Research article Special Issues

Random perturbations in a mathematical model of bacterial resistance: Analysis and optimal control

  • Received: 13 February 2020 Accepted: 17 June 2020 Published: 23 June 2020
  • In this work, we study a mathematical model for the interaction of sensitive-resistant bacteria to antibiotics and analyse the effects of introducing random perturbations to this model. We compare the results of existence and stability of equilibrium solutions between the deterministic and stochastic formulations, and show that the conditions for the bacteria to die out are weaker in the stochastic model. Moreover, a corresponding optimal control problem is formulated for the unperturbed and the perturbed system, where the control variable is prophylaxis. The results of the optimal control problem reveal that, depending on the antibiotics, the costs of the prophylaxis, such as implementation, ordering and distribution, have to be much lower than the social costs, to achieve a bacterial resistance effective control.

    Citation: Hermann Mena, Lena-Maria Pfurtscheller, Jhoana P. Romero-Leiton. Random perturbations in a mathematical model of bacterial resistance: Analysis and optimal control[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 4477-4499. doi: 10.3934/mbe.2020247

    Related Papers:

  • In this work, we study a mathematical model for the interaction of sensitive-resistant bacteria to antibiotics and analyse the effects of introducing random perturbations to this model. We compare the results of existence and stability of equilibrium solutions between the deterministic and stochastic formulations, and show that the conditions for the bacteria to die out are weaker in the stochastic model. Moreover, a corresponding optimal control problem is formulated for the unperturbed and the perturbed system, where the control variable is prophylaxis. The results of the optimal control problem reveal that, depending on the antibiotics, the costs of the prophylaxis, such as implementation, ordering and distribution, have to be much lower than the social costs, to achieve a bacterial resistance effective control.


