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Abstract. There is a growing interest to understand impacts of latent infec-

tion age and infection age on viral infection dynamics by using ordinary and
partial differential equations. On one hand, activation of latently infected cells

needs specificity antigen, and latently infected CD4+ T cells are often het-

erogeneous, which depends on how frequently they encountered antigens, how
much time they need to be preferentially activated and quickly removed from

the reservoir. On the other hand, infection age plays an important role in mod-

eling the death rate and virus production rate of infected cells. By rigorous
analysis for the model, this paper is devoted to the global dynamics of an HIV

infection model subject to latency age and infection age from theoretical point

of view, where the model formulation, basic reproduction number computation,
and rigorous mathematical analysis, such as relative compactness and persis-

tence of the solution semiflow, and existence of a global attractor are involved.

By constructing Lyapunov functions, the global dynamics of a threshold type
is established. The method developed here is applicable to broader contexts of

investigating viral infection subject to age structure.

1. Introduction. Determining the threshold dynamics of infection-free and infec-
tion equilibrium in viral infection model has made great progress in the last decades
[1, 2, 4, 8, 9, 10, 16, 17, 24, 31, 36, 32, 33, 34, 35, 40, 44]. A key insight in this
progress is that if threshold value (named, the basic reproduction number) is less
than one then the infection-free equilibrium is globally asymptotically stable oth-
erwise the endemic equilibrium attracts all solutions (is globally asymptotically
stable) whenever it exists. One method adopted here is due to the classical Volterra
type Lyapunov function, which was discovered by Volterra [30]. These confirmed
global stability properties of steady states for within host virus model establish our
understanding the virus dynamical behaviors, that is, whether the viruses die out
or not.

Even large discrete and continuous delay differential equations of viral infection
models have been successfully treated by Volterra type Lyapunov function, (i) non-
linear incidence rate functions [8, 24, 31]; (ii) discrete delays [10, 16, 35] and finite
distributed delays [17, 31, 36], and infinite distributed delays [8, 24, 34]; (iii) immune
responses [24, 35, 44, 39, 41]; and (iv) additional infection processes [31]. It is still a
hot topic in in-host model to determine how these factors affect the virus dynamical
behaviors. We also refer the reader to see these citations for more references.
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Recently, age-structured viral infection model has attracted much attentions of
researchers. HIV latency remains a major obstacle to viral elimination. Although
HIV-1 replication can be controlled by antiretroviral therapy in suppress the plasma
viral load to below the detection limit, the time spent in this progress may last half
life of months or years [21]. Virus persisting in reservoirs, such as latency infected
CD4+ T cells, may the reason that long-term low viral load persistence in patients
on antiretroviral therapy and keeping the virus from being eliminated. These latency
infected CD4+ T cells are not affected by immune responses but can produce virus
once activated by relevant antigens.

Some recent studies reveals the decay dynamics of the latent reservoir. For exam-
ple, a model has been developed by Muller et al. [11] to describe the heterogeneity
of latent cell activation. An ordinary differential equations (ODEs) model has been
studied by Kim and Perelson [7] to include decreasing activation of latently infected
cells. Activation of these latently infected cells needs specificity antigen. A recent
study by Strain et al. [22] reveals that the dynamics of latently infected CD4+
T cells are often heterogeneous. They argued that cells specific to frequently en-
countered antigens are activated soon while cells specific to rare antigens need more
time to be activated. Thus, the activation rate depends on the time spent since
the cell is latently infected (that is the time elapsed since the establishment of la-
tency), which we refer as latency age for short. A recent paper by Alshorman et
al. [1] introduced a latency age model to mathematically analyze the dynamics of
the latent reservoir under combination therapy. They give an affirmed answers that
the long-term activation rate of latently infected cells plays an important role in
determining the dynamics.

