
http://www.aimspress.com/journal/MBE

MBE, 17(5): 4477–4499.
DOI: 10.3934/mbe.2020247
Received: 13 February 2020
Accepted: 17 June 2020
Published: 23 June 2020

Research article

Random perturbations in a mathematical model of bacterial resistance:
Analysis and optimal control

Hermann Mena 1,2, Lena–Maria Pfurtscheller 2 and Jhoana P. Romero–Leiton 1,∗
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Abstract: In this work, we study a mathematical model for the interaction of sensitive–resistant bacte-
ria to antibiotics and analyse the effects of introducing random perturbations to this model. We compare
the results of existence and stability of equilibrium solutions between the deterministic and stochas-
tic formulations, and show that the conditions for the bacteria to die out are weaker in the stochastic
model. Moreover, a corresponding optimal control problem is formulated for the unperturbed and the
perturbed system, where the control variable is prophylaxis. The results of the optimal control problem
reveal that, depending on the antibiotics, the costs of the prophylaxis, such as implementation, ordering
and distribution, have to be much lower than the social costs, to achieve a bacterial resistance effective
control.
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1. Introduction

Common infections such as pneumonia, urinary infections and post–surgical infections are exam-
ples of areas where antibiotics play an important role. Historically, antibiotics have been developed to
combat harmful bacteria, but not all bacteria are harmful to health, for instance, in the human organism,
there are beneficial bacteria such as those that inhabit the intestines and play an important role in the
digestion process [1]. To date, diseases caused by bacteria can be treated with antibiotics as long as
they are not resistant to these drugs. The increase in resistance rates is a major problem in medicine
because a simple infection can be lethal, also it leads to a rise of social–economical burden due to
increased health care costs.

The previous scenario generates the need to research in this area, in order to create strategies that
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allow to understand the evolution and propagation of bacterial resistance to antibiotics and in some way
help to mitigate its evolution. From mathematics, the bacterial resistance phenomenon has been studied
using a deterministic and stochastic approach, although deterministic work has dominated strongly on
stochastic work [2]. From the deterministic setting, we can highlight the works focused on propagation
and transmission of bacterial resistance [3–8], identifying the responsible factors of the bacterial resis-
tance [9], examining the bacteria behaviour under the use of different antibiotic treatments [8, 10–12],
optimizing the use of antibiotics [13], helping to design viable control strategies [7], modelling the
acquisition of resistance from external sources [14], among others. From a stochastic approach, the
works of Philipsen [1] and D’Agata et al. [10] who studied the evolution process of bacterial resistance
and the impact of minimizing antibiotic treatment duration are highlighted.

Although the study of deterministic mathematical models provides important results in terms of
epidemiological thresholds such as the basic reproduction number, they have some limitations, since
it is quite difficult to predict the future behaviour of a biological system with precision [15]. This is
due to the fact of the deterministic models do not incorporate the effect of a fluctuating environment
(for example, intensity of sunlight, temperature, precipitation, among others), which yields to consider
non–constant parameters in the model that oscillate around a certain average value. Therefore, the
stochastic mathematical modelling of biological systems is more realistic causing a greater interest in
researchers dedicated to answering questions such as: what is the probability that there is an outbreak
of a certain disease? How long will a disease likely persist (with or without intervention) [15]?

The stochastic approach for a deterministic mathematical model can be introduced by including
noises in the parameters involved in the model, see e.g., [16–21]. Nevertheless, there are not many
results about introduction of control strategies for stochastic models. As for this topic, we can name
the works given on the references [22–25].

In this work, we will first study the effects caused in the existence and stability of equilibrium solu-
tions properties with the introduction of random perturbations to some parameters of the deterministic
mathematical model proposed by Romero et al. [3], which after nondimensionalization is given by the
following system of ordinary differential equations (ODEs):

dS (t)
dt

= βsS [1 − (S + R)] − αS − µsS

dR(t)
dt

= βrR[1 − (S + R)] + qαS − µrR.

(1.1)

In the above mathematical model the variables S and R denote the number of sensitive and resistant
bacteria population to antibiotics, respectively. The parameters βs and βr represent the growth rates
of sensitive and resistant bacteria, respectively, being βr ≤ βs [3], and µs and µr the natural death
rates of sensitive and resistant bacteria, respectively. The term qαS represent the number of sensitive
bacteria that acquire resistance due to contact with the antibiotic, where α is the effectiveness rate of
antibiotic and q is the the proportion of bacteria that mutate. A complete description of the model (1.1)
can be found in Table 2 in [3]. The qualitative analysis of the previous system was done in terms of
certain thresholds representing the basic reproduction numbers of resistant and sensitive bacteria. The
existence and global stability conditions of the three equilibrium solutions can be found on page 66
of [3]. Secondly, we will analyse the effects of prophylaxis (such as patient education campaigns) as a
control strategy, both in the deterministic and stochastic formulation, to reduce the spread of resistant
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bacteria. Finally, we will do numerical experiments to validate our theoretical results.
This paper is organized as follows: first, we formulate the stochastic mathematical model and ob-

tain conditions for the stability of equilibrium solutions in terms of the stochastic basic reproduction
numbers. Then, we formulate and analyse the optimal control problems and investigate the influence
of prophylaxis on the reduction of resistant bacteria. Finally, numerical simulations in both cases using
data from [3] for bacteria of the genus Staphylococus aeureus are performed to confirm the theoretical
results.

2. Stochastic mathematical model formulation

In this section we formulate the stochastic version of the mathematical model (1.1), considering the
growth rates of bacteria as random rates according to [26]

β̃s = βs + ρ1Ẇ1(t)

β̃r = βr + ρ2Ẇ2(t),

where ρ1 and ρ2 ∈ R and W1(t), W2(t) are independent Brownian motions. This implies that the growth
rates of sensitive and resistant bacteria are equal to an average reproduction rates plus an additional
time dependent term that follow a normal distribution with a mean of zero. Thus, an stochastic version
of (1.1), is given by

dS =
[
βsS (1 − (S + R)) − (µs + α)S

]
dt + ρ1S (1 − (S + R))dW1

dR =
[
βrR(1 − (S + R)) + qαS − µrR

]
dt + ρ2R(1 − (S + R))dW2.

(2.1)

Through the rest of this paper, let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0

satisfying the usual conditions (i.e., it is increasing and right continuous while F0 contains all P-null
sets). Now, we stablish a set of biological interest for the system (2.1) as follows

∆ := {(S ,R) ∈ R2 : S > 0, R > 0, 0 < S + R < 1}. (2.2)

Theorem 2.1. If (S 0,R0) ∈ ∆ is an initial condition and q ∈ (0, 1], then P[(S t,Rt) ∈ ∆] = 1. In other
words, either ∆ is a set of positive invariants or ∆ is a positively invariant set.

Proof. Let us define the following functions defined on ∆:

f1(S ,R) = βsS (1 − (S + R)) − (α + µS )S , g1(S ,R) = ρ1S (1 − (S + R)),

f2(S ,R) = βrR(1 − (S + R))) + qαS − µrR, g2(S ,R) = ρ2R(1 − (S + R)).

The Lyapunov operator associated to (2.1) is given by

L =
∂

∂t
+ f1

∂

∂S
+ f2

∂

∂R
+

1
2

g2
1
∂2

∂S 2 +
1
2

g2
2
∂2

∂R2 . (2.3)

Let V : ∆→ [0,+∞) be the function defined by

V(S ,R) = − ln S − ln R − ln(1 − (S + R)). (2.4)
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We claim that LV is bounded above on ∆. In order to prove this, we define

L1 :=
∂

∂t
+ f1

∂

∂S
+ f2

∂

∂R
, L2 :=

1
2

g2
1
∂2

∂S 2 +
1
2

g2
2
∂2

∂R2 .

Note that L = L1 + L2. Now,

L1V = −βs(1 − (S + R)) + (µs + α) + βsS −
(µs + α)S

1 − (S + R)

− βr(1 − (S + R)) −
qαS

R
+ µr + βrR +

qαS
1 − (S + R)

−
µrR

1 − (S + R)
.

As 0 < q ≤ 1, R, S ∈ (0, 1) and 1 − (S + R) > 0, this yields to

L1V ≤ µs + α + βs + µr + βr. (2.5)

Similar calculations show that
L2V ≤ ρ2

1 + ρ2
2. (2.6)

It follows from (2.5) and (2.6) that there is a positive constant C such that LV ≤ C on ∆. Continuing
with the proof, for each k ∈ N, we define

∆k =

{
(S ,R) ∈ R2 : S >

1
k
,R >

1
k

and S + R < 1 −
1
k

}
.

Note that ∆k ↗ ∆ as k → +∞. Defining

τ := inf{t ≥ 0 : S (t) = 0 ∨ R(t) = 0 ∨ S (t) + R(t) = 1},

and for each k ∈ N

τk := inf
{

t ≥ 0 : S (t) =
1
k
∨ R(t) =

1
k
∨ S (t) + R(t) = 1 −

1
k

}
.

Therefore τk ↗ τ almost surely as k → +∞.
To prove that P [(S (t),R(t)) ∈ ∆] = 1 it is equivalent to show that P[τ = +∞] = 1. If we assume that

P[τ = +∞] < 1, then there exists η > 0 such that P[τ < ∞] > η. As limT→+∞ P[τ < T ] = P[τ < ∞],
there exists T > 0 such that

P[τ < T ] > η. (2.7)

As τk converges almost surely to τ, there exists k0 ∈ N such that for every k ≥ k0 it holds that

P[τk < T ] > η.

Itôs formula yields to

dV = LV +
∂V
∂S

dW1 +
∂V
∂R

dW2 ≤ C +
∂V
∂S

dW1 +
∂V
∂R

dW2,
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where we used that LV ≤ C on ∆. Therefore,

V(S (τk ∧ T ),R(τk ∧ T )) ≤ V(S (0),R(0)) + CT

+

∫ τk∧T

0

∂V
∂S

dW1 +

∫ τk∧T

0

∂V
∂R

dW2,

and integrating both sides of the above inequality yields to

E[V(S (τk ∧ T ),R(τk ∧ T ))] ≤ V(S (0),R(0)) + CT.

As

E[V(S (τk ∧ T ),R(τk ∧ T ))] ≥ E[V(S (τk ∧ T ),R(τk ∧ T ))1{τk<T }]
≥ − ln(1/k)P[τk < T ],

we obtain

P[τk < T ] ≤ −
CT + V(S (0),R(0))

ln(1/k)
.

