Citation: Hui-Yu Huang, Wei-Chang Tsai. An effcient motion deblurring based on FPSF and clustering[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4036-4052. doi: 10.3934/mbe.2019199
[1] | M. Egmont-Petersen, D. De Ridder and H. Handels, Image processing with neural networks a review, Pattern Recogn., 35 (2002), 2279–2301. |
[2] | D. De Didder, R. P. Duin, M. Egmont-Petersen, et al., Nonlinear image processing using artificial neural networks, . Imag. Elect. Phys., 126 (2003), 352–450. |
[3] | C. J. Schuler, M. Hirsch, S. Harmeling, et al., IEEE T. Pattern Anal., 38 (2016), 1439–1451. |
[4] | A. Levin, Blind motion deblurring using image statistics, Proc. Adv. Neural Infor. Process. Sys., (2006), 841–848. |
[5] | A. Goldstein and R. Fattal, Blur-kernel estimation from spectral irregularities, European Conference on Computer Vision, (2012), 622–635. |
[6] | W. Hu, J. Xue and N. Zheng, PSF estimation via gradient domain correlation, IEEE T. Image Process., 21 (2012), 386–392. |
[7] | H. Y. Huang and W. C. Tsai, Blurred image restoration using fast blur-kernel estimation, 10th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, (2014), 435–438. |
[8] | Y. Liao, W. Li, J. Cui, et al., Blur kernel estimation model with combined constraints for blind image deblurring, Digital Image Computing: Techniques and Applications, (2018), 1–8. |
[9] | W. H. Richardson, Bayesian-based iterative method of image restoration, J. Opt. Soc. Am., 62 (1972), 55–59. |
[10] | Y. W. Tai, P. Tan and M. S. Brown, Richardson-Lucy deblurring for scenes under a projective motion path, IEEE T. Pattern Anal., 33 (2011), 1603–1618. |
[11] | H. L. Yang, P. H. Huang and S. H. Lai, A novel gradient attenuation Richardson-lucy algorithm for image motion deblurring, Signal Process., 103 (2014), 399–414. |
[12] | M. Welk, P. Raudaschl, T. Schwarzbauer, et al., Fast and robust linear motion deblurring, Signal Image Video P., 9 (2015), 1221–1234. |
[13] | M. Dobeˇs, L. Machala and T. F¨urst, Blurred image restoration:A fast method of finding the motion length and angle, Digit. Signal Process., 20 (2010), 1677–1686. |
[14] | G. Liu, S. Chang and Y. Ma, Blind image deblurring using spectralproperties of convolution operators, IEEE T. Image Process., 23 (2014), 5047–5056. |
[15] | T. Yue, S. Cho, J. Wang, et al., Hybrid image deblurring by fusing edge and power spectrum information, Process of European Conference on Computer Vision, (2014). |
[16] | A. M. Deshpande and S. Patnaik, Single image motion deblurring: An accurate PSF estimation and ringing reduction, Optik, 125 (2014), 3612–3618. |
[17] | W. A. Shao, Q. Ge, H. S. Deng, et al., Motion deblurring using non-stationary image modeling, J. Math. Imaging Vis., 52 (2015), 234–248. |
[18] | N. He, K. Lu, B. K. Bao, et al., Single-image motion deblurring using an adaptive image prior, Inform. Science, 281 (2015), 736–749. |
[19] | J. Jia, Single image motion deblurring using transparency, Process of IEEE Conference on Computer Vision and Pattern Recognition, (2007), 1–7. |
[20] | A. Levin, Y. Weiss, F. Durand, et al., Understanding and evaluating blind deconvolution algorithms, Process of IEEE Conference on Computer Vision and Pattern Recognition, (2009), 1964– 1971. |
[21] | A. Levin, Y. Weiss, F. Durand, et al., Understanding blind deconvolution algorithms, IEEE T. Pattern Anal., 33 (2011), 2354–2367. |
[22] | L. Xu, S. Zheng and J. Jia, Unnatural L0 sparse representation for natural image deblurring, Process of IEEE Conference on Computer Vision and Pattern Recognition, (2013). |
[23] | T. S. Cho, C. Paris, B. K. P. Horn, et al., Blur kernel estimation using the Radon transform, Process of IEEE Conference on Computer Vision and Pattern Recognition, (2011), 241–248. |
[24] | D. Krishnan, T. Tay and R. Fergus, Blind deconvolution using a normalized sparsity measure, Process of IEEE Conference on Computer Vision and Pattern Recognition, (2011), 223–240. |
[25] | M. Ljubenovi´c and M. A. T. Figueiredo, Blind image deblurring using class-adapted image priors, Process of IEEE Conference on Image Processing, (2017), 490–494. |
[26] | J. Pan, D. Sun, H. Pfister, et al., Deblurring images via dark channel prior, IEEE T. Pattern Anal., 10 (2018), 2315–2328. |
[27] | D. J. Field, Relations between the statistics of natural images and the response properties of cortical cells, J. Opt. Soc. Am. A, 4 (1987), 2379–2394. |
[28] | G. J. Burton and I. R. Moorhead, Color and spatial structure in natural scenes, Appl. Optics, 26 (1987), 157–170. |
[29] | L. Cohen, The generalizaton of the Wiener-Khinchin theorem, IEEE Signal Proc. Let., 5 (1998), 292–294. |
[30] | J. R. Fienup, Phase retreival algorithms: A comparsion, Appl. Opt., 21 (1982), 2758–2769. |
[31] | S. Watanabe, H. Shioya and K. Gohara, Phase retrieval based on an evolution multicriterion optimisation method, Process of IEEE Conference on Evolutionary Computation, (2012), 1–8. |
[32] | Z. Wang, A. C. Bovik, H. R. Sheikh, et al., Image quality assessment: from error visibility to structural similarity, Process of IEEE Conference on Image Processing, 13 (2004), 600–612. |
[33] | M. Sonka, V. Hlavac and Roger Boyle, Image processing, Analysis, and Machine Vision, 3rd Ed., Thomson Learning Pub., 2008. |
[34] | D. Krishnan and R. Fergus, Fast image deconvolution using hyper-Laplacian priors, Proc. Conf. NIPS, (2009), 1033–1041. |