Citation: Bernhard Voelkl. Quantitative characterization of animal social organization: Applications for epidemiological modelling[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5005-5026. doi: 10.3934/mbe.2020271
[1] | E. O. Wilson, Sociobiology: The New Synthesis, Belknap Press, 1975. |
[2] | R. A. Hinde, Ethology: Its Nature and Relation with Other Sciences, Oxford University Press, 1982. |
[3] | H. Whitehead, Analyzing Animal Societies, University of Chicago Press, 2008. |
[4] | A. F. Fraser, D. M. Broom, Farm Animal Behaviour and Welfare, CAB International, 1997. |
[5] | E. O. Price, Animal Domestication and Behaviour, CABI Publishing, 2002. |
[6] | R. A. Hinde, Primate Social Relationships, Blackwell Scientific Publications, 1983. |
[7] | T. T. Strusaker, Correlates of ecology and social organization among African cercopithecines, Folia Primatol., 11 (1969), 80-118. |
[8] | S. R. Sundaresan, I. R. Fishhoff, J. Dushoff, D. I. Rubenstein, Network metrics reveal differences in social organization between two fission-fusion species, Grevy's zebra and onager, Oecologia, 151 (2007), 140-149. |
[9] | D. P. Croft, R. James, J. Krause, Exploring Animal Social Networks, Princeton University Press, 2008. |
[10] | T. Wey, D. T. Blumstein, W. Shen, F. Jordan, Social network analysis of animal behaviour: A promising tool for the study of sociality, Anim. Behav., 75 (2008), 333-344. |
[11] | C. Kasper, B. Voelkl, A social network analysis of primate groups, Primates, 50 (2009), 343-356. |
[12] | J. Moreno, Who Shall Survive?, Beacon, 1934. |
[13] | J. Scott, P. J. Carrington, The SAGE Handbook of Social Network Analysis, SAGE Publications, 2011. |
[14] | G. A. Lundberg, M. Steel, Social attraction-patterns in a village, Sociometry, 1 (1938), 375-419. |
[15] | J. A. Barnes, Class and committee in a Norwegian island parish, Hum. Relat., 7 (1954), 39-58. |
[16] | J. H. Levine, The sphere of influence, Am. Sociol. Rev., 37 (1972), 14-27. |
[17] | M. Granowetter, The strength of weak ties, Am. J. Sociol., 78 (1973), 1360-1380. |
[18] | B. Ryan, N. C. Gross, The diffusion of hybrid seed corn in two Iowa communities, Rural Sociol., 8 (1943), 15-24. |
[19] | E. Katz, H. Levine, M. L. Hamilton, Traditions of research on the diffusion of innovation, Am. Sociol. Rev., 28 (1963), 237-253. |
[20] | S. Milgram, The small-world problem, Psychol. Today, 2 (1964), 60-67. |
[21] | E. M. Rogers, Diffusion of Innovations, Free Press, 2003. |
[22] | M. Bond, Social influences on corporate political donations in Britain, Brit. J. Sociol., 55 (2004), 55-77. |
[23] | D. Knoke, Policy Networks, in The SAGE Handbook of Social Network Analysis (eds. J. Scott, P. J. Carrington), SAGE Publications, 2011, 210-222. |
[24] | M. Diani, Social Movements and collective actions, in The SAGE Handbook of Social Network Analysis (eds. J. Scott, P. J. Carrington), SAGE Publications, 2011, 223-235. |
[25] | M. O. Jackson, Social and Economic Networks, Princeton University Press, 2008. |
[26] | A. L. Barabâsi, J. Hawoong, N. Zoltan, R. Erzsebet, A. Schubert, T. Vicsek, Evolution of the social network of scientific collaborations, Phys. A, 311 (2002), 590-614. |
[27] | M. E. Newman, Coauthorship networks and patterns of scientific collaboration, Proc. Natl. Acad. Sci. USA, 101 (2004), 5200-5205. |
[28] | D. J. Watts, S. H. Strogatz, Collective dynamics of "small-world" networks, Nature, 393 (1998), 440-442. |
[29] | M. E. Newman, Networks: An Introduction, Oxford University Press, 2010. |
[30] | H. Kummer, Soziales Verhalten einer Mantelpavianen-Gruppe, Schweizerische Zeitschr. Psychol., 33 (1957), 1-91. |
[31] | D. S. Sade, Some aspects of parent-off spring and sibling relations in a group of rhesus monkeys, with a discussion of grooming, Am. J. Phys. Anthropol., 23 (1965), 1-18. |
[32] | R. A. Hinde, Interactions, relationships and social structure, Man, 11 (1976), 1-17. |
