Research article Special Issues

Local bifurcation of a Ronsenzwing-MacArthur predator prey model with two prey-taxis

  • Received: 22 October 2018 Accepted: 24 January 2019 Published: 06 March 2019
  • The paper investigates the steady state bifurcation analysis in a general Ronsenzwing-MacArthur predator prey model with two prey-taxis under Neumann boundary conditions. The results show that the rich dynamics in predator prey systems with two prey taxis.

    Citation: Xue Xu, Yibo Wang, Yuwen Wang. Local bifurcation of a Ronsenzwing-MacArthur predator prey model with two prey-taxis[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 1786-1797. doi: 10.3934/mbe.2019086

    Related Papers:

    [1] Olivia Prosper, Omar Saucedo, Doria Thompson, Griselle Torres-Garcia, Xiaohong Wang, Carlos Castillo-Chavez . Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza. Mathematical Biosciences and Engineering, 2011, 8(1): 141-170. doi: 10.3934/mbe.2011.8.141
    [2] Sunmi Lee, Romarie Morales, Carlos Castillo-Chavez . A note on the use of influenza vaccination strategies when supply is limited. Mathematical Biosciences and Engineering, 2011, 8(1): 171-182. doi: 10.3934/mbe.2011.8.171
    [3] Rodolfo Acuňa-Soto, Luis Castaňeda-Davila, Gerardo Chowell . A perspective on the 2009 A/H1N1 influenza pandemic in Mexico. Mathematical Biosciences and Engineering, 2011, 8(1): 223-238. doi: 10.3934/mbe.2011.8.223
    [4] Diána H. Knipl, Gergely Röst . Modelling the strategies for age specific vaccination scheduling during influenza pandemic outbreaks. Mathematical Biosciences and Engineering, 2011, 8(1): 123-139. doi: 10.3934/mbe.2011.8.123
    [5] Majid Jaberi-Douraki, Seyed M. Moghadas . Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences and Engineering, 2014, 11(5): 1045-1063. doi: 10.3934/mbe.2014.11.1045
    [6] Christopher S. Bowman, Julien Arino, S.M. Moghadas . Evaluation of vaccination strategies during pandemic outbreaks. Mathematical Biosciences and Engineering, 2011, 8(1): 113-122. doi: 10.3934/mbe.2011.8.113
    [7] Hiroshi Nishiura . Joint quantification of transmission dynamics and diagnostic accuracy applied to influenza. Mathematical Biosciences and Engineering, 2011, 8(1): 49-64. doi: 10.3934/mbe.2011.8.49
    [8] Sherry Towers, Katia Vogt Geisse, Chia-Chun Tsai, Qing Han, Zhilan Feng . The impact of school closures on pandemic influenza: Assessing potential repercussions using a seasonal SIR model. Mathematical Biosciences and Engineering, 2012, 9(2): 413-430. doi: 10.3934/mbe.2012.9.413
    [9] Marco Arieli Herrera-Valdez, Maytee Cruz-Aponte, Carlos Castillo-Chavez . Multiple outbreaks for the same pandemic: Local transportation and social distancing explain the different "waves" of A-H1N1pdm cases observed in México during 2009. Mathematical Biosciences and Engineering, 2011, 8(1): 21-48. doi: 10.3934/mbe.2011.8.21
    [10] Tom Reichert . Pandemic mitigation: Bringing it home. Mathematical Biosciences and Engineering, 2011, 8(1): 65-76. doi: 10.3934/mbe.2011.8.65
  • The paper investigates the steady state bifurcation analysis in a general Ronsenzwing-MacArthur predator prey model with two prey-taxis under Neumann boundary conditions. The results show that the rich dynamics in predator prey systems with two prey taxis.




