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Abstract: Microbial electrolysis cells (MECs) are devices that employ electroactive bacteria to per-
form extracellular electron transfer, enabling hydrogen generation from biodegradable substrates. In
our previous work, we developed and analyzed a differential-algebraic equation (DAE) model for
MECs. The model resembles a chemostat or continuous stirred tank reactor (CSTR). It consists of
ordinary differential equations for concentrations of substrate, microorganisms, and an extracellular
mediator involved in electron transfer. There is also an algebraic constraint for electric current and
hydrogen production. Our goal is to determine the outcome of competition between methanogenic ar-
chaea and electroactive bacteria, because only the latter contribute to electric current and the resulting
hydrogen production. We investigate asymptotic stability in two industrially relevant versions of the
model. An important aspect of many chemostat models is the principle of competitive exclusion. This
states that only microbes which grow at the lowest substrate concentration will survive as t → ∞.

We show that if methanogens can grow at the lowest substrate concentration, then the equilib-
rium corresponding to competitive exclusion by methanogens is globally asymptotically stable. The
analogous result for electroactive bacteria is not necessarily true. In fact we show that local asymp-
totic stability of competitive exclusion by electroactive bacteria is not guaranteed, even in a simplified
version of the model. In this case, even if electroactive bacteria can grow at the lowest substrate con-
centration, a few additional conditions are required to guarantee local asymptotic stability. We provide
numerical simulations supporting these arguments. Our results suggest operating conditions that are
most conducive to success of electroactive bacteria and the resulting current and hydrogen production
in MECs. This will help identify when producing methane or electricity and hydrogen is favored.
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equation; LaSalle’s invariance principle

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2020329


6218

1. Introduction

Microbial electrolysis cells (MECs) are an emerging technology that employs microorganisms to
recover energy and resources from organic waste [1]. Bacteria on an electroactive anode biofilm oxi-
dize biodegradable substrate and transfer electrons, thereby generating electrical current and releasing
protons (H+) [2]. The protons then recombine to form hydrogen at the cathode. A small voltage (0.2–
0.8 V) is needed to overcome the thermodynamic barrier, which is much lower than traditional water
electrolysis (1.8–3.5 V) and can be supplied by a small solar panel, low-grade heat, or microbial fuel
cells (MFCs), all of which can be available onsite [1,2]. The gap of energy input between microbial and
pure electrochemical electrolysis is provided by chemical energy stored in the organics. While the elec-
troactive bacteria facilitate hydrogen production, methanogenic archaea consume the same substrate
to produce methane, a product which is less energy efficient [3]. As a result, methanogenesis leads to
decreased efficiency of the system. Since methane is suboptimal as an energy source, operators should
seek conditions where electroactive bacteria outcompete methanogens. This is the motivation for our
investigation of the competitive exclusion principle in MECs. MEC technology has several advantages
over other resource recovery and hydrogen production methods. Microbial electrolysis reduces energy
use compared to water splitting because some of the energy is derived from embedded energy in the
waste biomass [4]. MECs are also more efficient than other methods using renewable wastewater,
such as fermentative hydrogen production [5]. In fact, [6] demonstrated up to 96% recovery of the
maximum theoretical yield of hydrogen in MECs operated using fermentation effluent.

In our previous work [7], we analyzed and validated a regular, semi-explicit, index 1 differential-
algebraic equation (DAE) model for a single substrate MEC [8]. The DAE system is an extended ver-
sion of an ordinary differential equation (ODE) model for chemostats, also known as continuous stirred
tank reactors (CSTRs). Besides an ODE system that describes the rate of change of concentrations of
the microorganism populations, the biodegradable substrate, and an extracellular mediator involved in
electron transfer, the system also includes an algebraic constraint that relates electric current through
the external circuit to the concentrations of the electroactive bacteria and the mediator molecule. This
constraint accounts for voltage losses that occur in practice. This construct had been used previously [8]
to avoid solving a partial differential equation for the transfer of electric current. A constraint of this
form is also commonly used in chemical fuel cell models [9]. Our group has demonstrated computa-
tionally that transcritical bifurcations in the dilution rate determine whether electroactive bacteria or
methanogens or both will survive as stable equilibria [7]. The outcome of competition for substrate is
a key question because the types of microbes that exist at the system’s stable equilibria determine the
electric current and hydrogen production rate. Hydrogen production at the stable equilibrium is pos-
sible only if electroactive bacteria are present to generate the needed current. Our efforts here provide
answers by characterizing stability of equilibria for two versions of the MEC model, without reference
to specific parameter values.

Our goal is to build upon extensive mathematical literature on chemostats to characterize stabil-
ity of equilibria in the MEC model. One of the main conclusions in the chemostat literature is that
if one or more microbes can grow at a lower substrate concentration than the others, then there is
a globally asymptotically stable equilibrium where only those microbes have nonzero concentration.
This phenomenon is often referred to as competitive exclusion and it holds under a variety of model as-
sumptions. Unfortunately, the MEC analysis is complicated by the fact that growth of the mixed culture
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Figure 1. Diagram of an MEC. An organic substrate flows into the MEC at concentration
S 0 and out at concentration S (t). In the inner layer of the anodic biofilm (highlighted by
the red box), electroactive bacteria (green spheres) oxidize the organic substrate and reduce
an extracellular mediator, M, thereby producing CO2 and protons and transferring electrons
extracellularly. Methanogenic microorganisms (blue spheres) also consume the substrate,
producing CH4 in addition to CO2 and thereby decreasing efficiency of the system. Only
methanogens are present in the outer layer. Hydrogen is produced via a reduction reaction as
protons in solution react with electrons at the cathode. An external voltage must be applied
from a power source (labeled PS) because the process is endothermic.

bacteria is a nonlinear function of two interdependent variables, the concentrations of both substrate
and mediator molecules. In spite of this, we demonstrate that competitive exclusion by methanogens
is globally asymptotically stable. We also provide additional conditions which are necessary for local
asymptotic stability of electroactive-only equilibria in a simplified model. These conditions suggest
that the criteria for competitive exclusion by electroactive bacteria are not as straightforward.

1.1. Model

Versions of the semi-explicit index 1 DAE model for the MEC have been described previously
in [7, 8, 10]. Our model differs from [8] by not including fermenting microorganisms that convert a
complex substrate into a single compound such as acetate. Additionally, this model does not include a
separate methanogen-only outer biofilm layer. We consider the following system, extended to include
finitely many microbes of each type:

Ṡ =D (S 0 − S ) −
nm∑
j=1

µm, j(S )
ym, j

Xm, j −

ne∑
j=1

µe, j(S ,M)
ye, j

Xe, j, (1.1)

Ẋm, j =
(
µm, j (S ) − Kd,m, j

)
Xm, j, for j = 1, 2, . . . , nm, (1.2)
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Ẋe, j =
(
µe, j (S ,M) − Kd,e, j

)
Xe, j, for j = 1, 2, . . . , ne, (1.3)

Ṁ =γI − YM

ne∑
j=1

µe, j(S ,M)
ye, j

Xe, j, (1.4)

0 =∆E − Rint(Xe)I −
RT
mF

[
ln

(
Mtotal

Mtotal − M

)
+ 2arcsinh

(
I

2Asur,AI0

)]
. (1.5)

with initial conditions 0 < S (0) ≤ S 0, 0 <
∑

j Xm, j(0), 0 <
∑

j Xe, j(0), 0 < M(0) < Mtotal, and
0 < I(0). The differential equations represent concentrations, so we are only interested in solutions
with nonnegative concentrations. We assume that initial substrate concentration, S (0), is less than or
equal to the influent concentration, S 0. We also assume that initial current, I(0), is positive, due to
the nonzero electroactive bacteria concentration and a startup operational period. All of the model
parameters are positive.