    加载中


    [1] K. R. Philipsen, Nonlinear Stochastic Modelling of Antimicrobial resistance in Bacterial Populations, PhD thesis, Technical University of Denmark (DTU), 2010.
    [2] I. Nåsell, Stochastic models of some endemic infections, Math. Biosci., 179 (2002), 1-19.
    [3] J. P. Romero-Leiton, E. Ibargüen-Mondragón, L. Esteva, Un modelo matemático sobre bacterias sensibles y resistentes a antibióticos, Matemáticas: Enseñanza Universitaria, 19 (2011), 55-73.
    [4] J. P. Romero-Leiton, E. Ibargüen-Mondragón, Sobre la resistencia bacteriana hacia antibióticos de acción bactericida y bacteriostática, Revista Integración, 32 (2014), 101-116.
    [5] E. Ibargüen-Mondragón, S. Mosquera, M. Cerón, E. M. Burbano-Rosero, S. P. Hidalgo-Bonilla, L. Esteva, J. P. Romero-Leiton, Mathematical modeling on bacterial resistance to multiple antibiotics caused by spontaneous mutations, Biosystems, 117 (2014), 60-67.
    [6] E. Ibargüen-Mondragón, J. P. Romero-Leiton, L. Esteva, E. Burbano, Mathematical modeling of bacterial resistance to antibiotics by mutations and plasmids, J. Biol. Systems, 24 (2016), 129-146.
    [7] R. A. Weinstein, M. J. Bonten, D. J. Austin, M. Lipsitch, Understanding the spread of antibiotic resistant pathogens in hospitals: mathematical models as tools for control, Clin. Infect. Dis., 33 (2001), 1739-1746.
    [8] J. Alavez-Ramirez, J. R. A. Castellanos, L. Esteva, J. A. Flores, J. L. Fuentes-Allen, G. GarcíaRamos, G. Gómez, J. López-Estrada, Within-host population dynamics of antibiotic-resistant M. tuberculosis, Math. Med. Biol., 24 (2007), 35-56.
    [9] D. Austin, R. Anderson, Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical models, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 354 (1999), 721-738.
    [10] E. M. D'Agata, P. Magal, D. Olivier, S. Ruan, G. F. Webb, Modeling antibiotic resistance in hospitals: the impact of minimizing treatment duration, J. Theor. Biol., 249 (2007), 487-499.
    [11] S. Bonhoeffer, M. Lipsitch, B. R. Levin, Evaluating treatment protocols to prevent antibiotic resistance, Proc. Natl. Acad. Sci. USA, 94 (1997), 12106-12111.
    [12] M. Bootsma, M. van der Horst, T. Guryeva, B. Ter Kuile, O. Diekmann, Modeling non-inherited antibiotic resistance, Bull. Math. Biol., 74 (2012), 1691-1705.
    [13] E. Massad, M. N. Burattini, F. A. B. Coutinho, An optimization model for antibiotic use, Appl. Math. Comput., 201 (2008), 161-167.
    [14] F. Hellweger, X. Ruan, S. Sanchez, A simple model of tetracycline antibiotic resistance in the aquatic environment (with application to the Poudre river), Int. J. Environ. Res. Public Health, 8 (2011), 480-497.
    [15] T. Saha, M. Bandyopadhyay, Dynamical analysis of a delayed ratio-dependent prey-predator model within fluctuating environment, Appl. Math. Comput., 196 (2008), 458-478.
    [16] S. B. Mortensen, S. Klim, B. Dammann, N. R. Kristensen, H. Madsen, R. V. Overgaard, A Matlab framework for estimation of NLME models using stochastic differential equations, J. Pharmacokinet. Pharmacodyn., 34 (2007), 623-642.
    [17] S. Klim, S. B. Mortensen, N. R. Kristensen, R. V. Overgaard, H. Madsen, Population stochastic modelling (PSM)-an R package for mixed-effects models based on stochastic differential equations, Comput. Methods Programs Biomed., 94 (2009), 279-289.
    [18] M. W. Pedersen, D. Righton, U. H. Thygesen, K. H. Andersen, H. Madsen, Geolocation of north sea cod (gadus morhua) using hidden markov models and behavioural switching, Can. J. Fish. Aquat. Sci., 65 (2008), 2367-2377.
    [19] J. L. Jacobsen, H. Madsen, P. Harremoës, A stochastic model for two-station hydraulics exhibiting transient impact, Water Sci. Technol., 36 (1997), 19-26.
    [20] H. Jonsdottir, H. Madsen, O. P. Palsson, Parameter estimation in stochastic rainfall-runoff models, J. Hydrol., 326 (2006), 379-393.
    [21] J. U.-M. Nielsen, Price-quality competition in the exports of the central and eastern european countries, Intereconomics, 35 (2000), 94-101.
    [22] S. U. Acikgoz, U. M. Diwekar, Blood glucose regulation with stochastic optimal control for insulin-dependent diabetic patients, Chem. Eng. Sci., 65 (2010), 1227-1236.
    [23] P. Grandits, R. M. Kovacevic, V. M. Veliov, Optimal control and the value of information for a stochastic epidemiological SIS-model, J. Math. Anal. Appl., 476 (2019), 665 - 695.
    [24] P. J. Witbooi, G. E. Muller, G. J. Van Schalkwyk, Vaccination control in a stochastic SVIR epidemic model, Comput. Math. Methods Med., 2015.
    [25] R. Aboulaich, A. Darouichi, I. Elmouki, A. Jraifi, A stochastic optimal control model for BCG immunotherapy in superficial bladder cancer, Math. Model. Nat. Phenom., 12 (2017), 99-119.
    [26] J. H. Brown, J. F. Gillooly, A. P. Allen, V. M. Savage, G. B. West, Toward a metabolic theory of ecology, Ecology, 85 (2004), 1771-1789.
    [27] A. Lahrouz, L. Omari, D. Kiouach, Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model.
    [28] Y. Zhao, D. Jiang, X. Mao, A. Gray, The threshold of a stochastic SIRS epidemic model in a population with varying size, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015). 1277-1295,
    [29] X. Mao, Stochastic differential equations and applications, Elsevier, 2007.
    [30] N. Chehrazi, L. Cipriano, E. Enns, Dynamics of drug resistance: Optimal control of an infectious disease, Available at SSRN, URL http://dx.doi.org/10.2139/ssrn.2927549.
    [31] N. I. Stilianakis, A. S. Perelson, F. G. Hayden, Emergence of drug resistance during an influenza epidemic: insights from a mathematical model, J. Infect. Dis., 177 (1998), 863-873.
    [32] K. Leung, M. Lipsitch, K. Y. Yuen, J. T. Wu, Monitoring the fitness of antiviral-resistant influenza strains during an epidemic: A mathematical modelling study, Lancet Infect. Dis., 17 (2017), 339- 347.
    [33] B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring, Water Res., 72 (2015), 3-27.
    [34] A. Permatasari, R. Tjahjana, T. Udjiani, Existence and characterization of optimal control in mathematics model of diabetics population, in J. Phys. Conf. Ser., vol. 983, 2018, 1-6.
    [35] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The Mathematical Theory of Optimal Processes., New York and London: Interscience Publisher, 1962.
    [36] S. Lenhart, J. T. Workman, Optimal control applied to biological models, CRC Press, 2007.
    [37] J. P. Romero-Leiton, E. Ibargüen-Mondragón, Stability analysis and optimal control intervention strategies of a malaria mathematical model, Appl. Sci., 21 (2019), 184-217.
    [38] J. Yong, X. Y. Zhou, Stochastic controls: Hamiltonian systems and HJB equations, vol. 43, Springer Science & Business Media, 1999.
    [39] J. Ma, P. Protter, J. Yong, Solving forward-backward stochastic differential equations explicitly-a four step scheme, Probab. Theory Related Fields, 98 (1994), 339-359.
    [40] G. Milstein, M. V. Tretyakov, Numerical algorithms for forward-backward stochastic differential equations, SIAM J. Sci. Comput., 28 (2006), 561-582.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3698) PDF downloads(311) Cited by(2)

Article outline

Figures and Tables

Figures(7)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog