Citation: Xue Xu, Yibo Wang, Yuwen Wang. Local bifurcation of a Ronsenzwing-MacArthur predator prey model with two prey-taxis[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 1786-1797. doi: 10.3934/mbe.2019086
[1] | B. Ainseba, M. Bendahmane and A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis, Nonl. Anal.: Real World Applications, 9 (2008) 5, 2086–2105. |
[2] | H. Amann, Dynamic theory of quasilinear parabolic equations II, Reaction-diffusion systems, Diff. Int. Eqns., 3 (1990), 13–75. |
[3] | M. Bendahmane, Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis, Network and Heterogeneous Media, 3 (2008), 863–879. |
[4] | L. L. Chen and G. H. Zhang, Global existence of classical solutions to a three-species predatorprey model with two prey-taxis, J. Appl. Math., 10(2012), 1155–1167. |
[5] | A. K. Drangeid, The principle of linearized stability for quasilinear parabolic evolution equations, Nonlinear Analysis, 13 (1989), 1091–1113. |
[6] | H. Y. Jin and Z. A. Wang. Global stability of prey-taxis systems, J. Diff. Eqns., 3(2017), 1257– 1290. |
[7] | E. F. Keller and L. A. Segel. Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26(3) (1970) 399–415. |
[8] | P. Liu, J. P. Shi and Z. A. Wang, Pattern formation of attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2597–2625. |
[9] | D. M. Liu and Y. S. Tao, Global boundedness in a fully parabolic attraction-repulsion chemotaxis model, Math. Methods Appl. Sci., 38 (2015), 2537–2546. |
[10] | G. Simonett, Center manifolds for quasilinear reaction-diffusion systems, Diff. Integr. Eqns., 8 (1995), 753–796. |
[11] | J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Diff. Eqns., 246 (2009), 2788–2812. |
[12] | Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonl. Anal.: Real World Applications, 11 (2010), 2056–2064. |
[13] | Y. S. Tao. Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2705–2722. |
[14] | J. F. Wang, J. P. Shi and J. J. Wei, Dynamics and pattern formation in a diffusion predator-prey system with strong Allee effect in prey, J. Diff. Eqns., 251 (2011), 1276–1304. |
[15] | X. F. Wang and Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly's compactness, J. Math. Biol., 66 (2013), 1241–1266. |
[16] | X. L. Wang, W. D. Wang and G. H. Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis, Math. Meth. Appl. Sci., 3 (2014), 431–443. |
[17] | M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Diff. Eqns., 248 (2010) (12), 2889–2905. |
[18] | S. N. Wu, J. P. Shi, and B. Y. Wu. Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Diff. Eqns., 260 (2016), 5847–5874. |