A single substrate with concentration S flows into the tank at constant rate DS 0, where D = F/V
is the flow rate per volume and S 0 is the fixed influent substrate concentration. Let Xm ∈ R

nm , and
Xe ∈ R

ne represent the concentrations of microorganisms. The anodic biofilm contains nm methanogen
species with concentrations Xm, j for j = 1, 2, . . . , nm, and ne electroactive bacteria species with con-
centrations Xe, j for j = 1, 2, . . . , ne. Substrate consumption is proportional to monotonically increasing
microbial growth rates, µm, j(S ) or µe, j(S ,M), with constants of proportionality 1/ym, j or 1/ye, j, respec-
tively. Each microbe also has a constant decay rate, Kd,m, j or Kd,e, j. R is the ideal gas constant, T
is the temperature, m is the number of moles of electrons transferred per mole of mediator, and F is
Faraday’s constant. γ is a shorthand for the mediator molar mass divided by the product of the MEC
volume and the number of electrons transferred per mole of mediator, mV .

While methanogens only consume the substrate, electroactive bacteria also consume the oxidized
form of a mediator molecule, Mox, that is involved in electron transfer. The mediator exists in oxidized
and reduced forms, Mox and Mred, respectively, such as NAD+ and NADH [10]. The mediator has
a constant maximum concentration, Mtotal = Mox + Mred. Following [10], electroactive bacteria are
assumed to transfer electrons via oxidation reduction reactions of the form

S + Mox → Mred + CO2, (1.6)
Mred → Mox + e− + H+. (1.7)

These reactions are represented in the diagram in Figure 1. The oxidized mediator is replenished at
a rate proportional to the electric current in the device, I, as the reduced mediator molecules transfer
electrons to the anode. YM is the mediator yield of the reactions (1.6) and (1.7). To simplify notation
in the differential equations, we will refer to the oxidized mediator, Mox, simply as M.

The electric current is related to hydrogen production [7]. This current can be determined by ac-
counting for the voltage losses in the system. Microbial electrolysis is endothermic, so some small ex-
ternal voltage, Eapplied, is required. The applied voltage may be opposed by some counter-electromotive
force, ECEF. There are also several sources of voltage losses that occur in practice. Ohmic losses, ηohm,
arise from various types of resistance in the circuit. Activation losses, ηact, arise from the activation
energy of the oxidation-reduction reactions occurring in the cell. Concentration losses, ηconc, arise from
certain processes that limit the concentration of reactants at the anode and the cathode [9, 11]. All of
these can be expressed in the following electrochemical balance equation,

∆E B Eapplied − ECEF = ηohm (Xe, I) + ηact,A + ηact,C (I) + ηconc,A (M) + ηconc,C, (1.8)

Mathematical Biosciences and Engineering Volume 17, Issue 5, 6217–6239.



6221

where subscripts A and C represent the anode and cathode, respectively. Previous models have ignored
concentration losses at the cathode, ηconc,C, because hydrogen molecules should diffuse away from the
cathode rapidly. They have also neglected activation losses at the anode, ηact,A, under the assumption
that the MEC operates with higher voltage losses at the cathode. However, these voltage losses could
be included by the general constraint in Section 3. Ohmic losses can be calculated from Ohm’s law,
ηohm (Xe, I) = Rint(Xe)I where Rint(Xe) is the internal resistance. Rint(Xe) is a decreasing function
of the total electroactive bacteria population because less electroactive bacteria is effectively greater
resistance in the circuit. Also, Rmin ≤ Rint(Xe) ≤ Rmax with maximum resistance when there are zero
electroactive bacteria and minimum resistance as

∑
j Xe, j → ∞. Following [12], concentration losses

at the anode are modeled by the Nernst equation,

ηconc,A (M) =
RT
mF

ln
(

Mtotal

Mtotal − M

)
. (1.9)

Equation (1.9) assumes that the reference reduced mediator concentration is equal to the total extra-
cellular mediator concentration, Mtotal [8, 10]. Activation losses at the cathode are calculated using an
approximation to the Butler-Volmer equation for the relationship between electric current and poten-
tial at an electrode [8]. Standard simplifying assumptions are that the reaction occurs in one step and
that the symmetry coefficient (or the fraction of activation loss that affects the rate of electrochemical
transformation) is β = 0.5. With these assumptions we can write

ηact,C (I) = 2
RT
mF

arcsinh
(

I
2Asur,AI0

)
, (1.10)

where Asur,A is the anode surface area and I0 is the reference exchange current density. See [13] for a
discussion of approximations to the Butler-Volmer equation.

The following section discusses previous work that has characterized the equilibria of ODE systems
resembling equations (1.1) - (1.2) when Xe ≡ 0, M = 0, and I = 0. This paper extends some of those
results to analyze local asymptotic stability in a DAE system with additional equations (1.3) - (1.5),
representing current production by electroactive bacteria bacteria using an extracellular mediator.

1.2. Mathematical Background

There is a large body of literature proving that competitive exclusion occurs for ODE models re-
sembling equations (1.1) - (1.2) with Xe ≡ 0, M = 0, and I = 0. Essentially, stable equilibria may
exhibit either competitive exclusion (one species remains), coexistence (multiple species remain), or
total extinction (no species remain). Competitive exclusion is generic because coexistence requires
multiple species to share an identical parameter value and extinction requires all species to be inade-
quate competitors. [14] proved the competitive exclusion principle for an ODE model of chemostats
with microbial growth determined by Monod kinetics. [15] then provided a more elegant proof using a
Lyapunov function to guarantee global stability. These papers showed that, if survival was possible at
all, only the microorganism(s) that could grow at the lowest substrate concentration would survive at
the stable equilibria. The work also showed that coexistence was only possible if multiple species could
grow at the same smallest substrate concentration. [16] provided experiments verifying the theory of
competitive exclusion. Subsequently, dozens of authors have proven competitive exclusion occurs in
chemostats with various special assumptions. See the monograph [17] or the more recent paper [18]
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for more details. Besides microbial growth determined by Monod kinetics, we will also clarify our
results by focusing on a simplified case of general monotonically increasing growth rates with equal
washout rates and a general constraint [19].

