Citation: Jinliang Wang, Xiu Dong. Analysis of an HIV infection model incorporating latency age and infection age[J]. Mathematical Biosciences and Engineering, 2018, 15(3): 569-594. doi: 10.3934/mbe.2018026
[1] | [ A. Alshorman,C. Samarasinghe,W. Lu,L. Rong, An HIV model with age-structured latently infected cells, J. Biol. Dyna., 11 (2017): 192-215. |
[2] | [ C. J. Browne, A multi-strain virus model with infected cell age structure: Application to HIV, Nonlinear Anal. RWA, 22 (2015): 354-372. |
[3] | [ C. Castillo-Chavez,Z. Feng, To treat or not to treat: The case of tuberculosis, J. Math. Biol., 35 (1997): 629-656. |
[4] | [ G. Huang,X. Liu,Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model, SIAM J. Appl. Math., 72 (2012): 25-38. |
[5] | [ J. K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, 1988. |
[6] | [ M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Appl. Math. Monogr. CNR, vol. 7, Giadini Editori e Stampator, Pisa, 1994. |
[7] | [ H. Kim and A. S. Perelson, Viral and latent reservoir persistence in HIV-1-infected patients on therapy, PLoS Comput. Biol., 10 (2006), e135. |
[8] | [ M. Y. Li,H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections, SIAM J. Appl. Math., 70 (2010): 2434-2448. |
[9] | [ X. Lai,X. Zou, Modeling the HIV-1 virus dynamics with both virus-to-cell and cell-to-cell transmission, SIAM J. Appl. Math., 74 (2014): 898-917. |
[10] | [ M. Y. Li,H. Shu, Global dynamics of an in-host viral model with intracellular delay, Bull. Math. Bio., 72 (2010): 1492-1505. |
[11] | [ V. Muller,J. F. Vigueras-Gomez,S. Bonhoeffer, Decelerating decay of latently infected cells during prolonged therapy for human immunodeficiency virus type 1 infection, J. Virol., 76 (2002): 8963-8965. |
[12] | [ M. Martcheva,C. Castillo-Chavez, Diseases with chronic stage in a population with varying size, Math. Biosci., 182 (2003): 1-25. |
[13] | [ C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, Math. Biosci. Eng., 9 (2012): 819-841. |
[14] | [ P. Magal, Compact attractors for time periodic age-structured population models, Electron. J. Differ. Equ., 65 (2001): 1-35. |
[15] | [ P. W. Nelson,M. A. Gilchrist,D. Coombs,J. M. Hyman,A. S. Perelson, An age-structured model of HIV infection that allow for variations in the production rate of viral particles and the death rate of productively infected cells, Math. Biosci. Eng., 1 (2004): 267-288. |
[16] | [ Y. Nakata, Global dynamics of a viral infection model with a latent period and beddington-DeAngelis response, Nonlinear Anal. TMA, 74 (2011): 2929-2940. |
[17] | [ Y. Nakata, Global dynamics of a cell mediated immunity in viral infection models with distributed delays, J. Math. Anal. Appl., 375 (2011): 14-27. |
[18] | [ A. S. Perelson,P. Essunger,Y. Cao,M. Vesanen,A. Hurley,K. Saksela,M. Markowitz,D. D. Ho, Decay characteristics of HIV-1-infected compartments during combination therapy, Nature, 387 (1997): 188-191. |
[19] | [ L. Rong and A. S. Perelson, Modeling latently infected cell activation: Viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy, PLoS Comput. Biol., 5 (2009), e1000533, 18pp. |
[20] | [ L. Rong,A. S. Perelson, Asymmetric division of activated latently infected cells may explain the decay kinetics of the HIV-1 latent reservoir and intermittent viral blips, Math. Biosci., 217 (2009): 77-87. |
[21] | [ L. Rong,A. S. Perelson, Modeling HIV persistence, the latent reservoir, and viral blips, J. Theoret. Biol., 260 (2009): 308-331. |