[33] | R. W. Byrne, A. Whiten, S. P. Henzi, Social relationships of mountain baboons: Leadership and affiliation in a non-female-bonded monkey, Am. J. Primatol., 207 (1989), 191-207. |
[34] | B. D. Chepko-sade, K. P. Reitz, D. S. Sade, Sociometrics of Macaca mulatta IV: Network analysis of social structure of a pre-fission group, Soc. Netw., 11 (1989), 293-314. |
[35] | C. A. Chapman, Association patterns of spider monkeys: The influence of ecology and sex on social organization, Behav. Ecol. Sociobiol., 26 (1990), 409-414. |
[36] | C. P. Yeager, Proboscis monkey (Nasalis larvatus) social organization: Group structure, Am. J. Primatol., 106 (1990), 95-106. |
[37] | D. S. Sade, Sociometrics of Macaca mulatta I. Linkage, cliques in grooming matrices, Fol. Primatol., 18 (1972), 196-223. |
[38] | D. S. Sade, Sociometrics of Macaca mulatta Ⅲ. n-path centrality in grooming networks, Soc. Netw., 11 (1989), 273-292. |
[39] | D. S. Sade, M. Altmann, J. Loy, G. Hausfater, J. A. Breuggeman, Sociometrics of Macaca mulatta: Ⅱ. Decoupling centrality and dominance in rhesus monkey social networks, Am. J. Phys. Anthropol., 77 (1988), 409-425. |
[40] | S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications, Cambridge University Press, 1994. |
[41] | M. Barthelemy, B. Gondran, E. Guichard, Spatial structure of the internet traffic, Phys. A, 319 (2003), 633-642. |
[42] | P. Bonacich, Factoring and weighting approaches to status scores and clique identification, J. Math. Sociol., 2 (1972), 113-120. |
[43] | M. E. J. Newman, A measure of betweenness centrality based on random walks, Soc. Netw., 27 (2005), 39-54. |
[44] | M. E. J. Newman, M. Girvan, Finding and evaluating community structure in networks, Phys. Rev. E, 69 (2004), 026113. |
[45] | A. Clauset, Finding local community structure in networks, Phys. Rev. E, 72 (2005), 026132. |
[46] | M. E. J. Newman, Modularity and community structure in networks, Proc. Natl. Acad. Sci. USA, 103 (2006), 8577-8582. |
[47] | D. Knoke, S. Yang, Social network analysis, Sage Publications, 2019. |
[48] | D. Lusseau, The emergent properties of a dolphin social network, Biol. Lett., 270 (2003), 186-188. |
[49] | D. P. Croft, J. Krause, R. James, Social networks in the guppy (Poecilia reticulata), Biol. Lett., 271 (2004), 516-519. |
[50] | B. Voelkl, Does group structure influence the social transmission of information?, Fol. Primatol., 75 (2004), 423. |
[51] | D. P. Croft, R. James, A. J. W. Ward, M. S. Botham, D. Mawdsley, J. Krause, Assortative interactions and social networks in fish, Oecologia, 143 (2005), 211-219. |
[52] | J. C. Flack, M. Girvan, F. B. M. de Waal, D. C. Krakauer, Policing stabilizes construction of social niches in primates, Nature, 439 (2006), 426-429. |
[53] | C. Sueur, O. Petit, Organization of group members at departure Is driven by social structure in Macaca, Int. J. Primatol., 29 (2008), 1085-1089. |
[54] | S. P. Henzi, D. Lusseau, T. Weingrill, Cyclicity in the structure of female baboon social networks, Behav. Ecol. Sociobiol., 63 (2009), 1015-1021. |
[55] | J. Lehmann, C. Boesch, Sociality of the dispersing sex: The nature of social bonds in West African female chimpanzees, Pan troglodytes, Anim. Behav., 77 (2009), 377-387. doi: 10.1016/j.anbehav.2008.09.038 |
[56] | J. Lehmann, R. I. M. Dunbar, Network cohesion, group size and neocortex size in female-bonded Old World primates, Proc. R. Soc. B, 276 (2009), 4417-4422. |
[57] | G. Ramos-Fernández, D. Boyer, F. Aureli, L. G. Vick, Association networks in spider monkeys (Ateles geoffroyi), Behav. Ecol. Sociobiol., 63 (2009), 999-1013. |
[58] | N. J. B. Boogert, S. M. Reader, W. Hoppitt, K. N. Laland, The origin and spread of innovations in starlings, Anim. Behav., 75 (2008), 1509-1518. |
[59] | B. Voelkl, R. Noë, The influence of social structure on the propagation of social information in artificial primate groups: A graph-based simulation approach, J. Theoret. Biol., 252 (2008), 77-86. |