Taking the limit k → ∞, we get that P[τ < T ] = 0 which contradicts (2.7). Therefore, it holds that
P[τ = +∞] = 1, which completes the proof. �

2.1. Analysis of the model

Now, based on the below definition, we will determine conditions for the stability of the equilibrium
solutions of the stochastic system (2.1).

Definition 2.2 ( [27]). Consider the general n–dimensional stochastic system

dX(t) = f (t, X(t))dt + g(t, X(t))dW, (2.8)

with initial condition X(0) = X0 and its solution is denoted by X(t, X0). Assume that f (t, 0) = g(t, 0) = 0
for all t ≥ 0, so X = 0 is an equilibrium of (2.8). Then, the equilibrium X = 0 is said to be

(i) almost surely exponentially stable if for all X0 ∈ R
n,

lim sup
t→∞

1
t

ln |X(t, X0)| < 0 a.s.;

(ii) pth moment exponentially stable if there is a pair of positive constants C1, C2 such that for all
X0 ∈ R

n,
E[|X(t, X0)|p] ≤ C1|X0|

pe−C2t, on t ≥ 0.

When p = 2, it is usually said to be exponentially stable in mean square and the equilibrium
X = 0 is globally asymptotically stable.

Let us note that E0 := (0, 0) is the trivial equilibrium of the system (2.1). Conditions for exponential
moment stability of E0 in terms of Lyapunov function are given in the following lemma.
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Lemma 2.3 ( [27, Theorem 3]). Suppose that there exists a function V(t, x) ∈ C1,2(R × Rn) satisfying
the inequalities

K1|x|p ≤ V(t, x) ≤ K2|x|p and

LV(t, x) ≤ −K3|x|p, Ki > 0, p > 0, i ∈ {1, 2, 3}.
(2.9)

Then the equilibrium of the system (2.1) is pth moment exponentially stable.

Theorem 2.4. If the conditions

−βs + (α + µs) −
p−1

2 ρ2
1 > 0 and

−βr + µr −
p−1

2 ρ2
2 > 0

(2.10)

hold, then the equilibrium E0 of the system (2.1) is pth moment exponentially stable.

Proof. Let us consider the Lyapunov function

V(S ,R) = λ1S p + λ2Rp,

where λi, i = 1, 2 are positive constants. The first inequality of (2.9) is naturally fulfilled. Next, we
show the second inequality of (2.9) and apply the Lyapunov operator (2.3) to V .

LV = pλ1

[
βs(1 − (S + R)) − (α + µs) +

p − 1
2

ρ2
1(1 − (S + R))2

]
S p

+ pλ2qαS Rp−1 + pλ2

[
βr(1 − (S + R)) − µr +

p − 1
2

ρ2
2(1 − (S + R))2

]
Rp

≤

[
λ1

(
pβs − p(α + µs) +

p(p − 1)
2

ρ2
1

)
+ λ2qαε1−p

]
S p

+ λ2

[
pβr − pµr +

p(p − 1)
2

ρ2
2 + qα(p − 1)ε

]
Rp

= −

[
λ1

(
−pβs + p(α + µs) −

p(p − 1)
2

ρ2
1

)
− λ2qαε1−p

]
S p

− λ2

[
−pβr + pµr −

p(p − 1)
2

ρ2
2 − qα(p − 1)ε

]
Rp,

where we used a variant of Young’s inequality

xp−1y ≤
p − 1

p
εxp +

1
p
ε1−pyp, x, y > 0,

as well as 0 < S + R < 1. Under the conditions (2.10) we can choose ε small enough and λ1, λ2 > 0
such that the coefficients of S p and Rp are negative. This completes the proof. �

From Theorem 2.4 we derive conditions such that the equilibrium E0 is globally asymptotically
stable.
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Lemma 2.5. If −βs + (α+ µs)− 1
2ρ

2
1 > 0 and −βr + µr −

1
2ρ

2
2 > 0, the equilibrium E0 of the system (2.1)

is globally asymptotically stable.

Proof. Taking p = 2 in (2.10) yields immediately to the desired result. �

Next, we want to derive similar basic reproduction numbers for the resistant and sensitive bacteria,
respectively as in the deterministic formulation. Recall, for the unperturbed model, those thresholds
are given by

Rr =
βr

µr
and S 0 =

βs

α + µs
,

and depending on these values, there are three equilibrium solutions, E0 where both bacteria die out,
E1 where only resistant bacteria survives, and the equilibrium of coexistence E2. As for the perturbed
models these thresholds differ, see e.g., [28], we will study the behaviour of the stochastic model.

Theorem 2.6. Let (S ,R) ∈ ∆ be the solution of (2.1). The following holds:
If either

S S
0 :=

βs −
1
2ρ

2
1

α + µs
< 1, and ρ2

1 ≤ βs, (2.11)

or

ρ2
1 > max

{
β2

s

2(α + µs)
, βs

}
, (2.12)

and either

RS
r :=

βr −
1
2ρ

2
2

µr
< 1, and ρ2

2 ≤ βr, (2.13)

or

ρ2
2 > max

{
β2

r

2µr
, βr

}
, (2.14)

then the solution of the system (2.1) has the following property:

lim sup
t→∞

log S (t)
t

≤ −a < 0 a.s.,

lim sup
t→∞

log R(t)
t

≤ −b < 0 a.s.,

namely it tends to zero exponentially almost surely, where a, b > 0 are positive constants. In other
words, both the sensitive and the resistant bacteria die out with probability one.

