Citation: Hermann Mena, Lena-Maria Pfurtscheller, Jhoana P. Romero-Leiton. Random perturbations in a mathematical model of bacterial resistance: Analysis and optimal control[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 4477-4499. doi: 10.3934/mbe.2020247
[1] | K. R. Philipsen, Nonlinear Stochastic Modelling of Antimicrobial resistance in Bacterial Populations, PhD thesis, Technical University of Denmark (DTU), 2010. |
[2] | I. Nåsell, Stochastic models of some endemic infections, Math. Biosci., 179 (2002), 1-19. |
[3] | J. P. Romero-Leiton, E. Ibargüen-Mondragón, L. Esteva, Un modelo matemático sobre bacterias sensibles y resistentes a antibióticos, Matemáticas: Enseñanza Universitaria, 19 (2011), 55-73. |
[4] | J. P. Romero-Leiton, E. Ibargüen-Mondragón, Sobre la resistencia bacteriana hacia antibióticos de acción bactericida y bacteriostática, Revista Integración, 32 (2014), 101-116. |
[5] | E. Ibargüen-Mondragón, S. Mosquera, M. Cerón, E. M. Burbano-Rosero, S. P. Hidalgo-Bonilla, L. Esteva, J. P. Romero-Leiton, Mathematical modeling on bacterial resistance to multiple antibiotics caused by spontaneous mutations, Biosystems, 117 (2014), 60-67. |
[6] | E. Ibargüen-Mondragón, J. P. Romero-Leiton, L. Esteva, E. Burbano, Mathematical modeling of bacterial resistance to antibiotics by mutations and plasmids, J. Biol. Systems, 24 (2016), 129-146. |
[7] | R. A. Weinstein, M. J. Bonten, D. J. Austin, M. Lipsitch, Understanding the spread of antibiotic resistant pathogens in hospitals: mathematical models as tools for control, Clin. Infect. Dis., 33 (2001), 1739-1746. |
[8] | J. Alavez-Ramirez, J. R. A. Castellanos, L. Esteva, J. A. Flores, J. L. Fuentes-Allen, G. GarcíaRamos, G. Gómez, J. López-Estrada, Within-host population dynamics of antibiotic-resistant M. tuberculosis, Math. Med. Biol., 24 (2007), 35-56. |
[9] | D. Austin, R. Anderson, Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical models, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 354 (1999), 721-738. |
[10] | E. M. D'Agata, P. Magal, D. Olivier, S. Ruan, G. F. Webb, Modeling antibiotic resistance in hospitals: the impact of minimizing treatment duration, J. Theor. Biol., 249 (2007), 487-499. |
[11] | S. Bonhoeffer, M. Lipsitch, B. R. Levin, Evaluating treatment protocols to prevent antibiotic resistance, Proc. Natl. Acad. Sci. USA, 94 (1997), 12106-12111. |
[12] | M. Bootsma, M. van der Horst, T. Guryeva, B. Ter Kuile, O. Diekmann, Modeling non-inherited antibiotic resistance, Bull. Math. Biol., 74 (2012), 1691-1705. |
[13] | E. Massad, M. N. Burattini, F. A. B. Coutinho, An optimization model for antibiotic use, Appl. Math. Comput., 201 (2008), 161-167. |
[14] | F. Hellweger, X. Ruan, S. Sanchez, A simple model of tetracycline antibiotic resistance in the aquatic environment (with application to the Poudre river), Int. J. Environ. Res. Public Health, 8 (2011), 480-497. |
[15] | T. Saha, M. Bandyopadhyay, Dynamical analysis of a delayed ratio-dependent prey-predator model within fluctuating environment, Appl. Math. Comput., 196 (2008), 458-478. |
[16] | S. B. Mortensen, S. Klim, B. Dammann, N. R. Kristensen, H. Madsen, R. V. Overgaard, A Matlab framework for estimation of NLME models using stochastic differential equations, J. Pharmacokinet. Pharmacodyn., 34 (2007), 623-642. |
[17] | S. Klim, S. B. Mortensen, N. R. Kristensen, R. V. Overgaard, H. Madsen, Population stochastic modelling (PSM)-an R package for mixed-effects models based on stochastic differential equations, Comput. Methods Programs Biomed., 94 (2009), 279-289. |