[60] | M. Franz, C. L. Nunn, Network-based diffusion analysis: A new method for detecting social learning, Proc. R. Soc. B, 276 (2009), 1829-1836. |
[61] | C. Vital, P. Martins, Using graph theory metrics to infer information flow through animal social groups: A computer simulation analysis, Ethology, 115 (2009), 347-355. |
[62] | W. Hoppitt, A. Kandler, J. R. Kendal, K. N. Laland, The effect of task structure on diffusion dynamics: Implications for diffusion curve and network-based analyses, Learn. Behav., 38 (2010), 243-251. |
[63] | L. M. Aplin, D. R. Farine, J. Morand-Ferron, A. Cockburn, A. Thornton, B. C. Sheldon, Experimentally induced innovations lead to persistent culture via conformity in wild birds, Nature, 7540 (2015), 538. |
[64] | B. Voelkl, C. Kasper, Social structure of primate interaction networks facilitates the emergence of cooperation, Biol. Lett., 5 (2009), 462-464. |
[65] | B. Voelkl, The "Hawk-Dove" game and the spread of the evolutionary process in small heterogeneous populations, Games, 1 (2010), 103-116. |
[66] | B. Voelkl, The evolution of generalized reciprocity in social interaction networks, Theoret. Popul. Biol., 104 (2015), 17-25. |
[67] | B. Mccowan, K. Anderson, A. Heagarty, A. Cameron, Utility of social network analysis for primate behavioral management and well-being, Appl. Anim. Behav. Sci., 109 (2008), 396-405. |
[68] | B. A. Beisner, M. E. Jackson, A. Cameron, B. Mccowan, Effects of natal male alliances on aggression and power dynamics in rhesus macaques, Am. J. Primatol., 801 (2011), 790-801. |
[69] | V. Dufour, C. Sueur, A. Whiten, The impact of moving to a novel environment on social networks, activity and wellbeing in two new world primates, Am. J. Primatol., 811 (2011), 802-811. |
[70] | M. C. Crofoot, D. I. Rubenstein, A. S. Maiya, T. Y. Berger-wolf, Aggression, grooming and group-level cooperation in white-faced capuchins (Cebus capucinus): Insights from social networks, Am. J. Primatol., 833 (2011), 821-833. |
[71] | B. Tiddi, F. Aureli, G. Schino, B. Voelkl, Social relationships between adult females and the alpha male in wild tufted capuchin monkeys, Am. J. Primatol., 73 (2011), 812-820. |
[72] | A. J. J. MacIntosh, A. Jacobs, C. Garcia, K. Shimizu, K. Mouri, M. A. Huffman, et al., Monkeys in the middle: Parasite transmission through the social network of a wild primate, PLoS One, 7 (2012), e51144. |
[73] | L. J. N. Brent, S. Semple, Social capital and physiological stress levels in free-ranging adult female rhesus macaques, Behaviour, 102 (2011), 76-83. |
[74] | P. C. Lopes, P. Block, B. König, Infection-induced behavioural changes reduce connectivity and the potential for disease spread in wild mice contact networks, Sci. Rep., 6 (2016), 31790. |
[75] | M. Dow, F. B. M. de Waal, Assignment methods for the analysis of network subgroup interactions, Soc. Netw., 11 (1989), 237-255. |
[76] | I. Matsuda, P. Zhang, L. Swedell, U. Mori, A. Tuuga, A., H. Bernard, et al., Comparisons of intraunit relationships in nonhuman primates living in multilevel social systems, Int. J. Primatol., 33 (2012), 1038-1053. |
[77] | R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Network motifs: Simple building blocks of complex networks, Science, 298 (2002), 824-827. |
[78] | N. Snyder-Mackler, J. C. Beehner, T. J. Bergman, Defining higher levels in the multilevel societies of geladas (Theropithecus gelada), Int. J. Primatol., 33 (2012), 1054-1068. |
[79] | C. Sueur, O. Petit, A. de Marco, A. T. Jacobs, K. Watanabe, B. Thierry, A comparative network analysis of social style in macaques, Anim. Behav., 82 (2011), 845-852. |
[80] | B. Voelkl, R. Noë, Simulation of information propagation in real-life primate networks: Longevity, fecundity, fidelity, Behav. Ecol. Sociobiol., 64 (2010), 1449-1459. |
[81] | D. I. Rubenstein, Networks of terrestrial ungulates: linking form and function, in Animal Social Networks (eds. J. Krause, R. James, D. W. Franks, D. P. Croft), Oxford University Press, 2015, 184-196. |
[82] | E. A. Foster, D. W. Franks, L. J. Morrell, K. C. Balcomb, K. M. Parsons, A. van Ginneken, et al., Social network correlates of food availability in an endangered population of killer whales, Orcinus orca. Anim. Behav., 83 (2012), 731-736. |
[83] | R. Albert, A. L. Barabasi, Statistical mechanics of complex networks, Rev. Mod. Phys., 74 (2002), 47-97. |
[84] | M. E. J Newman, The structure and function of complex networks, SIAM Rev., 45 (2003), 167-256. |
[85] | S. Macdonald, B. Voelkl, Primate social networks, in Animal Social Networks (eds. J. Krause, R. James, D. W. Franks, D. P. Croft), Oxford University Press, 2015,123-136. |
[86] | R. R. Kao, L. Danon, D. M. Green, I. Z. Kiss, Demographic structure and pathogen dynamics on the network of livestock movements in Great Britain, Proc. R. Soc. B, 273 (2007), 1999-2007. |
[87] | R. R. Kao, D. M. Green, J. Johnson, I. Z. Kiss, Disease dynamics over very different time-scales: Foot-and-mouth disease and scrapie on the network of livestock movements in the UK, J. R. Soc. Interface, 4 (2007), 907-916. |
[88] | L. Danon, A. P. Ford, T. House, C. P. Jewell, M. J. Keeling, G. O. Roberts, et al., Networks and the epidemiology of infectious disease, Interdiscipl. Persp. Infect. Dis., 2011 (2011), 284909. |
[89] | R. M. Anderson, R. M. May, Population biology of infectious diseases: Part 1, Nature, 280 (1979), 361-367. |
[90] | M. J. E. Newman, The spread of epidemic disease on networks, Phys. Rev. E, 66 (2003), 016128. |
[91] | R. M. May, Network structure and the biology of populations', Trends Ecol. Evol., 21 (2006), 394-399. |
[92] | L. Hufnagel, D. Brockmann, T. Geisel, Forecast and control of epidemics in a globalized world, Proc. Natl. Acad. Sci. USA, 101 (2004), 7794-7799. |
[93] | L. A. Meyers, Contact network epidemiology: Bond percolation applied to infectious disease prediction and control, Bull. Am. Math. Soc., 44 (2007), 63-86. |
[94] | R. M. May, R. M Anderson, Transmission dynamics of HIV infection, Nature, 326 (1987), 137-142. |
[95] | A. S. Klovdahl, J. J. Potterat, D. E. Woodhouse, J. B. Muth, S. Q. Muth, W. W. Darrow, Social networks and infectious disease: The Colorado Springs study, Soc. Sci. Med., 38 (1994), 79-88. |
[96] | F. Liljeros, C. R. Edling, L. A. Nunes Amaral, E. Stanley, Y. Åberg, The web of human sexual contacts, Nature, 411 (2001), 907-908. |
[97] | M. A. Nowak, Evolutionary Dynamics, Harvard University Press, 2006. |
[98] | M. W. Schein, M. H. Fohrman, Social dominance relationships in a herd of dairy cattle, Brit. J. Anim. Behav., 3 (1955), 45-55. |
[99] | M. Bigras-Poulin, R. A. Thompson, M. Chriel, S. Mortensen, M. Greiner, Network analysis of Danish cattle industry trade patterns as an evaluation of risk potential for disease spread, Prevent. Vet. Med., 76 (2006), 11-39. |
[100] | L. Fiebig, T. Smieszek, J. Saurina, J. Hattendorf, J. Zinsstag, Contacts between poultry farms, their spatial dimension and their relevance for avian influenza preparedness, Geospat. Health, 4 (2009), 79-95. |
[101] | B. Martinez-Lopez, A. M. Perez, J. M. Sanchez-Vizcaino, Social network analysis. Review of general concepts and use in preventive veterinary medicine, Transb. Emerg. Dis., 56 (2009), 109-120. |
[102] | V. V. Volkova, R. Howey, N. J. Savill, M. E. J. Woolhouse, Sheep movement networks and the transmission of infectious diseases, PLoS One, 5 (2010), e11185. |
[103] | R. P. Smith, A. J. C. Cook, R. M. Christley, Descriptive and social network analysis of pig transport data recorded by quality assured pig farms in the UK, Prevent. Vet. Med., 108 (2013), 167-177. |
[104] | J. Ribeiro-Lima, E. A. Enns, B. Thompson, M. E. Craft, S. J. Wells, From network analysis to risk analysis-An approach to risk-based surveillance for bovine tuberculosis in Minnesota, US, Prevent. Vet. Med., 118 (2015), 328-340. |