Proof. The proof follows closely the one given in [28]. By Itô’s formula, it holds that

d ln S =

[
βs(1 − (S + R)) − (α + µs) −

1
2
ρ2

1(1 − (S + R))2
]

dt
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+
1
2
ρ1(1 − (S + R))dW1.

As (S ,R) ∈ ∆, we have that S + R ∈ (0, 1) and using the large number theorem for martingales [29],
we get

lim sup
t→∞

1
t

∫ t

0
(1 − (S + R))dW1 = 0 a.s..

Moreover the function f : (0, 1)→ R defined by

f (x) = βsx −
ρ2

1

2
x2 − (α + µs) = −

ρ2
1

2

(
x −

βs

ρ2
1

)2

− (α + µs) +
β2

s

2ρ2
1

has its maximum value at x = 1 if ρ2
1 < βs. This yields to

lim sup
t→∞

1
t

ln S ≤
(
−
ρ2

1

2
+ βs − (α + µs)

)
< 0 ⇐⇒ S S

0 < 1.

On the other hand, if (2.12) holds, then

f (x) = −
ρ2

1

2

(
x −

βs

ρ2
1

)2

− (α + µs) +
β2

s

2ρ2
1

≤ −(α + µs) +
β2

s

2ρ2
1

< 0,

and therefore, also

lim sup
t→∞

1
t

ln S < 0.

Next we show that also R tends to zero exponentially almost surely by using condition (2.13).
Without loss of generality it holds that 0 ≤ S ≤ εR, as R ∈ ∆ and S tends to zero exponentially a.s..
Then, Itô’s formula gives

d ln R ≤
[
βr(1 − (S + R)) − µr + qαε −

1
2
ρ2

2(1 − (S + R))2
]

dt

+
1
2
ρ2(1 − (S + R))dW2.

Using a similar argument as above, we can define a function f̃ : (0, 1)→ R, x 7→ βr x − µr −
1
2ρ

2
2x2, and

its maximum value is obtained at x = 1 if ρ2
2 ≤ βr. Taking the limit t → ∞, ε→ 0 yields to

lim sup
t→∞

1
t

ln R ≤ −
1
2
ρ2

2 + βr − µr < 0 ⇐⇒ RS
r < 1.

The same assertion can be shown when using condition (2.14). This follows analogously and will be
omitted here. �

Remark 2.7. The conditions (2.11) and (2.13) in Theorem 2.6 state that the bacteria will extinct if
RS

r < 1 and S S
0 < 1 and the white noise is not too large or if the white noise is large enough such that

the conditions (2.12) and (2.14) are fulfilled. Moreover, the thresholds compared to the unperturbed
system differ by the noise parameters ρ1, ρ2, and the conditions for the stochastic model are weaker
than for the deterministic system. This will be also illustrated in more detail in Subsection 2.2.
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The remaining part of this subsection deals with the persistence of bacteria.

Theorem 2.8. Let (S ,R) ∈ ∆ be the solution of (2.1). Then,

(i) If RS
r > 1 and (2.11) or (2.12) are fulfilled, then the sensitive bacteria tend to zero exponentially

and the resistant bacteria satisfy

lim inf
t→∞

1
t

∫ t

0
R(s)ds =: lim inf

t→∞
〈R〉 ≥

RS
r − 1
RS

r
> 0, (2.15)

i.e. the resistant bacteria are persistent in mean.
(ii) If S S

0 > 1, Rr < S S
0 , RS

r < S S
0 and µr(S S

0 − Rr) >
S S

0−S 0

S S
0−1 qαS S

0 , then both the sensitive and resistant
bacteria are persistent in mean and they satisfy

lim inf
t→∞

〈R〉 ≥
qα(S S

0 − 1)

(qα + µr)
(
S S

0 −
µr

µr+qαRS
r (S S

0 − S 0 + 1)
) > 0,

lim inf
t→∞

〈S 〉 ≥
1

S S
0

(S S
0 − S 0)qα + (S S

0 − 1)µr

(
1 − Rr

S S
0

)
qα + µr

(
1 − Rr

S S
0

) > 0.

Proof. First we show (i). Since either (2.11) or (2.12) hold, it follows from Theorem 2.6 that lim
t→∞

S (t) =

0 a.s.. Moreover, applying Itô’s formula to V = ln R yields

d ln R =

[
βr(1 − (S + R)) − µr + qα

S
R
−
ρ2

2

2
(1 − (S + R))2

]
dt

+ ρ2(1 − (S + R))dW2.