To explain microbial electrolysis, the DAE model includes a differential equation for an extracellular
mediator involved in electron transfer to the anode as well as an algebraic constraint that determines
the electric current. The constraint turns this model into a regular, semi-explicit, index 1 DAE system
which does not fit into the previous ODE frameworks. In particular, the constraint (1.5) used in [7, 8]
requires a local representation; global results may not be possible unless the electric current constraint
can be solved globally for the electrical current, I. In this paper, we extend results from the chemostat
literature [15, 19] to analyze local asymptotic stability in the DAE system given by (1.1) - (1.5). The
following section provides an overview of the structure of the rest of the paper.

1.3. Overview

Section 2 reviews asymptotic stability in semi-explicit DAEs, which is essential to the analysis in
the following sections. In particular, we review the relationship between local asymptotic stablility
and the spectrum of the matrix pencil, as well as LaSalle’s invariance principle for global stability. In
Section 3, we use the spectrum of the matrix pencil of the DAE to characterize local asymptotic sta-
bility of equilibria in a simplified model with 1 species of each type, general monotonically increasing
kinetics, equal decay rates, and a general constraint. This reveals that competitive exclusion by elec-
troactive bacteria is not locally asymptotically stable unless the spectrum of the matrix pencil satisfies
certain conditions. Section 4 proves that competitive exclusion by methanogens is globally asymptot-
ically stable for the full MEC system (1.1) - (1.5) with multiplicative Monod kinetics, different decay
rates, and a constraint based on the Nernst and Butler-Volmer equations. However, the corresponding
result for electroactive bacteria is not likely to be true, as illustrated in the simple case in Section 3.
Numerical simulations supporting Theorem 2 and Corollary 2.1 are provided in Section 5. The con-
clusion in Section 6 summarizes results and points out that the conditions in Section 3 can be used to
evaluate numerically whether competitive exclusion by electroactive bacteria will be locally asymp-
totically stable or not. The conclusion also indicates that MEC operators will want to avoid operating
conditions where methanogens can survive at the lowest substrate value because those conditions make
competitive exclusion by methanogens globally asymptotically stable.

2. Asymptotic stability in semi-explicit DAEs

Before presenting results on asymptotic stability of MEC equilibria corresponding to extinction
and competitive exclusion, we will briefly review methods for determining asymptotic stability in
DAEs [20, 21]. The DAE framework is necessary because the constraint (1.5) does not admit a global
solution. The MEC system in equations (1.1) - (1.5) can be represented as a semi-explicit DAE,

ẋ = f (x, y),
0 = g(x, y),

(2.1)

where f : Rr × Rp → Rr and g : Rr × Rp → Rp. More generally, (2.1) can be viewed as a quasilinear
DAE,

A(z)ż = F(z), (2.2)
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where A ∈ C2(W0,R
r+p×r+p) and F ∈ C2(W0,R

r+p) on some open set W0. Both of these perspectives will
be useful. For quasilinear DAEs (2.2), local asymptotic stability of equilibria can be determined from
the spectrum of the matrix pencil, {σA(z)−F′(z) : σ ∈ C} [21–24]. An equilibrium point z∗ of a regular
DAE is asymptotically stable if Re(σ) < 0 for all elements in {σ ∈ C : det(σA(z∗) − F′(z∗))=0} [21]. In
the following section, we will use the spectrum of the matrix pencil to analyze local asymptotic stability
in a simplified model with 1 species of each type, general monotonically increasing kinetics, equal
decay rates, and a general constraint. The analysis shows that competitive exclusion by methanogens
is locally asymptotitcally stable, but the corresponding result is not necessarily true for competitive
exclusion by electroactive bacteria.

In the following, we assume that there is some open connected set Ω ⊂ Rr+p on which f and g are
twice continuously differentiable, and gz is nonsingular on Ω.

Condition 2.1. Suppose that, for some open, connected set Ω ∈ Rr+p, the following assumptions hold:

1. f , g ∈ C2(Ω);
2. gz(y, z) is nonsingular on Ω.

Points where gz is nonsingular are called regular. Under the assumption of nonsingularity of gz on
all of W0, (2.1) is a regular DAE, with index 1. By Condition 2.1, the implicit function theorem allows
one to describe g(y, z) = 0 as z = ψ(y) on some open neighborhood of y∗ in Rr, where ψ is twice
continuously differentiable. At least locally near (y∗, z∗), dynamics of the differential y-variables can
be described by a reduced ODE,

ẏ = f (y, ψ(y)). (2.3)

Solutions of (2.3) which satisfy the constraint, z = ψ(y), are solutions of the semi-explicit DAE (2.1)
[20, 21].

We will also use LaSalle’s Invariance principle [25] to analyze global asymptotic stability. A well
known property of regular semi-explicit, index 1 DAEs (2.1) is that they define a smooth vector field
on a smooth manifold [21].

Theorem 1. (LaSalle’s invariance principle) Consider the smooth dynamical system on an n−manifold
given by ẋ = X(x) and let Ω be a compact set in the manifold that is (positively) invariant under the
flow of X. Let V : Ω→ R, V ≥ 0, be a C1 function such that

V̇(x) =
∂V
∂x
· X ≤ 0

in Ω. Then every solution with initial point in Ω tends asymptotically to largest invariant set in Ω

where V̇(x) = 0. If this set is an isolated equilibrium, it is asymptotically stable.

The function V in Theorem 1 is called a Lyapunov function because LaSalle’s theorem generalizes
one due to Lyapunov where V̇ must be strictly less than zero. Section 4 applies a Lyapunov function
modified from [15] to the regular semi-explicit, index 1 DAE with finitely many species, multiplicative
Monod kinetics, different decay rates, and a C∞ constraint that is not explicitly solvable on Ω.

3. Local asymptotic stability in a simplified model

In this section, we consider local asymptotic stability of equilibrium points corresponding to ex-
tinction and competitive exclusion in a simplified MEC model. In contrast to chemostats, competitive
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exclusion by electroactive bacteria is not necessarily locally asymptotically stable, even when elec-
troactive bacteria can grow at the lowest substrate concentration. This is due to several issues, includ-
ing the nonlinear dependence of the growth of electroactive bacteria on both mediator and substrate
concentrations, as well as the form of the algebraic constraint which determines the electric current.
We present this analysis to promote clarity in in Section 4.

Here we simplify the model by assuming that there is one compartment for each type of microbe
(i.e., nm = ne = 1), that the biofilm decay rates are equal to the dilution rate (i.e., Kd,m,1 = Kd,e,1 = D).
This is a mathematical simplification that allows for the simple representation of the dimensionless
system (3.1) - (3.5). This greatly simplifies the presentation of conditions for local asymptotic stability.
However, it may not truly represent the biology of the biofilm. We allow for general monotonically
increasing kinetics with µm,1(S ) and µe,1(S ,M). We also allow for a general constraint, 0 = g(Xe,1,M, I),
with certain reasonable derivative conditions summarized below. These assumptions allow concise
conditions for local asymptotic stability. The presentation of results is simplified if we rescale the
model variables. We set

t =
τ

D
, S = sS 0, M = mYM, Xm,1 = xmS 0ym,1, Xe,1 = xeS 0ye,1.

This yields a system of the form

ṡ = (1 − s) − fm (s) xm − fe (s,m) xe, (3.1)
ẋm = ( fm (s) − 1) xm, (3.2)
ẋe = ( fe (s,m) − 1) xe, (3.3)
ṁ = ΓI − fe (s,m) xe, (3.4)
0 = g(xe,m, I), (3.5)

where
fm(s) B D−1µm,1(sS 0), fe(s,m) B D−1µe,1(sS 0,mYM), Γ B γ/YM,

and g(xe,m, I) represents the rescaled constraint. Derivatives are taken with respect to rescaled time τ.
Note that we can form the new variable u = s + xm + xe to obtain the system

u̇ = 1 − u,

ṁ = ΓI − S 0 fe (s,m) xe,

0 = g(xe,m, I).

Since u must satisfy u(t) = 1 + Ce−t, solutions of u(t) will approach 1 as t → ∞. Therefore, any
asymptotically stable equilibria will satisfy u = s + xm + xe = 1. We focus on equilibria corresponding
to extinction, where s = 1, and competitive exclusion, where either s + xm = 1 or s + xe = 1.

In this section, we will allow for general monotonically increasing growth functions and a general
constraint. We consider a class of kinetics where the growth rates and substrate consumption rates of
the microbes will increase with substrate concentration and also mediator concentration in the case
of electroactive bacteria. We require that attainable equilibria exist. We also make several physically
reasonable assumptions based on (1.5). These assumptions state that ohmic voltage losses in g will
decrease with xe (because a decrease in electroactive bacteria concentration is effectively an increase
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in resistance in the circuit), that concentration losses will increase with the oxidized mediator m as
the reduced mediator becomes limited at the anode, and that activation losses will increase with I.
Additionally, the absence of electroactive bacteria means that no electric current is present. Finally
we require unique solutions to g at two points. The requirements are summarized by the following
condition.

Condition 3.1. The kinetics and constraint in this section satisfy:

1. fm(0) = fe(0,m) = fe(s, 0) = 0;
2. fm(s) and fe(s,m) are continuously differentiable and monotonically increasing;
3. ∃ λm and λe(m) < 1 such that fm(λm) = 1 and fe(λe(m),m) = 1 for some m ∈ (0,m0];
4. ∂g

∂xe
> 0 and ∂g

∂m ,
∂g
∂I < 0;

5. xe = 0⇒ I = 0;
6. ∃ a unique positive m0 > 0 such that 0 = g(0,m0, 0);
7. ∃ a unique positive m∗ > 0 such that 0 = g

(
1 − λe(m∗),m∗,

1−λe(m∗)
Γ

)
.

The rescaled model (3.1) - (3.5) has several important equilibrium points corresponding to extinc-
tion of all microbes or competitive exclusion by one type of microbe. These depend on the substrate
(and mediator) values where each microbe attains zero net growth. λm and λe(m) are the substrate
concentrations where fm (s) = 1 and fe (s,m) = 1, respectively. In the case of the electroactive bacteria,
there is a curve s = λe(m) that satisfies fe (s,m) = 1. Biologically meaningful solutions will be located
in the interval (0, 1), which corresponds to attainable substrate concentrations. If ∀m, λm, λe(m) ≤ 0,
then no microbe can ever have positive net growth and if λm, λe(m) ≥ 1, then all microbes require
more substrate than is available given the influent substrate concentration. The model equilibria ex-
hibiting extinction and competitive exclusion are shown in Table 1. The mediator concentrations in
these equilibria are the solutions to the constraint, 0 = g(xe,m, I), at the corresponding points. In
particular, m0 is the unique positive solution to 0 = g (0,m0, 0) and m∗ is the unique positive solution
to 0 = g

(
1 − λe(m∗),m∗,

1−λe(m∗)
Γ

)
.

Table 1. Equilibrium points representing extinction and competitive exclusion in the MEC
system (3.1) - (3.5) with kinetics and constraints satisfying Condition 3.1.

Equilibrium Point Biological Meaning
p0 B (1, 0, 0,m0, 0) Extinction of all microbes

pm B (λm, 1 − λm, 0,m0, 0) Competitive exclusion by Methanogens
pe B

(
λe(m∗), 0, 1 − λe(m∗),m∗,

1−λe(m∗)
Γ

)
Competitive exclusion by Electroactive

The following mutually exclusive cases make one of the equilibrium points locally asymptotically
stable. In the final case, local asymptotic stability of the electroactive-only equilibrium also depends
on a discriminant that appears in two elements of the spectrum of the matrix pencil at pe; we denote
this discriminant by

δ B

(x∗e
∂ fe

∂m
∂g
∂I

+ x∗e
∂ fe

∂s
∂g
∂I

+ Γ
∂g
∂m

)2

− 4
∂g
∂I

x∗e

(
Γ
∂ fe

∂s
∂g
∂m

+ Γ
∂ fe

∂m
∂g
∂xe

+
∂ fe

∂m
∂g
∂I

) ∣∣∣pe
(3.6)

where x∗e = 1 − λe(m∗).
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1. (Total Extinction): If λm, λe(m0) < (0, 1), then p0 is locally asymptotically stable.
2. (Competitive Exclusion by Methanogens): If λm < λe (m0), then pm is locally asymptotically

stable.
3. (Competitive Exclusion by Electroactive): If λe(m∗) < λm, and either (1) δ < 0 or (2) Re

(√
δ
)
<

−
(
x∗e

∂ fe
∂m

∂g
∂I + x∗e

∂ fe
∂s

∂g
∂I + Γ

∂g
∂m

) ∣∣∣
pe

, then pe is locally asymptotically stable.

The extinction equilibrium, p0, will be unstable in general because we expect at least one microbe to
be an adequate competitor with a λ? value in (0, 1). The spectrum of the matrix pencil at p0 is{

−1, fm (1) − 1, fe (1,m0) − 1,−Γ
∂g
∂m

/
∂g
∂I

∣∣∣
(0,m0,0)

}
,

so p0 is unstable as long as either λm or λe(m0) are in the interval (0, 1). In this case, a microbe
introduced into the system may grow in the presence of plentiful substrate. If the methanogen can
grow at the lowest substrate value, then the corresponding methanogen-only equilibrium, pm, will be
locally asymptotically stable. The spectrum of the matrix pencil at pm is{

−1, (λm − 1) f ′m (λm) − 1, fe (λm,m0) − 1,−Γ
∂g
∂m

/
∂g
∂I

∣∣∣
(0,m0,0)

}
.

If Case 2 holds, then only xm will be able to attain positive net growth near the corresponding equilib-
rium. Finally, the spectrum of the matrix pencil at pe is {σ1, σ2, σ3, σ4} where

σ1 = −1,
σ2 = fm (λe(m∗)) − 1,

σ3,4 =
−x∗e

∂ fe
∂m

∂g
∂I − x∗e

∂ fe
∂s

∂g
∂I − Γ

∂g
∂m ±

√
δ

2∂g
∂I

∣∣∣
pe
.