Taking into account the picture that the mortality rate and viral production
rate of infected cells may depend on the infection age of cells, Nelson et al. [15],
Huang et al. [4] and Wang et al. [37] have studied age-structured model of HIV
infection by considering age to be a continuous variable rather than be constant
in ODEs models. These assumptions lead to a hybrid system of ODEs and partial
differential equations (PDEs) formulation and allow us to have a good understanding
on productively infected cells. Together with the infinite-dimensional nature of
system, this formulation creates some mathematical difficulties in establishing the
existence of a global compact attractor, even in other epidemic models (see some
relevant references for our discussion on age-structured models, [6, 43, 42, 25, 27,
26, 14]).

Denote by T (t), e(a, t), i(a, t), V (t) the concentration of uninfected CD4+ T cells
at time t, the concentration of latently infected T cells with latency age a at time
t, the concentration of productively infected cells, and the concentration of virions
in plasma at t, respectively. The parameter h is the production rate of uninfected
CD4+ T cells, d is the per capita death rate of uninfected cells, and β is the infection
rate of the target cell by virus. c is the viral clearance rate.

The following assumptions are a compromise between generality and simplicity.

Assumption 1.1. (i) There is a small fraction (f) of infected cells lead to la-
tency and that the remaining become productively infected cells [1, 40].

(ii) When latently infected cells are activated to become productively infected cells,
an age-dependent remove rate −θ1(a) is used to illustrate the decreasing ef-
fect of the pool size of latent reservoir. The integral term

∫∞
0
ξ(a)e(a, t)da

describes he total number of productively infected cells gained per unit time
from the activation of latently infected cells, where ξ(a) denotes the activation
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rate of latently infected T cells with latency age a. Biologically, we omit the
proliferation rate [25] and the death rate of latently infected cells, which is
assumed to be included in the removal rate.

(iii) We assume that production rate of viral particles p(b) and the death rate of
productively infected cells θ2(b) wiht infection age b are two continuous func-
tions of age (the time passed since infection), see, e.g., [15, 4, 32].

Biologically, (i) of Assumption 1.1 comes from the evidences that a very small
fraction of CD4+ T cell infection leads to HIV latency. They don’t produce new
virus unless activated by antigens, please see [18, 19, 20]. (ii) of Assumption 1.1
based on the fact the latently infected cell population is very likely to be hetero-
geneous [22, 23]. Cells specific to frequently encountered antigens may be prefer-
entially activated and quickly removed from the reservoir. It may depends on the
time elapsed since latent infection and affect the activation rate, that is the reason
why we are interested in the latent infection age. (iii) of Assumption 1.1 it is known
that viral proteins and unspliced viral RNA accumulate within the cytoplasm of an
infected cell, and thus, they actually ramps up [3, 12, 29]. Therefore, infection age
should be incorporated into the model.

In this paper, we introduce the following HIV infection model with latency and
infection age, 

dT (t)

dt
= h− dT (t)− βT (t)V (t),(

∂

∂t
+

∂

∂a

)
e(a, t) = −θ1(a)e(a, t),(

∂

∂t
+

∂

∂b

)
i(b, t) = −θ2(b)i(b, t),

dV (t)

dt
=

∫ ∞
0

p(b)i(b, t)db− cV (t),

(1)

with boundary and initial conditions
e(0, t) = fβT (t)V (t),

i(0, t) = (1− f)βT (t)V (t) +

∫ ∞
0

ξ(a)e(a, t)da,

T (0) = T0 ≥ 0, e(a, 0) = e0(a) ∈ L1
+(0,∞),

i(b, 0) = i0(b) ∈ L1
+(0,∞), V (0) = V0 ≥ 0,

where L1
+(0,∞) is the set of all integrable nonnegative functions on R+ := [0,∞).

Mathematically, for the ease of simplicity, we make the following assumptions.

Assumption 1.2. (i) h, d, β, c > 0;
(ii) For 1 = 1, 2, θi(·), p(·), ξ(·) ∈ L∞+ (0,∞) satisfy the conditions:

θ̄i := ess sup
a∈[0,∞)

θi(a) <∞, p̄ := ess sup
a∈[0,∞)

p(a) <∞, ξ̄ := ess sup
a∈[0,∞)

ξ(a) <∞,

(iii) p(·), ξ(·) are Lipschitz continuous on R+ with Lipschitz constants Mp, Mξ

respectively;
(iv) There exists µ0 ∈ (c, d] such that θ1(a), θ2(b) ≥ µ0 for all a, b ≥ 0;
(v) There exists a maximum age b+ > 0 for the viral production such that p(b) > 0

for b ∈ (0, b+) and p(b) = 0 for b > b+.

Our goal of the present paper is to adopt previous model in [32, 33] by incorporat-
ing the latency age for infected cells as discussed in [1], and to study the threshold
dynamics of infection-free and infection equilibrium in viral infection model subject
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to latently age and infection age. We will show the existence of a compact attrac-
tor of all compact sets of nonnegative initial data and use the Lyapunov function
to show that this attractor is the singleton set containing the endemic equilib-
rium. Roughly speaking, if the basic reproduction number is less than one then the
infection-free equilibrium is globally asymptotically stable otherwise the endemic
equilibrium attracts all solutions with active infection at some time.

The remaining part of this paper is organized as follows. In Section 2, we present
some preliminary results including model formulation (equivalent integrated semi-
group formulation and Volterra formulation), properties of solutions and existence
of equilibria. Then we show the asymptotic smoothness of Φ(t,X0) of orbits in Sec-
tion 3, where we arrive at a key result on the existence of global compact attractor.
In section 4, we prove that system (1) is the uniformly persistent. The Section 5 is
devoted to local stability analysis of the infection-free equilibrium and the infection
equilibrium. Then we establish their global attractivity in Section 6 by constructing
Lyapunov functions.

2. Preliminary. For ease of notations, we introduce the following notations:

Ω(a) = e−
∫ a
0
θ1(τ)dτ and Γ(b) = e−

∫ b
0
θ2(τ)dτ for a, b ≥ 0.

Biologically, Ω(a) is the probability of an infected cell staying in the latent state
until age a. Γ(b) is typically interpreted as the probability that an infected cell can
survive to age b.

Then, by (ii) and (v) of Assumption 1.2, we have that for all a, b ≥ 0,

0 ≤ Ω(a) ≤ e−µ0a and 0 ≤ Γ(b) ≤ e−µ0b,

dΩ(a)

da
= −θ1(a)Ω(a) and

dΓ(b)

db
= −θ2(b)Γ(b). (2)

2.1. Integrated semigroup formulation. Following the line of [27], we refor-
mulate the model (1) as a semilinear Cauchy problem. Taking into account the
boundary conditions, we consider the following state space,

X = R× R× L1((0,∞),R)× R× L1((0,∞),R)× R,

X+ = R+ × R+ × L1
+((0,∞),R)× R+ × L1

+((0,∞),R)× R+,

endowed with the usual product norm, and set

X0 = R× {0} × L1((0,∞),R)× {0} × L1((0,∞),R)× R,

X0+ = X0 ∩ X+.

We consider the linear operator A : Dom(A) ⊂ X → X defined by

A


T(
0
e

)
(

0
i

)
V

 =


−dT(
−e(0)

−e′ − θ1(a)e

)
(

−i(0)
−i′ − θ2(a)i

)
−cV


with

Dom(A) = R× {0} ×W 1,1((0,∞),R)× {0} ×W 1,1((0,∞),R)× R,

where W 1,1 is a Sobolev space. Note that Dom(A) = X0 is not dense in X .

Define nonlinear operator F : Dom(A)→ X by



AGE-STRUCTURED HIV MODEL 573

F


T(
0
e

)
(

0
i

)
V

 =


h− βTV(
fβTV

0L1

)
(

(1− f)βTV +M
0L1

)
N

 .

where

M(t) =

∫ ∞
0

ξ(a)e(a, t)da, N(t) =

∫ ∞
0

p(b)i(b, t)db. (3)

Then by setting u(t) =

(
T (t),

(
0

e(·, t)

)
,

(
0

i(·, t)

)
, V (t)

)T
, we can reformulate sys-

tem (1) with the boundary and initial conditions as the following abstract Cauchy
problem

du(t)

dt
= Au(t) + F(u(t)) for t ≥ 0 and u(0) ∈ X0+.

If any initial value X0 = (T0, e0(·), i0(·), V0) ∈ Y satisfies the coupling equations

e(0, 0) = fβT0V0

and

i(0, 0) = (1− f)βT0V0 +

∫ ∞
0

ξ(a)e0(a)da,

then (1) is well-posed under Assumption 1.2 due to Iannelli [6] and Magal [14].
Denote

Y = R+ × L1
+(0,∞)× L1

+(0,∞)× R+

with the norm

‖(x, ϕ, ψ, y)‖Y = |x|+ ‖ϕ‖L1 + ‖ψ‖L1 + |y| for (x, ϕ, ψ, y) ∈ Y.

In fact, for such solutions, it is not difficult to show that (T (t), e(·, t), i(·, t), V (t)) ∈
Y for each t ≥ 0. In the sequel, we always assume that the initial values satisfy the
coupling equations.

Using the results presented in [14, 27], thus we can get a continuous solution
semi-flow Φ : R+ × Y → Y defined by

Φ (t,X0) = Φt(X0) := (T (t), e(·, t), i(·, t), V (t)) , t ≥ 0, X0 ∈ Y.

The precise result is the following proposition.

Proposition 1. For system (1), there exists a unique strongly continuous semiflow
Φ : X0+ → X0+t≥0 such that for each x0 ∈ X0+, the operator x ∈ C([0,∞),X0+)

defined by x = Φ(t)x0 is a mild solution of (1), that is, it satisfies∫ t

0

x(s)ds ∈ Dom(A), and x(t) = x0 +A
∫ t

0

x(s)ds+

∫ t

0

F(x(s))ds,∀t ≥ 0.
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2.2. Volterra formulation. According to the Volterra formulation (see Webb [42]
and Iannelli [6]), integrating the second and third equations of (1) along the char-
acteristic lines t− a = const. and t− b = const. respectively yields

e(a, t) =

{
fβT (t− a)V (t− a)Ω(a) = e(0, t− a)Ω(a), if t > a,

e0(a− t) Ω(a)
Ω(a−t) , if t ≤ a;

(4)

and

i(b, t)

=

{
[(1− f)βT (t− b)V (t− b) +M(t− b)] Γ(b) = i(0, t− b)Γ(b), if t > b,

i0(b− t) Γ(b)
Γ(b−t) , if t ≤ b.

(5)

Thus system (1) can be rewritten as the following Volterra-type equations,

dT (t)

dt
= h− dT (t)− βT (t)V (t),

dV (t)

dt
=

∫ t

0

p(b)Γ(b)((1− f)βT (t− b)V (t− b) +M(t− b))db

+

∫ ∞
t

p(b)i0(b− t) Γ(b)

Γ(b− t)
db− cV (t),

where M(t− b) =
∫ t−b

0
ξ(a)e(0, t− b− a)da+

∫∞
t−b ξ(a)e0(a− t− b) Ω(a)

Ω(a−t−b)da.

2.3. Boundedness of solutions.

Proposition 2. Define

Ξ :=

{
X0 = (T0, e0, i0, V0) ∈ Y

∣∣∣ T0 + ‖e0(a)‖L1 ≤ h

µ0
,

T0 + ‖e0(a)‖L1 + ‖i0(b)‖L1 ≤ h

µ1
,

V0 ≤
p̄h

cµ0
+
hp̄ξ̄

cµ2
0

, ‖X0‖Y ≤
h

µ̃0

}
,

where µ̃0 := µ0

1+ ξ̄
µ0

+ p̄
c+ p̄ξ̄

cµ0

, µ1 := µ0

1+ ξ̄
µ0

. Then Ξ is a positively invariant subset

for Φ, that is,

Φ(t,X0) ∈ Ξ for all t ≥ 0 and X0 ∈ Ξ.

Moreover, Φ is point dissipative and Ξ attracts all points in Y.