Thus,

ln R(t) − ln R(0)
t

≥ βr −

(
βr −

ρ2
2

2

)
〈S 〉 −

(
βr −

ρ2
2

2

)
〈R〉 − µr + qα〈

S
R
〉

−
ρ2

2

2
+
ρ2

t

∫ t

0
(1 − (S + R))dW2,

where we used that 0 < R < 1 and 0 < S + R < 1 and in particular for 0 ≤ S ≤ εR it holds that

〈R〉 ≥
1

βr −
ρ2

2
2

(
βr − µr −

ρ2
2

2
+ qαε −

(
βr −

ρ2
2

2

)
ε

)

+
ρ2

t

∫ t

0
(1 − (S + R))dW2 +

1
t

ln R(0) −
1
t

ln R(t).

The large number theorem for martingales [29] states that

lim
t→∞

ρ2

t

∫ t

0
(1 − (S + R))dW2 = 0, lim

t→∞

ln R(0)
t

= 0,
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and taking the limit t → ∞ and ε→ 0, we obtain

lim inf
t→∞

〈R〉 ≥
RS

r − 1
RS

r
> 0 ⇐⇒ RS

r > 1.

Next, we show assertion (ii). Itô’s formula implies that

d ln S =

[
βs(1 − (S + R)) − (α + µs) −

ρ2
1

2
(1 − (S + R))2

]
dt

+ ρ1(1 − (S + R))dW1,

and in particular,

〈S 〉 ≥
1

βs −
ρ2

1
2

(
βs − (α + µs) −

ρ2
1

2
−

(
βs −

ρ2
1

2

)
〈R〉

)
+ ϕ1(t),

=

(
S S

0 − 1

S S
0

)
− 〈R〉 + ϕ1(t), (2.16)

where we used the definition of S S
0 and ϕ1 is given by

ϕ1(t) =
ρ1

t

∫ t

0
(1 − (S + R))dW1 −

ln S (t) − ln S (0)
t

.

Similarly we can show that

〈S 〉 ≤
1

βs −
ρ2

1
2

(
βs − (α + µs) −

(
βs −

ρ2
1

2

)
〈R〉

)
+ ϕ1(t),

=
S 0 − 1

S S
0

− 〈R〉 + ϕ1(t). (2.17)

Integration of the second equation of (2.1) leads to

R(t) − R(0)
t

= (βr〈R(1 − (S + R))〉 − µr〈R〉 + qα〈S 〉) dt

+
ρ2

t

∫ t

0
R(1 − (S + R))dW2

≥

((
βr −

ρ2
2

2

)
〈R(1 − (S + R))〉 − µr〈R〉 + qα〈S 〉

)
dt

+
ρ2

t

∫ t

0
R(1 − (S + R))dW2,

where we used that 0 < S + R < 1. To this end, inserting the inequalities (2.16) and (2.17) yields to

R(t) − R(0)
t

≥

((
βr −

ρ2
2

2

)
〈R〉 −

(
βr −

ρ2
2

2

)
S 0 − 1

S S
0

〈R〉
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− (µr + qα)〈R〉 +
S S

0 − 1

S S
0

qα
)

dt +
ρ2

t

∫ t

0
R(1 − (S + R))dW2

+

(
qα − βr +

ρ2
2

2

)
ϕ1(t),

and therefore,

〈R〉 ≥
qα S S

0−1
S S

0

qα + µr −

(
βr −

ρ2
2

2

) (
1 − S 0−1

S S
0

) + ϕ(t)

=
qα(S S

0 − 1)

(qα + µr)
(
S S

0 −
µr

µr+qαRS
r (S S

0 − S 0 + 1)
) + ϕ(t), (2.18)

where ϕ is defined by

ϕ(t) =
ρ2

t

∫ t

0
R(1 − (S + R))dW2 +

(
qα − βr +

ρ2
2

2

)
ϕ1(t)

−
R(t) − R(0)

t
.

Using again the large number theorem of martingales, we obtain that

lim
t→∞

ϕ(t) = 0.

Thus, it holds that

lim inf
t→∞

〈R〉 ≥
qα(S S

0 − 1)

(qα + µr)
(
S S

0 −
µr

µr+qαRS
r (S S

0 − S 0 + 1)
) > 0,

if the conditions of (ii) are fulfilled. Similarly one could show that

lim sup
t→∞

〈R〉 ≤
qα(S 0 − 1)

(qα + µr)
(
S S

0 −
µrRr

qα+µr

) . (2.19)

Finally, we have to show that also lim inf
t→∞

〈S 〉 > 0. Due to (2.16) and (2.19), it holds that

lim inf
t→∞

〈S 〉 ≥
S S

0 − 1

S S
0

− lim sup
t→∞

〈R〉 ≥
S S

0 − 1

S S
0

−
qα(S 0 − 1)

(qα + µr)
(
S S

0 −
µrRr
µr+qα

)
=

1
S S

0

(S S
0 − 1) −

qα(S 0 − 1)

qα + µr −
βr

S S
0


=

S S
0 − 1

S S
0

µr

(
1 − Rr

S S
0

)
qα + µr

(
1 − Rr

S S
0

) +
S S

0 − S 0

S S
0

qα

qα + µr

(
1 − Rr

S S
0

) .
This concludes the proof. �
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2.2. Numerical simulations

In this subsection, we do some numerical experiments to corroborate our theoretical results. The
values of the dimensionless parameters were obtained from [3] and are given in Table 1. According
to [3], the unit of time before nondimensionalization corresponds to days.

Table 1. Values of the parameters for the model (2.1).

Parameter Definition Value
βs Growth rate of S 0.4
βr Growth rate of R 0.1
µs Natural death rate of S 0.2
µr Natural death rate of R 0.5
ρ1 Intensity of noise for βs 0.5
ρ2 Intensity of noise for βr 0.5

Recall the parameter α represents the elimination rate of bacteria by antibiotic which is considered to
vary depending on the antibiotic supplied: Linezolid, Penicillin G or Methicillin. Table 2 shows the
values of these variations.

Table 2. Values of the parameters α and q depending on the type of antibiotic.

Parameter Description Linezolid Penicillin G Methicillin
α Elimination rate of S 39.7 0.1204 32.4
q Fraction of S that acquires resistance 4×10−3 0.3992 0.1234

The previous section tells us, that the trivial equilibrium E0 of the system (2.1) exists if S S
0 < 1 and

ρ2
1 < βs and RS

r < 1 and ρ2
2 < βr, respectively or if the noise parameters are large compared to the

other model parameters. The goal of this subsection is to confirm the theoretical results with numerical
simulations. In the following, we approximate the mean of the solution of the stochastic system by
performing a Monte–Carlo simulation using 5000 different paths and compare it with the deterministic
results.

As a first example, we take the values from Table 1 and Linezolid as antibiotic. In this case it holds
that Rr = 0.2, S 0 = 0.01 and RS

r = −0.05 and S S
0 = 0.069 respectively. Thus, using the results of Table

2 from [3], we should obtain the equilibrium E0 see Figure 1).
We see that both the resistant and the sensitive bacteria tend to zero for the deterministic model and

this is also the case for the stochastic model.
As a next example, we use Methicillin and change the natural death rate of R to 0.09. Then, for the
deterministic model, we have Rr = 1.11 and S 0 = 0.0123 but ρ2

2 > βr respectively. The theoretical
analysis of the previous section tells that in the stochastic case both bacteria dies out while in the
deterministic case, the resistant bacteria survives. However, if we decrease ρ2 to 0.1, we obtain that
RS

r > 1 and the behaviour of the stochastic system coincides with the deterministic one. Therefore, in

Mathematical Biosciences and Engineering Volume 17, Issue 5, 4477–4499.



4489

0 2 4 6
0

0.1

0.2

0.3

0.4

S
en

si
tiv

e 
ba

ct
er

ia deterministic model
stochastic model

0 2 4 6

Time

0

0.05

0.1

0.15

0.2

R
es

is
ta

nt
 b

ac
te

ria

deterministic model
stochastic model

Figure 1. Approximated mean of the solution of the system (2.1) and the corresponding
deterministic model (1.1) for Linezolid. The unit of time before nondimensionalization co-
rresponds to days.

Figure 2 the mean of the solution of the stochastic model is plotted for both, ρ2 = 0.5 and ρ2 = 0.1
respectively.
The theoretical results for the equilibrium E1 coincide with the numerical results as can be seen in
Figure 2. For both models only the sensitive bacteria goes extinct if we use ρ2 = 0.1, however, for
ρ2 = 0.1 both bacteria die out.
Finally, Penicillin G is taken as antibiotic. Then, S 0 > 1 but for the stochastic setting we have S S

0 < 1.
Thus, we need to change ρ1 to 0.3, which leads to S S

0 > 1 and both, the sensitive and resistant bacteria
should be present, which is confirmed by Figure 3.
The numerical simulations of equations (1.1) and (2.1) which can be seen in Figures 1–3 confirm the
theoretical results derived in Section 2 and are in line with the deterministic results from [3].

3. Optimal control problem

From a mathematical approach only a small number of studies have established analytical results
for the optimal control of an infectious disease under drug resistance, see e.g., [11, 30–33]. Here, we
do not consider a population–model for individuals infected with a bacterial disease, but we consider a
simple model where sensitive and resistant bacteria interact. Thus, in this section we study the optimal
control problem for the deterministic model (1.1) which motivates the stochastic case (2.1). We first
analyse the setting, show the existence of the control and also present some numerical simulations.

3.1. Deterministic optimal control problem

In order to formulate the deterministic optimal control problem, the following additional hypothesis
in the model (1.1) are considered: the population of resistant bacteria are perturbed by prophylaxis at a
rate (1 − η(t))qα, being η(t) the control by prophylaxis, which assumes values between 0 and 1, where
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Figure 2. Approximated mean of the solution of system (2.1) and the corresponding deter-
ministic model (1.1) for Methicillin. The unit of time before nondimensionalization corre-
sponds to days.

η = 0 is assumed if the prophylaxis is ineffective and η = 1 if it is completely effective, that is, there is
no mutation due to antibiotics. Thus, we have that the control variable η(t) provides information about
the amount of patients that must be educated.

The main goal will be to minimize the number of resistant bacteria. For this purpose, the following
cost function is considered

J(η) =

∫ T

0

(
aR +

1
2

bη2
)

dt. (3.1)

In above function a represents the social cost, which depends on the number of resistant bacteria
due to mutations, and the function 1

2bη2 defines the absolute cost associated to the control strategy,
such as implementation, ordering, distribution, among others.

