypical events on mitigation measures in Mexico: a modeling perspective, preprint, May 2020, medRxiv: 10.1101/2020.05.21.20109678. |
[8] | S. Lee, T. Kim, E. Lee, C. Lee, H. Kim, H. Rhee, et al., Clinical course and molecular viral shedding among asymptomatic and symptomatic patients with SARS-CoV-2 infection in a community treatment center in the Republic of Korea, JAMA Intern. Med., DOI: 10.1001/jamainternmed.2020.3862. |
[9] | L. Zou, F. Ruan, M. Huang, L. Liang, H. Huang, Z. Hong, et al., SARS-CoV-2 viral load in upper respiratory specimens of infected patients, N. Engl. J. Med., 382 (2020), 1177-1179. doi: 10.1056/NEJMc2001737 |
[10] | N. Lozano, Ssa estima pico máximo de casos por covid-19 entre 8 y 10 de mayo, 2020. Available from: https://www.politico.mx/minuta-politica/minuta-politica-gobierno-federal/ssa-estima-pico-m%C3%A1ximo-de-casos-por-covid-19-entre-8-y-10-de-mayo/, Político.mx. |
[11] | E. Castillo, En valle de méxico se prevé fin de epidemia por coronavirus el 25 de junio: López-gatell, 2020. Available from: https://www.milenio.com/politica/coronavirus-valle-mexico-preven-epidemia-25-junio, Milenio. |
[12] | R. H. Mena, J. X. Velasco-Hernandez, N. B. Mantilla-Beniers, G. A. Carranco-Sapiéns, L. Benet, D. Boyer, et al., Using posterior predictive distributions to analyse epidemic models: COVID-19 in Mexico City, Phys. Biol., (2020). DOI: 10.1088/1478-3975/abb115. |
[13] | Gobierno de la Ciudad de México, Datos abiertos, 2020. Available from: https://datos.cdmx.gob.mx/explore/dataset/base-covid-sinave/table/. |
[14] | K. Roosa, Y. Lee, R. Luo, A. Kirpich, R. Rothenberg, J. Hyman, et al., Real-time forecasts of the covid-19 epidemic in China from February 5th to February 24th, 2020, Infect. Disease Model., 5 (2020), 256-263. doi: 10.1016/j.idm.2020.02.002 |
[15] | C. P. Robert, G. Casella, Monte Carlo Statistical Methods, 2nd edition, Springer Texts in Statistics, Springer New York, 2004. |
[16] | J. P. Kaipio, E. Somersalo, Statistical and Computational Inverse Problems, vol. 160 of Applied Mathematical Sciences, Springer-Verlag, New York, 2005. |
[17] | Gobierno de la Ciudad de México, Información laboral, 2020. Available from: http://www.stps.gob.mx/gobmx/estadisticas/pdf/perfiles/perfil%20distrito%20federal.pdf, |
[18] | R. N. Thompson, J. E. Stockwin, R. D. van Gaalen, J. A. Polonsky, Z. N. Kamvar, P. A. Demarsh, et al., Improved inference of time-varying reproduction numbers during infectious disease outbreaks, Epidemics, 29 (2019), 100356. doi: 10.1016/j.epidem.2019.100356 |
[19] | A. Cori, N. M. Ferguson, C. Fraser, S. Cauchemez, A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics, Am. J. Epidemiol., 178 (2013), 1505-1512. doi: 10.1093/aje/kwt133 |
[20] | H. Nishiura, N. M. Linton, A. R. Akhmetzhanov, Serial interval of novel coronavirus (COVID-19) infections, Int. J. Infect. Dis., 93 (2020), 284-286. doi: 10.1016/j.ijid.2020.02.060 |
[21] | Gobierno de la Ciudad de México, Sem áforo epidemiológico COVID-19, 2020. Available from: https://semaforo.covid19.cdmx.gob.mx/tablero/, 2020. |
[22] | X. Rong, L. Yang, H. Chu, M. Fan, Effect of delay in diagnosis on transmission of COVID-19, Math. Biosci. Eng., 17 (2020), 2725-2740. doi: 10.3934/mbe.2020149 |
[23] | C. Yang, J. Wang, A mathematical model for the novel coronavirus epidemic in Wuhan, China, Math. Biosci. Eng., 17 (2020), 2708-2724. doi: 10.3934/mbe.2020148 |
[24] | L. Wang, J. Wang, H. Zhao, Y. Shi, K. Wang, P. Wu, et al., Modelling and assessing the effects of medical resources on transmission of novel coronavirus (COVID-19) in Wuhan, China, Math. Biosci. Eng., 17 (2020), 2936-2949. doi: 10.3934/mbe.2020165 |
[25] | G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo, et al., Modelling the covid-19 epidemic and implementation of population-wide interventions in Italy, Nat. Med., 26 (2020), 855-860. doi: 10.1038/s41591-020-0883-7 |
[26] | H. Zhao, Z. Feng, Staggered release policies for covid-19 control: Costs and benefits of relaxing restrictions by age and risk, Math. Biosci., 326 (2020), 108405. doi: 10.1016/j.mbs.2020.108405 |
[27] | E. Estrada, COVID-19 and SARS-CoV-2. Modeling the present, looking at the future, Phys. Rep., 869 (2020), 1-51. doi: 10.1016/j.physrep.2020.07.005 |
[28] | J. A. Christen, C. Fox, A general purpose sampling algorithm for continuous distributions (the t-walk), Bayesian Anal., 5 (2010), 263-281. doi: 10.1214/10-BA603 |