[105] | H. H. Lentz, A. Koher, P. Hövel, J. Gethmann, C. Sauter-Louis, T. Selhorst, et al., Disease spread through animal movements: a static and temporal network analysis of pig trade in Germany, PLoS One, 11 (2016), 0155195. |
[106] | P. Bajardi, A. Barrat, L. Savini, V. Colizza, Optimizing surveillance for livestock disease spreading through animal movements, J. R. Soc. Interface, 9 (2012), 2814-2825. |
[107] | M. M. Mweu, G. Fournié, T. Halasa, N. Toft, S. S. Nielsen, Temporal characterisation of the network of Danish cattle movements and its implication for disease control: 2000-2009, Prevent. Vet. Med., 110 (2013), 379-387. |
[108] | S. Nickbakhsh, L. Matthews, J. E. Dent, G. T. Innocent, M. E. Arnold, S. W. Reid, et al., Implications of within-farm transmission for network dynamics: Consequences for the spread of avian influenza, Epidemics, 5 (2013), 67-76. |
[109] | B. Vidondo, B. Voelkl, Dynamic network measures reveal the impact of cattle markets and alpine summering on the risk of epidemic outbreaks in the Swiss cattle population, BMC Vet. Res. 14 (2018), 88. |
[110] | J. Krause, D. Lusseau, R. James, Animal social networks: An introduction, Behav. Ecol. Sociobiol., 63 (2009), 967-973. |
[111] | M. J. Silk, D. P. Croft, R. J. Delahay, D. J. Hodgson, M. Boots, N. Weber, et al., Using social network measures in wildlife disease ecology, epidemiology, and management, BioScience, 67 (2017), 245-257. |
[112] | M. E. Craft, Infectious disease transmission and contact networks in wildlife and livestock, Phil. Trans. R. Soc. B, 370 (2015), 20140107. |
[113] | R. H. Griffin, C. L. Nunn, Community structure and the spread of infectious disease in primate social networks, Evol. Ecol., 26 (2012), 779-800. |
[114] | C. L. Nunn, F. Jordan, C. M. McCabe, J. L. Verdolin, J. H. Fewell, Infectious disease and group size: More than just a numbers game, Phil. Trans. R. Soc. B, 370 (2015), 20140111. |
[115] | S. S. Godfrey, C. M. Bull, R. James, K. Murray, Network structure and parasite transmission in a group living lizard, the gidgee skink, Egernia stokesii, Behav. Ecol. Sociobiol., 63 (2009), 1045-1056. |
[116] | K. L. VanderWaal, E. R. Atwill, S. Hooper, K. Buckle, B. McCowan, Network structure and prevalence of Cryptosporidium in Belding's ground squirrels, Behav. Ecol. Sociobiol., 67 (2013), 1951-1959. |
[117] | T. Porphyre, M. Stevenson, R. Jackson, J. McKenzie, Original article Influence of contact heterogeneity on TB reproduction ratio R0 in a free-living brushtail possum Trichosurus vulpecula population, Vet. Res., 39 (2008), 31. |
[118] | J. Rushmore, D. Caillaud, R. J. Hall, R. M. Stumpf, L. A. Meyers, S. Altizer, Network-based vaccination improves prospects for disease control in wild chimpanzees, J. R. Soc. Interface, 11 (2014), 20140349. |
[119] | J. A. Drewe, K. T. D. Eames, J. R. Madden, G. P. Pearce, Integrating contact network structure into tuberculosis epidemiology in meerkats in South Africa: Implications for control, Prevent. Vet. Med., 101 (2011), 113-120. |
[120] | M. D. J. Blyton, S. C. Banks, R. Peakall, D. B. Lindenmayer, D. M. Gordon, Not all types of host contacts are equal when it comes to E. coli transmission, Ecol. Lett., 17 (2014), 970-978. |
[121] | C. R. Webb, Farm animal networks: Unraveling the contact structure of the British sheep population, Prevent. Vet. Med., 68 (2005), 3-17. |
[122] | F. Natale, A. Giovannini, L. Savini, D. Palma, L. Possenti, G. Fiore, et al., Network analysis of Italian cattle trade patterns and evaluation of risks for potential disease spread, Prevent. Vet. Med., 92 (2009), 341-350. |
[123] | C. Dubé, C. Ribble, D. Kelton, B. Mcnab, A Review of network analysis terminology and its application to foot-and-mouth disease modelling and policy development, Transbound. Emerg. Dis., 56 (2009), 73-85. |
[124] | H. Chen, G. Smith, S. Zhang, K. Qin, J. Wang, S. Li, et al., H5N1 virus outbreak in migratory waterfowl, Nature, 436 (2005), 191-192. |