Taking x = (S ,R) and the above considerations, the following optimal control problem is formulated

J(η) = min
∫ T

0

(
aR + 1

2bη2
)

dt

dS
dt

= βsS [1 − (S + R)] − αS − µsS

dR
dt

= βrR[1 − (S + R)] + (1 − η)qαS − µrR

x(0) = (S̄ , R̄) = x0

x(T ) = (S f ,R f ) = x1.

(3.2)

In our control problem, we assume an initial time t0 = 0, a final time T fixed representing the
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Figure 3. Approximated mean of the solution of system (2.1) and the corresponding deter-
ministic model (1.1) for Penicillin G. The unit of time before nondimensionalization corre-
sponds to days.

implementation time of the control strategy, and also we assume free dynamic variables x1 at the final
time, while the coordinates of the initial condition x0 are the coordinates of a non–trivial equilibrium
of the system (1.1). Additionally, we assume that control variable is in an appropriate set of admissible
controls, namelyU =

{
η(t) : η(t) is Lebesgue measurable and 0 ≤ η(t) ≤ 1, t ∈ [0,T ]

}
.

In the following, we prove the existence and uniqueness of the control η. To this end, using argu-
ments similar to [34], we have to show that the following properties have to be fulfilled:

(i) The set of all solutions to the state equations from (3.2) with corresponding control functions in
U is not empty.

(ii) The right side of the state equation from (3.2) is continuous, bounded above by a sum of bounded
control and state, and can be written as a linear function of the control variables with coefficients
dependent on time and the state variables.

(iii) The integrand in the cost function aR + 1
2bη2 is convex onU and additionally satisfies

aR +
1
2

bη2 ≥ k1|η|
δ − k2 where k1, k2 > 0, δ > 1.

Assumption (i) is fulfilled by Theorem 1 from [4]. Rewriting the right side of the state system as
ẋ = f (x) + g(x)η immediately leads to Assumption (ii). Moreover, the integrand in the cost function is
clearly convex and we have that

aR +
1
2

bη2 ≥ −aR +
1
2

bη2 ≥ −k2 + k1|η|
2,

such that Assumption (iii) is fulfilled. Thus, there exists an optimal control.
Now, the Pontryagin principle for bounded controls [35] is used to calculate the optimal control of

(3.2). To this end, we observe that the Hamiltonian is given by

H = aR +
1
2

bη2 + λ1
[
βsS (1 − (S + R)) − αS − µsS

]
Mathematical Biosciences and Engineering Volume 17, Issue 5, 4477–4499.
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+ λ2
[
βrR(1 − (S + R)) + qαS − µrR

]
, (3.3)

where λi, i = 1, 2 are the adjoint variables which determine the adjoint system. The adjoint system
and the formulation (3.2) define the optimal system. The main result of this section is summarized in
the following theorem.

Theorem 3.1. For (3.2) there exists a corresponding optimal solution (S ?(t),R?(t)) that minimize J(η)
in [0,T ]. Moreover, there exits an adjoint function λ(t) = (λ1(t), λ2(t)) such that

dλ1

dt
= λ1(2βsS + βsR + µs + α − βs) − λ2[βrR + (1 − η(t))qα]

dλ2

dt
= −a + λ1βsS + λ2(2βrR + βrS + µr − βr)

(3.4)

with transversality conditions λi(t) = 0 for i = 1, 2 which satisfy

η? = min
{
max

{
0,
λ2qαS

b

}
, 1

}
.

Proof. The Pontryagin Principle applied to (3.2) guarantees the existence of adjoint variables λi, i =

1, 2 that satisfy

λ̇1 = −
∂H
∂S

, λ1(T ) = 0,

λ̇2 = −
∂H
∂R

, λ2(T ) = 0,

H = max
η∈U

H.

Replacing the derivatives of H with respect to S and R in above equations we obtain the system (3.4).

The optimality condition for the Hamiltonian is given by
∂H
∂η?

= 0, or equivalently bη? − λ2qαS = 0,

from where η? =
λ2qαS

b
. In consequence, the optimal control η? is given by

η? = min
{
max

{
0,
λ2qαS

b

}
, 1

}
.

�

3.2. Numerical solutions

In this subsection, some numerical simulations for the problem (3.2) are performed to observe the
effects of prophylaxis as control strategy. To this end, we use the forward–backward sweep method
described on [36]. The implementation time of control is approximately 10 days and the values of the
relative weights are a = b = 0.002 as it is suggested in [37]. Here we omit the case of Linezolid as the
bacteria die out even without control strategy.

In Figure 4 we observe the control effectiveness. From the first moment the Methicillin–resistant
bacteria population R is controlled while without control R grows. On the other hand, η starts at the
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Figure 4. Methicillin–resistant bacteria with and without control. The unit of time before
nondimensionalization corresponds to days.

limit of 90% during the first moment and then decreases rapidly until reaching its lower level of 0%
before the first day.

Figure 5 shows the case of Penicillin G–resistant bacteria. Despite the cost and effort generated by
controlling the resistance with the prophylaxis strategy, control can not be achieved. As less resistant
bacteria survive, the costs of the prophylaxis, have to be much lower than the social costs, to achieve
an effective control.