If Case 3 holds, then pe is locally asymptotically stable.
Cases 1 - 3 provide conditions for local asymptotic stability of each of the equilibria points p0, pm,

and pe. These apply for any continuously differentiable and monotonically increasing growth functions
fm(s) and fe(s,m) and any g that satisfies Condition 3.1. The conditions in Cases 1 - 3 can be checked
numerically to determine if a parametrized model permits a locally asymptotically stable equilibrium
where only the most competitive electroactive species persists. Unlike the methanogen-only equilibria,
local asymptotic stability of the electroactive-only equilibria is not guaranteed when the electroactive
bacteria can survive at the lowest substrate value. This means it is unlikely that chemostat results
extend to electroactive-only equilibria in an MEC. However, we can assert that for Monod kinetics with
different decay rates and a constraint based on the Nernst and Butler-Volmer equations, methanogen-
only equilibria are globally asymptotically stable when methanogens can grow at the lowest substrate
concentration. The proof of this assertion in Section 4 relies on LaSalle’s invariance principle.

4. Global asymptotic stability with Monod kinetics

In this section, we consider the full MEC system (1.1) - (1.5) with multiplicative Monod kinetics,
different decay rates, and a constraint based on the Nernst and Butler-Volmer equations. LaSalle’s
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invariance principle allows us to show that competitive exclusion by methanogens is globally asymp-
totically stable. The proof uses a Lyapunov function adapted from [15]. Suppose that growth rates for
the methanogens are

µm, j(S ) = µmax,m, j

(
S

KS ,m, j + S

)
, (4.1)

and growth rates for the electroactive bacteria are

µe, j(S ,M) = µmax,e, j

(
S

KS ,e, j + S

) (
M

KM, j + M

)
. (4.2)

µmax,m, j and µmax,e, j are the maximum growth rates; KS ,m, j and KS ,e, j, are half rate constants for consump-
tion of substrate; KM, j is the half rate constant for consumption of mediator. As before, the equilibria
depend on parameters or functions that are the S solutions to µm, j (S ) = Kd,m, j and µe, j (S ,M) = Kd,e, j.
Denote these solutions by

λm, j B
KS ,m, jKd,m, j

µmax,m, j − Kd,m, j
, (4.3)

λe, j(M) B
KS ,e, jKd,e, j

µmax,e, j

(
M

KM, j+M

)
− Kd,e, j

. (4.4)

Assuming that the microbe concentrations are not zero, then λm, j and λe, j(M) are the substrate concen-
trations at which each microbe has zero net growth. The difference between the two types of microor-
ganisms is that each electroactive bacteria has zero net growth on a curve S = λe, j(M). Examples of
these curves are shown in Figure 3. The fact that electroactive bacteria have dual substrate-mediator
limitation complicates the type of analysis that has appeared in the chemostat literature.

The equilibrium points corresponding to extinction and competitive exclusion in the full unscaled
model are given in Table 2. Microbe concentrations at these equilibria are solutions to Ṡ = 0 where
only one microbe survives. If Xm,1 or Xe,1 are the most competitive microbes, i.e., λm,1 or λe,1(m0) are
the smallest λ values, then equilibrium concentrations are

X∗m B
(

D(S 0 − λm,1)ym,1

µm,1(λm,1)
, 0, . . . , 0

)
,

X∗e B
(

D
(
S 0 − λe,1(M∗)

)
ye,1

µe,1
(
λe,1(M∗),M

) , 0, . . . , 0
)
.

The mediator concentrations M0 and M∗ are the solutions to the constraint (1.5) at the corresponding
points:

M0 BMtotal

[
1 − exp

(
−

mF
RT

∆E
)]
,

M∗ BMtotal

[
1 − exp

(
−

mF
RT

[
∆E − 2

RT
mF

arcsinh
(

I∗

2I0

)
− I∗Rint(X∗e)

])]
.

Finally, in the case of competitive exclusion by electroactive bacteria, the electric current is the solution
to Ṁ = 0 when Xe(t) = X∗e and M(t) = M∗:

I∗ B
YM

γ
D

(
S 0 − λe,1(M∗)

)
.
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Figure 2. Contour plot of the growth rate of electroactive bacteria as a function of mediator,
M, and substrate, S , concentrations. In this contour plot, isoclines are possible curves where
an electroactive bacteria species has zero net growth. The location of the curve S = λe, j(M)
corresponding to zero net growth is the solution to µe, j(S ,M) = Kd,e, j. Different isoclines
correspond to different values of Kd,e, j. In contrast, the lines where methanogens have zero
net growth are horizontal in the MS -plane because methanogen growth does not depend on
mediator concentration.

Table 2. Equilibrium points of the MEC system (1.1) - (1.5) with Monod kinetics given by
(4.1) - (4.2). These equilibrium points represent extinction of all microbes or competitive
exclusion by one microbe species of either type.

Equilibrium Point Biological Meaning
P0 B (S 0, 0, 0,M0, 0) Extinction of all microbe species

Pm B
(
λm,1,X∗m, 0,M0, 0

)
Competitive exclusion by methanogen Xm,1

Pe B
(
λe,1(M∗), 0,X∗e,M∗, I∗

)
Competitive exclusion by electroactive bacteria Xe,1
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Figure 3. Curves along which
the most successful electroactive
and methanogenic microbes have
zero net growth. This figure de-
picts a scenario where one of the
methanogens, represented by Xm,1

survives at the lowest substrate con-
centration, S = λm,1, for all ob-
tainable mediator concentrations. In
this scenario, competitive exclusion
by methanogen Xm,1 will occur. That
is, the only microbe that survives at
the globally stable equilibrium will
be methanogen Xm,1. Additionally,
all solutions converge to a point near
the right end of the dotted orange
line in the MS -plane.
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Figure 4. Curves along which the
most successful electroactive and
methanogenic microbes have zero
net growth. This figure depicts a
scenario where one of the electroac-
tive bacteria, Xe,1, can survive at
the lowest substrate concentrations,
S = λe,1 (M), for some mediator
concentrations. In this scenario, the
outcome of competition is unclear.
Equilibrium points that might possi-
bly correspond to competitive exclu-
sion by electroactive bacteria will be
on the blue curve below the dashed
orange line. However, their loca-
tion is determined by solutions to
the constraint.
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This analysis focuses on several sets of interest. Let

Ω B {(S ,Xm,Xe,M, I) : 0 < S ≤ S 0, 0 < Xm, j, 0 < Xe, j, 0 < M ≤ M0, and 0 < I ≤ ∆E/Rmin}. (4.5)

In practice, Ω is bounded because the dynamical system is dissipative, as shown in appendix 6. The
maximum concentration of each microbe must be bounded because it is not biologically possible to
have infinite concentration. Although the upper bound for each microbe concentration is not clear,
concentrations of each species will be bounded as t → ∞. Let Ω1 ⊂ Ω be the bounded set containing
these dynamics. Let G ⊂ Ω1 be the closed set where the C∞ constraint (1.5) is satisfied. To obtain
consistent initial conditions for the DAE, we will assume or the remainder of this section that initial
conditions lie in the compact set ΩG B Ω1 ∩G.