[18] | M. W. Pedersen, D. Righton, U. H. Thygesen, K. H. Andersen, H. Madsen, Geolocation of north sea cod (gadus morhua) using hidden markov models and behavioural switching, Can. J. Fish. Aquat. Sci., 65 (2008), 2367-2377. |
[19] | J. L. Jacobsen, H. Madsen, P. Harremoës, A stochastic model for two-station hydraulics exhibiting transient impact, Water Sci. Technol., 36 (1997), 19-26. |
[20] | H. Jonsdottir, H. Madsen, O. P. Palsson, Parameter estimation in stochastic rainfall-runoff models, J. Hydrol., 326 (2006), 379-393. |
[21] | J. U.-M. Nielsen, Price-quality competition in the exports of the central and eastern european countries, Intereconomics, 35 (2000), 94-101. |
[22] | S. U. Acikgoz, U. M. Diwekar, Blood glucose regulation with stochastic optimal control for insulin-dependent diabetic patients, Chem. Eng. Sci., 65 (2010), 1227-1236. |
[23] | P. Grandits, R. M. Kovacevic, V. M. Veliov, Optimal control and the value of information for a stochastic epidemiological SIS-model, J. Math. Anal. Appl., 476 (2019), 665 - 695. |
[24] | P. J. Witbooi, G. E. Muller, G. J. Van Schalkwyk, Vaccination control in a stochastic SVIR epidemic model, Comput. Math. Methods Med., 2015. |
[25] | R. Aboulaich, A. Darouichi, I. Elmouki, A. Jraifi, A stochastic optimal control model for BCG immunotherapy in superficial bladder cancer, Math. Model. Nat. Phenom., 12 (2017), 99-119. |
[26] | J. H. Brown, J. F. Gillooly, A. P. Allen, V. M. Savage, G. B. West, Toward a metabolic theory of ecology, Ecology, 85 (2004), 1771-1789. |
[27] | A. Lahrouz, L. Omari, D. Kiouach, Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model. |
[28] | Y. Zhao, D. Jiang, X. Mao, A. Gray, The threshold of a stochastic SIRS epidemic model in a population with varying size, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015). 1277-1295, |
[29] | X. Mao, Stochastic differential equations and applications, Elsevier, 2007. |
[30] | N. Chehrazi, L. Cipriano, E. Enns, Dynamics of drug resistance: Optimal control of an infectious disease, Available at SSRN, URL http://dx.doi.org/10.2139/ssrn.2927549. |
[31] | N. I. Stilianakis, A. S. Perelson, F. G. Hayden, Emergence of drug resistance during an influenza epidemic: insights from a mathematical model, J. Infect. Dis., 177 (1998), 863-873. |
[32] | K. Leung, M. Lipsitch, K. Y. Yuen, J. T. Wu, Monitoring the fitness of antiviral-resistant influenza strains during an epidemic: A mathematical modelling study, Lancet Infect. Dis., 17 (2017), 339- 347. |
[33] | B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring, Water Res., 72 (2015), 3-27. |
[34] | A. Permatasari, R. Tjahjana, T. Udjiani, Existence and characterization of optimal control in mathematics model of diabetics population, in J. Phys. Conf. Ser., vol. 983, 2018, 1-6. |
[35] | L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The Mathematical Theory of Optimal Processes., New York and London: Interscience Publisher, 1962. |
[36] | S. Lenhart, J. T. Workman, Optimal control applied to biological models, CRC Press, 2007. |
[37] | J. P. Romero-Leiton, E. Ibargüen-Mondragón, Stability analysis and optimal control intervention strategies of a malaria mathematical model, Appl. Sci., 21 (2019), 184-217. |
[38] | J. Yong, X. Y. Zhou, Stochastic controls: Hamiltonian systems and HJB equations, vol. 43, Springer Science & Business Media, 1999. |
[39] | J. Ma, P. Protter, J. Yong, Solving forward-backward stochastic differential equations explicitly-a four step scheme, Probab. Theory Related Fields, 98 (1994), 339-359. |
[40] | G. Milstein, M. V. Tretyakov, Numerical algorithms for forward-backward stochastic differential equations, SIAM J. Sci. Comput., 28 (2006), 561-582. |