3.3. Stochastic optimal control problem

As discussed in the previous sections, introducing random perturbations to the deterministic system
will lead to different behaviour of the bacteria. Thus, we will study in this subsection a stochastic
optimal control problem where the state equations are given by

dS =
[
βsS (1 − (S + R)) − (µs + α)S

]
dt + ρ1S (1 − (S + R))dW1

dR =
[
βrR(1 − (S + R)) + (1 − η)qαS − µrR

]
dt + ρ2R(1 − (S + R))dW2.

(3.5)

The solutions (S ,R) are random variables, thus we need to take the expected value of the cost
function (3.1), which leads in minimizing

J(η) = E

[∫ T

0

(
aR +

1
2

bη2
)

dt
]
.

As the diffusion does not contain the control variable, the Hamiltonian H is defined by (see e.g. [38])

H = aR +
1
2

bη2 + p1
[
βsS (1 − (S + R)) − (µs + α)S

]
+ p2

[
βrR(1 − (S + R)) + (1 − η)qαS − µrR

]
+ q1

[
ρ1S (1 − (S + R))

]
+ q2

[
ρ2R(1 − (S + R))

]
,
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Figure 5. Penicillin G–resistant bacteria with and without control. The unit of time before
nondimensionalization corresponds to days.

where the pairs (p1, q1) and (p2, q2) solve the backward stochastic differential equations

dp1(t) = −
[
(βs(1 − (S + R) − S ) − (µs + α))p1 + (−βrR + (1 − η)qα)p2

+(ρ1(1 − (S + R) − S )q1 − ρ2yq2)
]
dt + q1dW1

dp2(t) = −a −
[
−βsS p1 + (βr(1 − (S + R) − R) − µr)p2

−ρ1S q1 + ρ2(1 − (S + R) − R)q2
]
dt + q2dW2

p1(T ) = 0

p2(T ) = 0.

(3.6)

Moreover, as in the deterministic case, it holds that
∂H
∂η?

= 0, or equivalently

η? = min
{
max

{
0,

p2qαS
b

}
, 1

}
. (3.7)

3.4. Numerical solutions

The main difficulty in the numerical simulations is the approximation of the stochastic forward–
backward differential equation (3.5)–(3.6). Due to the four–step scheme [39], these equations are
related to the solution of quasi–linear partial differential equations which we solve by the probabilistic
approach presented by [40]. The implementation time of control strategies is again 10 days and the
values of the relative weights are a = b = 0.002. The parameters in the equations are the same as in
Subsection 2.2, and as in Subsection 3.2, only the cases of Methicillin Penicillin G resistant bacteria are
considered. Moreover, from the study in Section 2, we choose for the Methicillin simulation ρ2 = 0.1
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and for the Penicillin simulation ρ1 = 0.3, respectively, as for greater values of ρ1 and ρ2 both bacteria
die out and no control strategy is necessary.
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Figure 6. Methicillin–resistant bacteria with and without control. The simulations were
made using the same path of the Brownian motion. The unit of time before nondimensionali-
zation corresponds to days.

We observe a similar behaviour as in the deterministic case comparing with Figures 4–5. Again,
Methicillin-resistant bacteria is controlled effectively by η and the resistant bacteria without control
grows much faster than the controlled one ( see Figure 6). However, repeating the experiment with
Penicillin G-resistant bacteria, the uncontrolled and the controlled resistant bacteria behave similarly
(Figure 7) and a lower value of b is needed in order to have an effective control strategy.

4. Discussion

This paper presented a mathematical study describing the dynamical behaviour of bacterial resis-
tance to antibiotics model with perturbed reproduction rates. Our purpose was based on analysing this
behaviour using both a deterministic model and a stochastic one. The deterministic case was studied
in [3]. Concerning the stochastic model, we obtained sufficient conditions for the stability of the trivial
equilibrium E0 in the probability sense by using a suitable Lyapunov function and other techniques of
stochastic analysis. The investigation of this stochastic model revealed that the stochastic stability of
E0 depends on the magnitude of the intensity of noise. Moreover, we determined the stochastic re-
production numbers for sensitive and resistant bacteria and we gave conditions for the cases that only
resistant bacteria survive and that both bacteria persist.

The main result of this work was based on the formulation of optimal control problems in both cases
(deterministic and stochastic). The control strategy used was prophylaxis, that is, control by patient
education campaigns and an adequate supply of antibiotics. Sufficient conditions were derived to show
existence and uniqueness of the control problem. The numerical simulations of the deterministic con-
trol problem were performed by using data from bacterial cells of the genus Staphylococcus under three
types of antibiotics supply: Penicillin G (low efficacy), Methicillin (medium efficacy) and Linezolid
(high efficiency). The numerical results revealed that when bacteria are treated with Linezolid they
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Figure 7. Penicillin G–resistant bacteria with and without control. The simulations were
made using the same path of the Brownian motion. The unit of time before nondimensionali-
zation corresponds to days.

are naturally eradicated, when they are treated with Methicillin the sensitive bacteria are eliminated
and a persistence of resistant bacteria is generated, which can be reduced incorporating a prophylactic
control strategy. The most interesting case occurred when bacteria are treated with Penicillin G, as
there is a persistence of sensitive and resistant bacteria that cannot be controlled with the same costs
for prophylaxis. Therefore, these results suggested that one has to lower the costs for the prophylaxis
in comparison to the social costs to obtain an effective control strategy.
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