[125] | B. J. Hoye, V. J. Munster, H. Nishiura, R. A. M. Fouchier, J. Madsen, M. Klaassen, Reconstructing an annual cycle of interaction: Natural infection and antibody dynamics to avian influenca along a migratory flyway, Oikos, 120 (2011), 748-755. |
[126] | K. R. Finn, M. J. Silk, M. A. Porter, N. Pinter-Wollman, The use of multilayer network analysis in animal behaviour, Anim. Behav., 149 (2019), 7-22. |
[127] | K. Robert, D. Garant, F. Pelletier, Keep in touch: Does spatial overlap correlate with contact rate frequency?, J. Wildl. Manag., 76 (2012), 1670-1675. |
[128] | M. L. Gilbertson, L. A. White, M. E. Craft, Trade‐offs with telemetry‐derived contact networks for infectious disease studies in wildlife, Meth. Ecol. Evol., 2020. |
[129] | S. E. Perkins, F. Cagnacci, A. Stradiotto, D. Arnoldi, P. J. Hudson, Comparison of social networks derived from ecological data: implications for inferring infectious disease dynamics, J. Anim. Ecol., 78 (2009), 1015-1022. |
[130] | J. Krause, A. D. M. Wilson, D. P. Croft, New technology facilitates the study of social networks, Trends Ecol. Evol., 26 (2011), 5-6. |
[131] | C. Rutz, Z. T. Burns, R. James, S. M. H. Ismar, J. Burt, B. Otis, et al., Automated mapping of social networks in wild birds, Curr. Biol., 22 (2012), R669-R671. |
[132] | I. Psorakis, B. Voelkl, C. J. Garroway, R. Radersma, L. M. Aplin, R. A. Crates, et al., Inferring social structure from temporal data, Behav. Ecol. Sociobiol., 69 (2015), 857-866. |
[133] | J. R. Ginsberg, T. P. Young, Measuring associations between individuals or groups in behavioural studies, Anim. Behav., 44 (1992), 377-379. |
[134] | L. Beijder, D. Fletcher, S. Brager, A method for testing association patterns of social animals, Anim. Behav., 56 (1998), 719-725. |
[135] | L. A. White, J. D. Forester, M. E. Craft, Using contact networks to explore mechanisms of parasite transmission in wildlife, Biol. Rev., 92 (2017), 389-409. |
[136] | R. K. Hamede, J. Bashford, H. McCallum, M. Jones, Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: Using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease, Ecol. Lett., 12 (2009), 1147-1157. |
[137] | T. C. Germann, K. Kadau, I. M. Longini, C. A. Macken, Mitigation strategies for pandemic influenza in the United States, Proc. Natl. Acad. Sci. USA, 103 (2006), 5935-5940. |
[138] | S. E. Robinson, M. G. Everett, R. M. Christley, Recent network evolution increases the potential for large epidemics in the British cattle population, J. R. Soc. Interface, 4 (2007), 669-674. |
[139] | J. C. Gibbens, C. E. Sharpe, J. W. Wilesmith, L. M. Mansley, E. Michalopoulou, J. B., et al., Descriptive epidemiology of the 2001 foot-and-mouth disease epidemic in Great Britain: The first five months, Vet. Rec., 149 (2001), 729-743. |
[140] | I. Z. Kiss, D. M. Green, R. R. Kao, The network of sheep movements within Great Britain: Network properties and their implications for infectious disease spread, J. R. Soc. Interface, 3 (2006), 669-677. |
[141] | D. M. Green, I. Z. Kiss, R. R. Kao, Modelling the initial spread of foot-and-mouth disease through animal movements, Proc. R. Soc. B, 273 (2006), 2729-2735. |
[142] | M. C.Vernon, M. J. Keeling, Representing the UK's cattle herd as static and dynamic networks, Proc. R. Soc. B, 276 (2009), 469-476. |
[143] | P. Sah, S. T. Leu, P. C. Cross, P. J. Hudson, S. Bansal, Unravelling the disease consequences and mechanisms of modular structure in animal social networks, Proc. Natl. Acad. Sci. USA, 114 (2017), 4165-4170. |
[144] | R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86 (2001), 3200-3203. |
[145] | A. L. Lloyd, R. M. May, How viruses spread among computers and people, Science, 292 (2001), 1316-1317. |
[146] | D. C. Bell, J. S. Atkinson, J. W. Carlson, Centrality measures for disease transmission networks, Soc. Netw., 21 (1999), 1-21. |
[147] | M. J. Keeling, The effects of local spatial structure on epidemiological invasions, Proc. R. Soc. B, 266 (1999), 859-867. |