    [1] B. Ainseba, M. Bendahmane and A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis, Nonl. Anal.: Real World Applications, 9 (2008) 5, 2086–2105.
    [2] H. Amann, Dynamic theory of quasilinear parabolic equations II, Reaction-diffusion systems, Diff. Int. Eqns., 3 (1990), 13–75.
    [3] M. Bendahmane, Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis, Network and Heterogeneous Media, 3 (2008), 863–879.
    [4] L. L. Chen and G. H. Zhang, Global existence of classical solutions to a three-species predatorprey model with two prey-taxis, J. Appl. Math., 10(2012), 1155–1167.
    [5] A. K. Drangeid, The principle of linearized stability for quasilinear parabolic evolution equations, Nonlinear Analysis, 13 (1989), 1091–1113.
    [6] H. Y. Jin and Z. A. Wang. Global stability of prey-taxis systems, J. Diff. Eqns., 3(2017), 1257– 1290.
    [7] E. F. Keller and L. A. Segel. Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26(3) (1970) 399–415.
    [8] P. Liu, J. P. Shi and Z. A. Wang, Pattern formation of attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2597–2625.
    [9] D. M. Liu and Y. S. Tao, Global boundedness in a fully parabolic attraction-repulsion chemotaxis model, Math. Methods Appl. Sci., 38 (2015), 2537–2546.
    [10] G. Simonett, Center manifolds for quasilinear reaction-diffusion systems, Diff. Integr. Eqns., 8 (1995), 753–796.
    [11] J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Diff. Eqns., 246 (2009), 2788–2812.
    [12] Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonl. Anal.: Real World Applications, 11 (2010), 2056–2064.
    [13] Y. S. Tao. Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2705–2722.
    [14] J. F. Wang, J. P. Shi and J. J. Wei, Dynamics and pattern formation in a diffusion predator-prey system with strong Allee effect in prey, J. Diff. Eqns., 251 (2011), 1276–1304.
    [15] X. F. Wang and Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly's compactness, J. Math. Biol., 66 (2013), 1241–1266.
    [16] X. L. Wang, W. D. Wang and G. H. Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis, Math. Meth. Appl. Sci., 3 (2014), 431–443.
    [17] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Diff. Eqns., 248 (2010) (12), 2889–2905.
    [18] S. N. Wu, J. P. Shi, and B. Y. Wu. Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Diff. Eqns., 260 (2016), 5847–5874.
  • This article has been cited by:

    1. Matt J. Keeling, Andrew Shattock, Optimal but unequitable prophylactic distribution of vaccine, 2012, 4, 17554365, 78, 10.1016/j.epidem.2012.03.001
    2. Louise E. Lansbury, Sherie Smith, Walter Beyer, Emina Karamehic, Eva Pasic-Juhas, Hana Sikira, Ana Mateus, Hitoshi Oshitani, Hongxin Zhao, Charles R. Beck, Jonathan S. Nguyen-Van-Tam, Effectiveness of 2009 pandemic influenza A(H1N1) vaccines: A systematic review and meta-analysis, 2017, 35, 0264410X, 1996, 10.1016/j.vaccine.2017.02.059
    3. Eunha Shim, Optimal Allocation of the Limited COVID-19 Vaccine Supply in South Korea, 2021, 10, 2077-0383, 591, 10.3390/jcm10040591
    4. Mustafa DEMİRBİLEK, Tam ve Kısmi Kapanma Stratejilerinin COVID-19 Salgını Üzerinden Karşılaştırılması, 2021, 2148-3736, 10.31202/ecjse.909927
    5. Matthew J. Penn, Christl A. Donnelly, Asymptotic Analysis of Optimal Vaccination Policies, 2023, 85, 0092-8240, 10.1007/s11538-022-01114-3
    6. Mustafa DEMİRBİLEK, Benzetim tabanlı adaptif aşı dağıtım stratejisi, 2022, 1300-1884, 10.17341/gazimmfd.758346
    7. Alen Kinyina, Critical Analysis of COVID-19 Containment Policy in the United Kingdom, 2022, 3, 27142132, 10.46606/eajess2022v03i02.0165
    8. Emanuele Blasioli, Bahareh Mansouri, Srinivas Subramanya Tamvada, Elkafi Hassini, Vaccine Allocation and Distribution: A Review with a Focus on Quantitative Methodologies and Application to Equity, Hesitancy, and COVID-19 Pandemic, 2023, 4, 2662-2556, 10.1007/s43069-023-00194-8
    9. Sudipa Chauhan, Shweta Upadhyaya, Payal Rana, Geetika Malik, Dynamic analysis of delayed vaccination process along with impact of retrial queues, 2023, 11, 2544-7297, 10.1515/cmb-2022-0147
    10. Nicholas I. Nii‐Trebi, Thomas S. Mughogho, Anisa Abdulai, Francis Tetteh, Priscilla M. Ofosu, Mary‐Magdalene Osei, Akua K. Yalley, Dynamics of viral disease outbreaks: A hundred years (1918/19–2019/20) in retrospect ‐ Loses, lessons and emerging issues, 2023, 1052-9276, 10.1002/rmv.2475
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4573) PDF downloads(610) Cited by(1)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog