Citation: Harry J. Dudley, Zhiyong Jason Ren, David M. Bortz. Competitive exclusion in a DAE model for microbial electrolysis cells[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 6217-6239. doi: 10.3934/mbe.2020329
[1] | L. Lu, Z. J. Ren, Microbial electrolysis cells for waste biorefinery: A state of the art review, Bioresour. Technol., 215 (2016), 254-264. |
[2] | B. E. Logan, D. Call, S. Cheng, H. V. M. Hamelers, T. H. J. A. Sleutels, A. W. Jeremiasse, et al., Microbial electrolysis cells for high yield hydrogen gas production from organic matter, Environ. Sci. Technol., 42 (2008), 8630-8640. |
[3] | L. Lu, D. Hou, X. Wang, D. Jassby, Z. J. Ren, Active H2 harvesting prevents methanogenesis in microbial electrolysis cells, Environ. Sci. Technol. Lett., 3 (2016), 286-290. |
[4] | L. Lu, W. Vakki, J. A. Aguiar, C. Xiao, K. Hurst, M. Fairchild, et al., Unbiased solar H2 production with current density up to 23 mA cm-2 by Swiss-cheese black Si coupled with wastewater bioanode, Energy Environ. Sci., 12 (2019), 1088-1099. doi: 10.1039/C8EE03673J |
[5] | T. Chookaew, P. Prasertsan, Z. J. Ren, Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell, N. Biotechnol., 31 (2014), 179-184. |
[6] | L. Lu, N. Ren, D. Xing, B. E. Logan, Hydrogen production with effluent from an ethanol-h2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell, Biosens. Bioelectron., 24 (2009), 3055-3060. |
[7] | H. Dudley, L. Lu, Z. Ren, D. Bortz, Sensitivity and bifurcation analysis of a Differential-Algebraic equation model for a microbial electrolysis cell, SIAM J. Appl. Dyn. Syst., 709-728. |
[8] | R. P. Pinto, B. Srinivasan, A. Escapa, B. Tartakovsky, Multi-population model of a microbial electrolysis cell, Environ. Sci. Technol., 45 (2011), 5039-5046. |
[9] | E G & G Services, U.S. Department of Energy, Fuel cell handbook, 7th edition, 2004. |
[10] | R. Pinto, B. Srinivasan, M. F. Manuel, B. Tartakovsky, A two-population bio-electrochemical model of a microbial fuel cell, Bioresour. Technol., 101 (2010), 5256-5265. |
[11] | B. E. Logan, Microbial fuel cells: Methodology and technology, Environ. Sci. Technol., 40 (2006), 5181-5192. |
[12] | A. Kato Marcus, C. I. Torres, B. E. Rittmann, Conduction-based modeling of the biofilm anode of a microbial fuel cell, Biotechnol. Bioeng., 98 (2007), 1171-1182. |
[13] | D. A. Noren, M. A. Hoffman, Clarifying the butler-volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models, J. Power Sources, 152 (2005), 175-181. |
[14] | S. Hsu, S. Hubbell, P. Waltman, A mathematical theory for Single-nutrient competition in continuous cultures of Micro-organisms, SIAM J. Appl. Math., 32 (1977), 366-383. |
[15] | S. Hsu, Limiting behavior for competing species, SIAM J. Appl. Math., 34 (1978), 760-763. |
[16] | S. R. Hansen, S. P. Hubbell, Single-nutrient microbial competition: Qualitative agreement between experimental and theoretically forecast outcomes, Science, 207 (1980), 1491-1493. |
[17] | H. L. Smith, P. Waltman, The Theory of the Chemostat: Dynamics of microbial competition, Cambridge University Press, 1995. |
[18] | T. Sari, F. Mazenc, Global dynamics of the chemostat with different removal rates and variable yields, Math. Biosci. Eng., 8 (2011), 827-840. |
[19] | R. A. Armstrong, R. McGehee, Competitive exclusion, Am. Nat., 115 (1980), 151-170. |
[20] | D. J. Hill, I. M. Y. Mareels, Stability theory for differential/algebraic systems with application to power systems, IEEE Trans. Circuits Syst. I, Reg. Papers, 37 (1990), 1416-1423. |
[21] | R. Riaza, Differential-algebraic systems: Analytical aspects and circuit applications, World Scientific, 2008. |
[22] | R. März, Practical Lyapunov stability criteria for differential algebraic equations, Humboldt-Univ., Fachbereich Mathematik, Informationsstelle, Berlin, 1991. |
[23] | R. E. Beardmore, Stability and bifurcation properties of index-1 DAEs, Numer. Algorithms, 19 (1998), 43-53. |
[24] | R. Riaza, Stability issues in regular and noncritical singular DAEs, Acta Appl. Math., 73 (2002), 301-336. |
[25] | J. LaSalle, Some extensions of Liapunov's second method, IRE Trans. Circuit Theory, 7 (1960), 520-527. |
[26] | S. Hsu, K. Cheng, S. Hubbell, Exploitative competition of microorganisms for two complementary nutrients in continuous cultures, SIAM J. Appl. Math., 41 (1981), 422-444. |
[27] | M. M. Ballyk, G. S. K. Wolkowicz, Exploitative competition in the chemostat for two perfectly substitutable resources, Math. Biosci, 118 (1993), 127-180. |
[28] | B. Li, G. Wolkowicz, Y. Kuang, Global Asymptotic behavior of a Chemostat model with two pPerfectly complementary resources and distributed delay, SIAM J. Appl. Math., 60 (2000), 2058-2086. |
[29] | B. Li, H. Smith, How many species can two essential resources support?, SIAM J. Appl. Math., 62 (2001), 336-366. |
[30] | K. Brenan, S. Campbell, L. Petzold, Numerical solution of Initial-value problems in Differential-algebraic equations, Classics in Applied Mathematics, Society for Industrial and Applied Mathematics, 1995. |
[31] | A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, et al., SUNDI-ALS: Suite of nonlinear and differential/algebraic equation solvers, ACM Trans. Math. Softw., 31 (2005), 363-396. |
[32] | G. Wolkowicz, Z. Lu, Global dynamics of a mathematical model of competition in the Chemostat: General response functions and differential death rates, SIAM J. Appl. Math, 52 (1992), 222-233. |