[148] | K. T. D. Eames, M. J. Keeling, Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases, Proc. Natl. Acad. Sci. USA, 99 (2002), 13330-13335. |
[149] | C. Buckee, L. Danon, S. Gupta, Host community structure and the maintenance of pathogen diversity, Proc. R. Soc. B, 274 (2007), 1715-1721. |
[150] | M. Salathé, J. H. Jones, Dynamics and control of diseases in networks with community structure, PLoS Comp. Biol., 6 (2010), e1000736. |
[151] | S. M. Firestone, M. P. Ward, R. M. Christley, N. K. Dhand, The importance of location in contact networks: Describing early epidemic spread using spatial social network analysis, Prevent. Vet. Med., 102 (2011), 185-195. |
[152] | J. Frössling, A. Ohlson, C. Björkman, N. Hakansson, M. Nöremark, Application of network analysis parameters in risk-based surveillance-Examples based on cattle trade data and bovine infections in Sweden, Prevent. Vet. Med., 105 (2012), 202-208. |
[153] | L. García Álvarez, C. R. Webb, M. A. Holmes, A novel field-based approach to validate the use of network models for disease spread between dairy herds, Epidemiol. Infect., 139 (2011), 1863-1874. |
[154] | R. Biek, A. G. Rodrigo, D. Holley, A. Drummond, C. R. Anderson, H. A. Ross, et al., Epidemiology, genetic diversity, and evolution of endemic feline immunodeficiency virus in a population of wild cougars, J. Virol., 77 (2003), 9578-9589. |
[155] | B. T. Grenfell, O. G. Pybus, J. R. Gog, J. L. N. Wood, J. M. Daly, J. A. Mumford, et al., Unifying the epidemiological and evolutionary dynamics of pathogens, Science, 303 (2004), 327-333. |
[156] | R. Biek, A. Drummond, M. Poss, A virus reveals population structure and recent demographic history of its carnivore host, Science, 311 (2006), 538-542. |
[157] | E. A. Archie, G. Luikart, V. O. Ezenwa, Infecting epidemiology with genetics: A new frontier in disease ecology, Trends Ecol. Evol., 24 (2008), 21-30. |
[158] | C. M. Bull, S. S. Godfrey, D. M. Gordon, Social networks and the spread of Salmonella in a sleepy lizard population, Mol. Ecol., 21 (2012), 4386-4392. |
[159] | K. L. VanderWaal, E. R. Atwill, L. A. Isbell, B. McCowan, Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis), J. Anim. Ecol., 83 (2014), 406-414. |
[160] | K. L. VanderWaal, E. R. Atwill, L. A. Isbell, B. McCowan, B. Quantifying microbe transmission networks for wild and domestic ungulates in Kenya, Biol. Conserv., 169 (2014), 136-146. |
[161] | J. S. Lee, E. W. Ruell, E. E. Boydston, L. M. Lyren, R. S. Alonso, J. L. Troyer, et al., Gene flow and pathogen transmission among bobcats (Lynx rufus) in a fragmented urban landscape, Mol. Ecol., 21 (2012), 1617-1631. doi: 10.1111/j.1365-294X.2012.05493.x |
[162] | B. Y. Reis, I. S. Kohane, K. D. Mandl, An epidemiological network model for disease outbreak detection, PLoS Med, 4 (2007), e210. |
[163] | F. Schirdewahn, V. Colizza, H. H. Lentz, A. Koher, V. Belik, P. Hövel, Surveillance for outbreak detection in livestock-trade networks, in Temporal Network Epidemiology (eds. M. Naoki, P. Holme), Springer, 2017, 215-240. |
[164] | P. Skums, A. Kirpich, P. I. Baykal, A. Zelikovsky, G. Chowell, Global transmission network of SARS-CoV-2: From outbreak to pandemic, medRxiv, 2020. |
[165] | D. Lusseau, H. Whitehead, S. Gero, Incorporating uncertainty into the study of animal social networks, Anim. Behav., 75 (2008), 1809-1815. |
[166] | R. James, D. P. Croft, J. Krause, Potential banana skins in animal social network analysis, Behav. Ecol. Sociobiol., 63 (2009), 989-997. |
[167] | B. Voelkl, C. Kasper, C. Schwab, Network measures for dyadic interactions: Stability and reliability, Am. J. Primatol., 73 (2011), 731-740. |
[168] | J. Krause, S. Krause, R. Arlinghaus, I. Psorakis, S. Roberts, C. Rutz, Reality mining of animal social systems, Trends Ecol. Evol., 28 (2013), 541-551. |
[169] | M. Berdoy, J. P. Webster, D. W. Macdonald, Fatal attraction in rats infected with Toxoplasma gondii, Proc. R. Soc. B, 267 (2000), 1591-1594. |
[170] | A. Vyas, S. Kim, N. Giacomini, J. C. Boothroyd, R. M. Sapolsky, Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors, Proc. Natl. Acad. Sci. USA, 104 (2007), 6442-6447. |
[171] | D. P. Croft, M. Edenbrow, S. K. Darden, I. W. Ramnarine, C. van Oosterhout, J. Cable, Effect of gyrodactylid ectoparasites on host behaviour and social network structure in guppies Poecilia reticulata, Behav. Ecol. Sociobiol., 65 (2011), 2219-2227. |
[172] | F. J. Theis, L. V. Ugelvig, C. Marr, S. Cremer, Opposing effects of allogrooming on disease transmission in ant societies, Phil Trans. R. Soc. B, 370 (2015), 20140108. |
[173] | V. O. Ezenwa, E. A. Archie, M. E. Craft, D. M. Hawley, L. B. Martin, J. Moore, et al., Host behaviour-parasite feedback: an essential link between animal behaviour and disease ecology, Proc. R. Soc. B, 283 (2016), 20153078. |
[174] | L. A. White, J. D. Forester, M. E. Craft, Dynamic, spatial models of parasite transmission in wildlife: Their structure, applications and remaining challenges, J. Anim. Ecol., 87 (2018), 559-580. |
[175] | K. Büttner, J. Salau, J., Krieter, Quality assessment of static aggregation compared to the temporal approach based on a pig trade network in Northern Germany, Prevent. Vet. Med., 129 (2016), 1-8. |
[176] | M. J. Silk, D. J., Hodgson, C. Rozins, D. P. Croft, R. J. Delahay, M. Boots, et al., Integrating social behaviour, demography and disease dynamics in network models: applications to disease management in declining wildlife populations, Phil. Trans. R. Soc. B, 374 (2019), 20180211. |
[177] | M. E. Craft, E. Volz, C. Packer, L. A. Meyers, Disease transmission in territorial populations: The small-world network of Serengeti lions, J. R. Soc. Interface, 8 (2011), 776-786. |
[178] | N. Weber, S. P. Carter, S. R. X. Dall, R. J. L. Delahay, J. L. McDonald, S. Bearhop, et al., Badger social networks correlate with tuberculosis infection, Curr. Biol., 23 (2013), R915-R916. |
[179] | K. P. Huyvaert, R. E. Russell, K. A. Patyk, M. E. Craft, P. C. Cross, M. G. Garner, et al., Challenges and opportunities developing mathematical models of shared pathogens of domestic and wild animals, Vet. Sci., 5 (2018), 92. |
[180] | S. Kraberger, N. M. Fountain-Jones, R. B. Gagne, J. Malmberg, N.G. Dannemiller, K. Logan, et al., Frequent cross-species transmissions of foamy virus between domestic and wild felids, Virus Evol., 6 (2020), vez058. |
[181] | R. K. Plowright, C. R. Parrish, H. McCallum, P. J. Hudson, A. I. Ko, A. L. Graham, et al., Pathways to zoonotic spillover, Nat. Rev. Microbiol., 15 (2017), 502. |
[182] | B. J. Coburn, B. G. Wagner, S. Blower, Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1). BMC Med., 7 (2009), 30. |
[183] | C. M. Scoglio, C. Bosca, M. H. Riad, F. D. Sahneh, S. C. Britch, L. W. Cohnstaedt, et al., Biologically informed individual-based network model for Rift Valley fever in the US and evaluation of mitigation strategies, PloS One, 11 (2016), e0162759. |
[184] | S. K. Lau, P. C. Woo, K. S. Li, Y. Huang, H. W. Tsoi, B. H. Wong, et al., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats, Proc. Natl. Acad. Sci. USA, 102 (2005), 14040-14045. |
[185] | C. M. Luo, N. Wang, X. L. Yang, H. Z. Liu, W. Zhang, B. Li, et al., Discovery of novel bat coronaviruses in south China that use the same receptor as Middle East respiratory syndrome coronavirus, J. Virol., 92 (2018), e00116-18. |
[186] | N. Wang, S. Y. Li, X. L. Yang, H. M. Huang, Y. J. Zhang, H. Guo, et al., Serological evidence of bat SARS-related coronavirus infection in humans, China, Virol. Sin., 33 (2018),104-107. |
[187] | L. E. Escobar, R. Moen, M. E. Craft, K. L. VanderWaal, Mapping parasite transmission risk from white-tailed deer to a declining moose population, Eur. J. Wildl. Res., 65 (2019), 60. |
[188] | P. Sah, J. Mann, S. Bansal, Disease implications of animal social network structure: A synthesis across social systems, J. Anim. Ecol., 87 (2018), 546-558. |