[22] | [ M. C. Strain,H. F. Gunthard,D. V. Havlir,C. C. Ignacio,D. M. Smith,A. J. Leigh-Brown,T. R. Macaranas,R. Y. Lam,O. A. Daly,M. Fischer,M. Opravil,H. Levine,L. Bacheler,C. A. Spina,D. D. Richman,J. K. Wong, Heterogeneous clearance rates of long-lived lymphocytes infected with HIV: Intrinsic stability predicts lifelong persistence, Proc. Natl. Acad. Sci. USA,, 191 (2005): 1410-1418. |
[23] | [ M. C. Strain,S. J. Little,E. S. Daar,D. V. Havlir,H. F. Günthard,R. Y. Lam,O. A. Daly,J. Nguyen,C. C. Ignacio,C. A. Spina,D. D. Richman,J. K. Wong, Effect of treatment, during primary infection, on establishment and clearance of cellular reservoirs ofHIV-1, J. Infect. Dis., 191 (2005): 1410-1418. |
[24] | [ H. Shu,L. Wang,J. Watmough, Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses, SIAM J. Appl. Math., 73 (2013): 1280-1302. |
[25] | [ H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Amer. Math. Soc., Providence, 2011. |
[26] | [ H. L. Smith, Mathematics in Population Biology, Princeton University Press, 2003. |
[27] | [ H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Dif. Int. Eqs., 3 (1990): 1035-1066. |
[28] | [ H. R. Thieme, Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators, J. Differential Equations, 250 (2011): 3772-3801. |
[29] | [ H. R. Thieme,C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS?, SIAM J. Appl. Math., 53 (1993): 1447-1479. |
[30] | [ V. Volterra, Leçns Sur la Thérie Mathématique de la Lutte Pour la vie, Éditions Jacques Gabay, Sceaux, 1990. |
[31] | [ J. Wang,S. Liu, The stability analysis of a general viral infection model with distributed delays and multi-staged infected progression, Commun. Nonlinear Sci. Numer. Simulat., 20 (2015): 263-272. |
[32] | [ J. Wang,R. Zhang,T. Kuniya, Global dynamics for a class of age-infection HIV models with nonlinear infection rate, J. Math. Anal. Appl., 432 (2015): 289-313. |
[33] | [ J. Wang,R. Zhang,T. Kuniya, Mathematical analysis for an age-structured HIV infection model with saturation infection rate, Electron. J. Differential Equations,, 33 (2015): 1-19. |
[34] | [ J. Wang,G. Huang,Y. Takeuchi, Global asymptotic stability for HIV-1 dynamics with two distributed delays, Math. Med. Biol., 29 (2012): 283-300. |
[35] | [ J. Wang,L. Guan, Global stability for a HIV-1 infection model with cell-mediated immune response and intracellular delay, Discrete Cont. Dyn. Sys. B, 17 (2012): 297-302. |
[36] | [ J. Wang,J. Pang,T. Kuniya,Y. Enatsu, Global threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays, Appl. Math. Comput., 241 (2014): 298-316. |
[37] | [ J. Wang,J. Lang,X. Zou, Analysis of a structured HIV infection model with both virus-to-cell infection and cell-to-cell transmission, Nonlinear Analysis: RWA, 34 (2017): 75-96. |
[38] | [ J. Wang,R. Zhang,T. Kuniya, The dynamics of an SVIR epidemiological model with infection age, IMA J. Appl. Math., 81 (2016): 321-343. |
[39] | [ X. Wang,S. Liu, A class of delayed viral models with saturation infection rate and immune response, Math. Meth. Appl. Sci., 36 (2013): 125-142. |
[40] | [ X. Wang,S. Tang,X. Song,L. Rong, Mathematical analysis of an HIV latent infection model including both virus-to-cell infection and cell-to-cell transmission, J. Biol. Dyna., 11 (2017): 455-483. |
[41] | [ D. Wodarz, -Hepatitis c virus dynamics and pathology: The role of CTL and antibody responses, J. Gen. Virol., 84 (2003): 1743-1750. |
[42] | [ G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York and Basel, 1985. |
[43] | [ J. A. Walker, Dynamical Systems and Evolution Equations, Plenum Press, New York and London, 1980. |
[44] | [ Y. Yan,W. Wang, Global stability of a five-dimensional model with immune responses and delay, Discrete Cont. Dyn. Sys. B, 17 (2012): 401-416. |