Citation: Xue Xu, Yibo Wang, Yuwen Wang. Local bifurcation of a Ronsenzwing-MacArthur predator prey model with two prey-taxis[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 1786-1797. doi: 10.3934/mbe.2019086
[1] | Olivia Prosper, Omar Saucedo, Doria Thompson, Griselle Torres-Garcia, Xiaohong Wang, Carlos Castillo-Chavez . Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza. Mathematical Biosciences and Engineering, 2011, 8(1): 141-170. doi: 10.3934/mbe.2011.8.141 |
[2] | Sunmi Lee, Romarie Morales, Carlos Castillo-Chavez . A note on the use of influenza vaccination strategies when supply is limited. Mathematical Biosciences and Engineering, 2011, 8(1): 171-182. doi: 10.3934/mbe.2011.8.171 |
[3] | Rodolfo Acuňa-Soto, Luis Castaňeda-Davila, Gerardo Chowell . A perspective on the 2009 A/H1N1 influenza pandemic in Mexico. Mathematical Biosciences and Engineering, 2011, 8(1): 223-238. doi: 10.3934/mbe.2011.8.223 |
[4] | Diána H. Knipl, Gergely Röst . Modelling the strategies for age specific vaccination scheduling during influenza pandemic outbreaks. Mathematical Biosciences and Engineering, 2011, 8(1): 123-139. doi: 10.3934/mbe.2011.8.123 |
[5] | Majid Jaberi-Douraki, Seyed M. Moghadas . Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences and Engineering, 2014, 11(5): 1045-1063. doi: 10.3934/mbe.2014.11.1045 |
[6] | Christopher S. Bowman, Julien Arino, S.M. Moghadas . Evaluation of vaccination strategies during pandemic outbreaks. Mathematical Biosciences and Engineering, 2011, 8(1): 113-122. doi: 10.3934/mbe.2011.8.113 |
[7] | Hiroshi Nishiura . Joint quantification of transmission dynamics and diagnostic accuracy applied to influenza. Mathematical Biosciences and Engineering, 2011, 8(1): 49-64. doi: 10.3934/mbe.2011.8.49 |
[8] | Sherry Towers, Katia Vogt Geisse, Chia-Chun Tsai, Qing Han, Zhilan Feng . The impact of school closures on pandemic influenza: Assessing potential repercussions using a seasonal SIR model. Mathematical Biosciences and Engineering, 2012, 9(2): 413-430. doi: 10.3934/mbe.2012.9.413 |
[9] | Marco Arieli Herrera-Valdez, Maytee Cruz-Aponte, Carlos Castillo-Chavez . Multiple outbreaks for the same pandemic: Local transportation and social distancing explain the different "waves" of A-H1N1pdm cases observed in México during 2009. Mathematical Biosciences and Engineering, 2011, 8(1): 21-48. doi: 10.3934/mbe.2011.8.21 |
[10] | Tom Reichert . Pandemic mitigation: Bringing it home. Mathematical Biosciences and Engineering, 2011, 8(1): 65-76. doi: 10.3934/mbe.2011.8.65 |
[1] | B. Ainseba, M. Bendahmane and A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis, Nonl. Anal.: Real World Applications, 9 (2008) 5, 2086–2105. |
[2] | H. Amann, Dynamic theory of quasilinear parabolic equations II, Reaction-diffusion systems, Diff. Int. Eqns., 3 (1990), 13–75. |
[3] | M. Bendahmane, Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis, Network and Heterogeneous Media, 3 (2008), 863–879. |
[4] | L. L. Chen and G. H. Zhang, Global existence of classical solutions to a three-species predatorprey model with two prey-taxis, J. Appl. Math., 10(2012), 1155–1167. |
[5] | A. K. Drangeid, The principle of linearized stability for quasilinear parabolic evolution equations, Nonlinear Analysis, 13 (1989), 1091–1113. |
[6] | H. Y. Jin and Z. A. Wang. Global stability of prey-taxis systems, J. Diff. Eqns., 3(2017), 1257– 1290. |