Condition 4.1. Suppose that (S (0),Xm(0),Xe(0),M(0), I(0)) ∈ ΩG.

Our first theorem relies on the following lemma regarding positivity and boundedness of the DAE
solutions.

Lemma 1. ΩG is positively invariant for (1.1) - (1.5) with Monod kinetics given by (4.1) - (4.2).

We defer the proof of Lemma 1 to appendix 6. Lemma 1 will be used in the proofs of the theorem
later in this section. The next lemma identifies conditions under which a microorganism cannot survive
at the stable equilibrium.

Lemma 2. If a microbe species cannot obtain zero net growth for (S ,M) values in (0, S 0] × (0,M0],
then the concentration of that species will go to zero as t → ∞.

We leave the proof in appendix 6. The intuition behind Lemma 2 is that the substrate concentrations
where each microbe has zero net growth are S -coordinates of equilibria points and they must be attain-
able in the interval (0, S 0]. For electroactive bacteria, the equilibrium substrate concentrations must be
in the interval (0, S 0] for obtainable mediator concentrations, M ∈ (0,M0]. If λm, j and λe, j(M) are not
in this interval, definitions (4.3) and (4.4) tell us that either (a) the maximum growth rate is less than
or equal to the decay rate, or (b) the microbe requires more substrate than is flowing into the device.
In other words, for the microorganisms to survive, they must be able to attain positive net growth and
must not require more substrate than is available. We will assume without loss of generality that the
following condition holds for each microbe species; otherwise, the corresponding concentration will
approach zero concentration as t → ∞.

Condition 4.2. Suppose that λm, j ∈ (0, S 0], and λe, j(M) ∈ (0, S 0] for some M ∈ (0,M0].

We now present the main result of this section, a theorem describing the competitive exclusion
principle in the MEC. Limiting behavior of the DAE system (1.1) - (1.5) with Monod kinetics (4.1) -
(4.2) is determined by the smallest element in Λ B

{
λm, j

}
nm
j=1∪

{
λe, j(M0)

}ne

j=1
, the set of smallest substrate

concentrations where each microbe has zero net growth. Intuitively, when S approaches min (Λ) from
above, all but the most competitive microbes will have negative net growth.

Theorem 2. (Competitive Exclusion by Methanogens) Suppose that Conditions 4.1 and 4.2 hold. Sup-
pose also that λm,1 is strictly smaller than all other elements of Λ (i.e., methanogen Xm,1 can grow at
the lowest substrate concentration). Then all solutions of (1.1) - (1.5) with Monod kinetics (4.1) - (4.2)
will approach the point Pm as t → ∞.
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Proof. ( [15] provided a Lyapunov function for equations (1.1) - (1.2) with Xe = 0. That function is
extended to provide these results.) ΩG ⊂ R

nm+ne+3 is compact and, by Lemma 1, it is positively invariant
for (1.1) - (1.5). Suppose that λm,1 is strictly smaller than all other elements of Λ. Let

V(S ,Xm,Xm2 ,Xe,M, I) B
∫ S

λm,1

σ − λm,1

σ
dσ + cm,1

∫ Xm,1

X∗m,1

ξ − X∗m,1
ξ

dξ +

nm∑
j=2

cm, jXm, j +

ne∑
j=1

ce, jXe, j (4.6)

for some unspecified constants cm, j, cm2, j, and ce, j. Then

∇V =

(
S − λm,1

S
, cm,1

(Xm,1 − X∗m,1
Xm,1

)
, cm,2, . . . , cm,nm , ce,1, . . . , ce,ne , 0, 0

)
. (4.7)

To show that V̇ ≤ 0 in ΩG, we will use the following rearrangements of equations (1.2) - (1.3):

Ẋm, j = (µmax,m, j − Kd,m, j)
(

S − λm, j

KS ,m, j + S

)
Xm, j, (4.8)

Ẋe, j =

(
µmax,e, j − Kd,e, j

KM, j + M
M

) (
S − λe, j(M)
KS ,e, j + S

) (
M

KM, j + M

)
Xe, j. (4.9)

Choose positive constants

cm, j =
µmax,m, j

ym, j(µmax,m, j − Kd,m, j)
,

ce, j =
µmax,e, j

ye, j

(
µmax,e, j − Kd,e, j

KM, j+M0

M0

) .
Then

V̇ =

(
S − λm,1

S

) D (S 0 − S ) −
nm∑
j=1

µm, j(S )
ym, j

Xm, j −

ne∑
j=1

µe, j(S ,M)
ye, j

Xe, j


+

(
Xm,1 − X∗m,1

) (S − λm,1

S

)
µm,1(S )

ym,1
+

nm∑
j=2

(
S − λm, j

S

)
µm, j(S )

ym, j
Xm, j

+

ne∑
j=1

ce, j

(
µmax,e, j − Kd,e, j

KM, j + M
M

) (
S − λe, j(M)
KS ,e, j + S

) (
M

KM, j + M

)
Xe, j.

Since

ce, j

(
µmax,e, j − Kd,e, j

KM, j + M
M

)
=
µmax,e, j

ye, j

(
µmax,e, j − Kd,e, j

KM, j+M
M

)(
µmax,e, j − Kd,e, j

KM, j+M0

M0

) ≤ µmax,e, j

ye, j
,

we can combine corresponding sums to obtain

V̇ ≤
(
S − λm,1

S

) (
D (S 0 − S ) −

µm,1(S )
ym,1

X∗m,1

)
+

nm∑
j=2

(
λm,1 − λm, j

S

)
µm, j(S )

ym, j
Xm, j +

ne∑
j=1

(
λm,1 − λe, j(M)

S

)
µe, j(S ,M)

ye, j
Xe, j.
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By assumption, each of the sums is less than or equal to zero. Substituting X∗m,1 =
D(S 0−λm,1)ym,1

µm,1(λm,1) yields

V̇ ≤ −
D(S − λm,1)2(λm,1S + KS ,m,1S 0)

(KS ,m,1 + S )Sλm,1
≤ 0.

Thus, Theorem 1 tells us that solutions to equations (1.1) - (1.5) that start in ΩG approach the largest
invariant set in

E = {(x, y) ∈ ΩG : V̇(x, y) = 0} = {(λm,1,X∗m,1, 0,M, I)}. (4.10)

From equation (1.4), we know that Ṁ = γI ≥ 0 in E. Thus, solutions approach M = M0 and I = 0 or

W = {(λm,1,X∗m, 0,M0, 0)}.

�

Theorem 2 indicates that the methanogen that can grow at the lowest substrate concentration will
outcompete as t → ∞. It is possible, albeit unlikely, that multiple methanogen species obtain zero net
growth at the same smallest substrate concentration. The following corollary predicts that all of these
methanogens will coexist while competitively excluding the other microbes as t → ∞.