[7] | E. F. Keller and L. A. Segel. Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26(3) (1970) 399–415. |
[8] | P. Liu, J. P. Shi and Z. A. Wang, Pattern formation of attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2597–2625. |
[9] | D. M. Liu and Y. S. Tao, Global boundedness in a fully parabolic attraction-repulsion chemotaxis model, Math. Methods Appl. Sci., 38 (2015), 2537–2546. |
[10] | G. Simonett, Center manifolds for quasilinear reaction-diffusion systems, Diff. Integr. Eqns., 8 (1995), 753–796. |
[11] | J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Diff. Eqns., 246 (2009), 2788–2812. |
[12] | Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonl. Anal.: Real World Applications, 11 (2010), 2056–2064. |
[13] | Y. S. Tao. Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2705–2722. |
[14] | J. F. Wang, J. P. Shi and J. J. Wei, Dynamics and pattern formation in a diffusion predator-prey system with strong Allee effect in prey, J. Diff. Eqns., 251 (2011), 1276–1304. |
[15] | X. F. Wang and Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly's compactness, J. Math. Biol., 66 (2013), 1241–1266. |
[16] | X. L. Wang, W. D. Wang and G. H. Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis, Math. Meth. Appl. Sci., 3 (2014), 431–443. |
[17] | M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Diff. Eqns., 248 (2010) (12), 2889–2905. |
[18] | S. N. Wu, J. P. Shi, and B. Y. Wu. Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Diff. Eqns., 260 (2016), 5847–5874. |
1. | Matt J. Keeling, Andrew Shattock, Optimal but unequitable prophylactic distribution of vaccine, 2012, 4, 17554365, 78, 10.1016/j.epidem.2012.03.001 | |
2. | Louise E. Lansbury, Sherie Smith, Walter Beyer, Emina Karamehic, Eva Pasic-Juhas, Hana Sikira, Ana Mateus, Hitoshi Oshitani, Hongxin Zhao, Charles R. Beck, Jonathan S. Nguyen-Van-Tam, Effectiveness of 2009 pandemic influenza A(H1N1) vaccines: A systematic review and meta-analysis, 2017, 35, 0264410X, 1996, 10.1016/j.vaccine.2017.02.059 | |
3. | Eunha Shim, Optimal Allocation of the Limited COVID-19 Vaccine Supply in South Korea, 2021, 10, 2077-0383, 591, 10.3390/jcm10040591 | |
4. | Mustafa DEMİRBİLEK, Tam ve Kısmi Kapanma Stratejilerinin COVID-19 Salgını Üzerinden Karşılaştırılması, 2021, 2148-3736, 10.31202/ecjse.909927 | |
5. | Matthew J. Penn, Christl A. Donnelly, Asymptotic Analysis of Optimal Vaccination Policies, 2023, 85, 0092-8240, 10.1007/s11538-022-01114-3 | |
6. | Mustafa DEMİRBİLEK, Benzetim tabanlı adaptif aşı dağıtım stratejisi, 2022, 1300-1884, 10.17341/gazimmfd.758346 | |
7. | Alen Kinyina, Critical Analysis of COVID-19 Containment Policy in the United Kingdom, 2022, 3, 27142132, 10.46606/eajess2022v03i02.0165 | |
8. | Emanuele Blasioli, Bahareh Mansouri, Srinivas Subramanya Tamvada, Elkafi Hassini, Vaccine Allocation and Distribution: A Review with a Focus on Quantitative Methodologies and Application to Equity, Hesitancy, and COVID-19 Pandemic, 2023, 4, 2662-2556, 10.1007/s43069-023-00194-8 | |
9. | Sudipa Chauhan, Shweta Upadhyaya, Payal Rana, Geetika Malik, Dynamic analysis of delayed vaccination process along with impact of retrial queues, 2023, 11, 2544-7297, 10.1515/cmb-2022-0147 | |
10. | Nicholas I. Nii‐Trebi, Thomas S. Mughogho, Anisa Abdulai, Francis Tetteh, Priscilla M. Ofosu, Mary‐Magdalene Osei, Akua K. Yalley, Dynamics of viral disease outbreaks: A hundred years (1918/19–2019/20) in retrospect ‐ Loses, lessons and emerging issues, 2023, 1052-9276, 10.1002/rmv.2475 |