Corollary 2.1. (Coexistence of Methanogens) Suppose that Conditions 4.1 and 4.2 hold and that λ =

λm,1 = . . . λm,k is strictly smaller than other distinct elements of Λ. Then as t → ∞, all solutions of
(1.1) - (1.5) with Monod kinetics (4.1) - (4.2) will approach the invariant set

W = {(λ, X̃m, 0,M0, 0) : X̃m =
〈
Xm,1, . . . , Xm,k, 0, . . . , 0

〉
,D (S 0 − λ) =

k∑
j=1

µm, j(S )
ym, j

Xm, j}.

Proof. If λ = λm,1 = . . . λm,k are strictly smaller than all distinct elements of Λ, then terms corre-
sponding to Xm,1, . . . , Xm,k vanish from V̇ in equation (4.6) in the proof of Theorem 2. We still have
V̇ ≤ 0, but now solutions approach the largest invariant set in E = {(x, y) ∈ ΩG : V̇(x, y) = 0} =

{(λ, X̃m, 0,M, I)}. As before, M → M0 and I → 0 in E, so solutions the largest invariant set approach
W = {(λ, X̃m, 0,M0, 0)}. �

Theorem 2 and Corollary 2.1 predict that the methanogen(s) that can grow at the smallest substrate
concentration will outcompete the other species. It is possible that multiple species will share the same
smallest λ value, in which case coexistence of methanogens is possible. Theorem 2 also tells us that
electroactive bacteria are guaranteed to lose the competition if ∀ j, λe, j(M0) > min (Λ). Unfortunately,
the Lyapunov function used in the proof of Theorem 2 does not suffice to prove analogous results
about global asymptotic stability for electroactive-only equilibria. As shown in Section 3, it is likely
that additional conditions on the spectrum are required to reach conclusions about global stability of
competive exclusion by electroactive bacteria. Unfortunately, due to the constraint (1.5), the spectrum
of (1.1) - (1.5) cannot readily be evaluated, even when there is only one species of each type.

The chemostat literature has shown that competitive exclusion by the microbe that survives at the
lowest substrate concentration is globally asymptotically stable in a variety of cases. Several authors
have considered limitation by two complementary or substitutable substrates [26–29], using either
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monotone or minimum Monod kinetics. To our knowledge, no one has considered multiplicative
Monod kinetics of the form given by (4.2), particularly when one of the limiting substrates is a me-
diator molecule whose concentration depends on an algebraic constraint. Figures 3 and 4 show that
the behavior of the electroactive bacteria is more complicated than a microbe growing on one or two
substrates. One also needs detailed information about mediator concentration because electroactive
bacteria grow much more slowly when the mediator concentration is low. Given the results in Section
3, it is not surprising that global asymptotic stability of competitive exclusion by electroactive bacteria
is more complicated. In the next section, we provide numerical simulations supporting Theorem 2 and
Corollary 2.1. These simulations also show that competitive exclusion by electroactive bacteria may
occur if electroactive bacteria can grow at the lowest substrate concentration.

5. Numerical Simulations

In this section, we consider solutions of (1.1) - (1.5) with Monod kinetics (4.1) - (4.2) and with
one species of each type. We demonstrate that when Theorem 2 and Corollary 2.1 are satisfied, then
solutions behave as expected. That is, if one or more species of methanogens can survive at the lowest
substrate concentration, then the model exhibits competitive exclusion by those methanogens. We also
demonstrate that if electroactive bacteria survive at the lowest substrate concentration, then the model
may exhibit competitive exclusion by electroactive bacteria.

For the simulations below, we generally use parameters from the first table of [7], with the following
exceptions. The influent substrate concentration is S 0 = 100 and the maximum substrate consumption
rates for each species are 14. The maximum growth rates vary between simulations to change which
microbe can grow at the lowest substrate concentration; the parameters are given in Table 3. The new
parameters were chosen to demonstrate competitive exclusion by methanogen 1, coexistence two of
methanogens, and competitive exclusion by electroactive bacteria. Numerical solutions were generated
using the variable-order, variable-coefficient backward differentiation formula in fixed-leading coeffi-
cient form [30] from the IDAS package of SUNDIALS suite of nonlinear and DAE solvers [31]. Initial
conditions were set as S (0) = 100, Xm,1(0) = 1, Xm2,1(0) = 1, M(0) = 25, and I(0) = 6 while Xe,1(0) is
the solution to the algebraic constraint (1.5).

Table 3. Parameters in the three numerical simulations shown in Figure 5.

Parameter Exclusion byXm,1 Coexistence of Xm,1, Xm,2 Exclusion by Xe,1

µmax,e,1 1 1 5
µmax,m,1 0.2 0.1 0.1
µmax,m,2 0.1 0.1 0.1
λm,1 8.18 16.5 16.5
λm,2 16.5 16.5 16.5
λe,1 40.3 40.3 7.75

Figure 5a demonstrates that if a methanogen can grow at the lowest substrate concentration, then
all solutions converge to a methanogen-only equilibrium, Pm. Figure 5b shows that if multiple
methanogens can survive at the same substrate concentration, then solutions converge to a set with
only those methanogens. These simulations support Theorem 2 and Corollary 2.1. Figure 5c shows
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that if an electroactive bacteria can grow at the lowest substrate concentration, then solutions may
converge to an electroactive-only equilibrium.
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(a) Competitive exclusion by methanogen 1.
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(b) Coexistence of methanogens.
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(c) Competitive exclusion by electroactive bacteria.

Figure 5. Solutions for substrate and microorganism concentration on a semi-logarithmic
plot. Substrate is depicted by a solid blue line, methanogen concentrations are shown by a
dashed-dot yellow line and a dotted purple line, respectively, and electroactive concentration
is represented as a dashed red line. Our simulations corroborate Theorem 2 and Corollary 2.1
because the methanogen(s) that can grow at the lowest substrate concentration are the only
survivors in Subfigures (5a) - (5b). We have not provided an analogous result for electroactive
bacteria. Subfigure (5c) shows that competitive exclusion by electroactive bacteria may occur
when these bacteria can grow at the lowest substrate concentration. However, there may be
unusual cases when this is not true, as discussed for the simple model in Section 3.
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6. Conclusion

In Section 3, we characterized local asymptotic stability of equilibria in a model with one species
of each type, equal decay rates, general monotone kinetics, and a general constraint. Subsequently, in
Section 4, we showed that competitive exclusion by methanogens is globally asymptotically stable in a
model with finitely many species, multiplicative Monod kinetics, different decay rates, and a constraint
based on the Nernst and Butler-Volmer equations. Our results also show that certain operating con-
ditions should be avoided. In both models, if a methanogen species can grow at the lowest substrate
value, then competitive exclusion by methanogens is either locally or globally asymptotically stable.
These results on competitive exclusion provide a recipe for MEC operation that offers the best chance
for long term electrical current and hydrogen production:

1. Determine which microbe can grow at the lowest substrate concentration to ensure that
methanogens will not outcompete eventually. Theorem 2 from Section 4 indicates that
methanogens will competitively exclude the other microbe species if they can survive at the lowest
substrate concentration.

2. Compute the spectrum of the matrix pencil at the electroactive-only equilibrium to ensure that it
is locally asymptotically stable. Recall from Case 3 in Section 3 that if one of the electroactive
bacteria has zero net growth at the lowest substrate concentration, λe,1(m∗), and that the dis-
criminant (3.6) satisfies either δ < 0 or Re

(√
δ
)
< −

(
x∗e

∂ fe
∂m

∂g
∂I + x∗e

∂ fe
∂s

∂g
∂I + Γ

∂g
∂m

) ∣∣∣
pe

, then compet-
itive exclusion by electroactive bacteria is locally asymptotically stable. Then solutions near an
electroactive-only equilibrium will approach that equilibrium.

In summary, if electroactive bacteria can survive at the lowest substrate concentration and the technical
condition on the discriminant of the matrix pencil is satisfied, then electroactive bacteria are most likely
to outcompete methanogens and the MEC is most likely to provide long term electrical current and
hydrogen production. On the other hand, if the less energy efficient methane production is desirable,
one should guarantee that a methanogen can grow at the lowest substrate concentration; then the model
will exhibit competitive exclusion by methanogens. These results provide insight about whether the
microbial electrolysis system will produce methane or electric current and resulting hydrogen.
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Appendix

1. Proof of Lemma 1

Proof. (See [32] for elements of the proof pertaining to S and X?, j.) S (t) is positive because S (τ) =

0 ⇒ Ṡ (τ) = DS 0 > 0. For ? ∈ {m, e}, each X?, j(t) is positive because boundaries where X?, j = 0
are invariant and cannot be reached in finite time if X?, j(0) is positive. S (t) and X?, j(t) coordinates are
bounded because of the following. Define

Σ B S +

nm∑
j=1

Xm, j

ym, j
+

ne∑
j=1

Xe, j

ye, j
.
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Let D̄ be the minimum of D and each Kd,∗, j. Then

Σ̇ ≤ DS 0 − D̄Σ.

Thus, S and each X?, j is positive and bounded. In fact, S (t) ≤ S 0 because S (t∗) = S 0 ⇒ Ṡ (t∗) ≤ 0.
M and I are positive and bounded because of the algebraic constraint (1.5). M cannot be negative

because M = 0⇒ Ṁ = γI ≥ 0. Exponentiate both sides of (1.5) and solve for M to obtain

M = Mtotal

[
1 − exp

(
−

mF
RT

[
∆E − 2

RT
mF

arcsinh
(

I
2Asur,AI0

)
− IRint(Xe)

])]
. (6.1)

Since the exponential is positive, M < Mtotal. In fact, there is an even tighter bound. Define

M0 B Mtotal

[
1 − exp

(
−

mF
RT

∆E
)]
.

From equation (6.1),

I > 0⇐⇒ M < M0,

I = 0⇐⇒ M = M0,

I < 0⇐⇒ M > M0.

Also, equation (1.4) tells us that I = 0⇐⇒ Ṁ ≤ 0. Thus, I(0) ≥ 0⇒ M(0) ≤ M0 ⇒ M(t) ≤ M0.
I(t) must be positive because 0 < M(t) < M0. It remains to show that I(t) is bounded. Because

M(t) < M0 we know that

1 <
Mtotal

Mtotal − M(t)
≤

Mtotal

Mtotal − M0
= exp

(mF
RT

∆E
)

or

0 < ln
(

Mtotal

Mtotal − M(t)

)
≤ ln

(
Mtotal

Mtotal − M0

)
=

mF
RT

∆E.

Since arcsinh( I
2I0

) > 0 when I > 0 and Rmin ≤ Rint(Xe) ≤ Rmax, it must be true that

0 =
1

Rmax

[
∆E −

RT
mF

ln
(

Mtotal

Mtotal − M0

)]
≤ I(t) ≤

∆E
Rmin

.

Thus, M and I are positive and bounded. Let Ω1 be the set where these variables are bounded. To be
consistent with the C∞ constraint (1.5), solutions of the DAE must lie in the closed set G ⊂ Ω1. Thus,
the compact set ΩG B Ω1 ∩G is positively invariant for (1.1) - (1.5). �

2. Proof of Lemma 2

Proof. (See [14] for the proof when Xe(t) = 0 and there is no mediator or current.) If λm, j ≤ 0, then
µmax,m, j ≤ Kd,m, j. We can rearrange the integral representation of Xm, j and use the fact that S (t) ≤ S 0 to
get

Xm, j(t) ≤Xm, j(0)exp
(∫ t

0

(µmax,m, j − Kd,m, j)S (τ) − Kd,m, jKS ,m, j

KS ,m, j + S (τ)
dτ

)
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≤Xm, j(0)exp
(
−

∫ t

0

Kd,m, jKS ,m, j

KS ,m, j + S (0) dτ
)

= Xm, j(0)exp
(
−Kd,m, jKS ,m, j

KS ,m, j + S (0) t
)
.

Xm, j(t) is positive and bounded by a decaying exponential, so limt→∞ Xm, j(t) = 0.
If λm, j > S 0, then µmax,m, j > Kd,m, j. We can rearrange the integral representation of Xm, j and use the

same fact as before to get

Xm, j(t) ≤Xm, j(0)exp
(∫ t

0

(
µmax,m, j − Kd,m, j

KS ,m, j + S (τ)

) (
S (τ) − λm, j

)
dτ

)
≤Xm, j(0)exp

(∫ t

0

(
µmax,m, j − Kd,m, j

KS ,m, j + S (0)

) (
S (0) − λm, j

)
dτ

)
.

Xi, j(t) is positive and bounded by a decaying exponential, so limt→∞ Xm, j(t) = 0.
Now consider Xe, j. If λe, j(M) ≤ 0 for all M ∈ (0,M0), then µmax,e, j

(
M

KM, j+M

)
≤ Kd,e, j and µe, j(S ,M) ≤

Kd,e, j for all S ∈ (0, S 0] and M ∈ (0,M0). Thus,

Xe, j(t) ≤Xe, j(0)exp
(∫ t

0

[
µe, j(S ,M) − Kd,e, j

]
dτ

)
≤Xe, j(0)exp

(
−

∫ t

0
Kd,e, jdτ

)
= Xe, j(0)exp

(
−Kd,e, jt

)
.

Xe, j(t) is positive and bounded by a decaying exponential, so limt→∞ Xe, j(t) = 0. If instead λe, j(M) >
S 0 for all M ∈ (0,M0), then µmax,e, j

(
M

KM, j+M

)
> Kd,e, j and S 0 < λe, j(M0). Rearrange the integral

representation to find

Xe, j(t) ≤Xe, j(0)exp

∫ t

0

(µmax,e, j
M

KM, j + M
− Kd,e, j

) (
S − λe, j(M)

)(
KS ,e, j + S

)  dτ


≤Xe, j(0)exp

∫ t

0

(µmax,e, j − Kd,e, j

) (
S 0 − λe, j (M0)

)(
KS ,e, j + S 0

)  dτ

 .
Xe, j(t) is positive and bounded by a decaying exponential, so limt→∞ Xe, j(t) = 0. �
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