Proof. By (4) and changes of variables, we have

‖e(·, t)‖L1 =

∫ t

0

e(0, t− a)Ω(a)da+

∫ ∞
t

e0(a− t) Ω(a)

Ω(a− t)
da

=

∫ t

0

e(0, σ)Ω(t− σ)dσ +

∫ ∞
0

e0(τ)
Ω(t+ τ)

Ω(τ)
dτ.

We derivative this equality,

d‖e(·, t)‖L1

dt
= e(0, t)Ω(0) +

∫ t

0

e(0, σ)
dΩ(t− σ)

dt
dσ +

∫ ∞
0

e0(τ)

Ω(τ)

dΩ(t+ τ)

dt
dτ.
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By (2) and changing of variables, we have

d‖e(·, t)‖L1

dt
= e(0, t)Ω(0)−

∫ t

0

e(0, σ)θ1(t− σ)Ω(t− σ)dσ

−
∫ ∞

0

e0(τ)

Ω(τ)
θ1(t+ τ)Ω(t+ τ)dτ

= e(0, t)Ω(0)−
∫ ∞

0

θ1(a)e(a, t)da.

By the first equation in (1), (iv) of Assumption 1.2, and use f < 1,

d(T (t) + ‖e(·, t)‖L1)

dt
= h− dT (t)− βT (t)V (t) + fβT (t)V (t)−

∫ ∞
0

θ1(a)e(a, t)da

≤ h− µ0(T (t) + ‖e(·, t)‖L1).

We integrate this differential inequality and obtain the a priori estimate,

T (t) + ‖e(·, t)‖L1 ≤ h

µ0
− e−µ0t

{
h

µ0
− (T0 + ‖e(·, t)‖L1)

}
, t ≥ 0. (6)

This implies that

T (t) + ‖e(·, t)‖L1 ≤ h

µ0
.

Similarly, we have

d‖i(·, t)‖L1

dt
= i(0, t)Γ(0)−

∫ ∞
0

θ2(b)i(b, t)db.

We add the two equations,

d(T (t) + ‖e(·, t)‖L1) + ‖i(·, t)‖L1)

dt
= h− dT +

∫ ∞
0

ξ(a)e(a, t)da

−
∫ ∞

0

θ1(a)e(a, t)da−
∫ ∞

0

θ2(b)i(b, t)db.

and since (ii) and (iv) of Assumption 1.2, obtain the estimates

d(T (t) + ‖e(·, t)‖L1) + ‖i(·, t)‖L1)

dt
≤ h+ ξ̄

h

µ0
− µ0(T (t) + ‖e(·, t)‖L1 + i(·, t)‖L1).

We integrate this differential inequality and obtain the a priori estimate,

‖T (t) + ‖e(·, t)‖L1) + ‖i(·, t)‖L1

≤
h+ ξ̄ hµ0

µ0
− e−µ0t

{
h+ ξ̄ hµ0

µ0
− (T (t) + ‖e(·, t)‖L1 + i(·, t)‖L1)

}
, t ≥ 0. (7)

This implies ‖i(·, t)‖L1 ≤ h
µ0

+ ξ̄h
µ2

0
. Further, since (ii) of Assumption 1.2, we have

dV (t)

dt
≤ p̄‖i(·, t)‖L1 − cV (t) ≤ p̄

(
h

µ0
+
ξ̄h

µ2
0

)
− cV (t).

It follows (iv) of Assumption 1.2, we have that

V (t) ≤
p̄( hµ0

+ ξ̄h
µ2

0
)

c
− e−ct

{
p̄h

cµ0
+
hp̄ξ̄

cµ2
0

− V0

}
≤ p̄h

cµ0
+
hp̄ξ̄

cµ2
0

− e−µ0t

{
p̄h

cµ0
+
hp̄ξ̄

cµ2
0

− V0

}
(8)
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Consequently, from (6), (7) and (8), we conclude that if X0 ∈ Ξ, then for t ≥ 0,

‖Φt(X0)‖Y ≤
(

1 +
ξ̄

µ0
+
p̄

c
+

p̄ξ̄

cµ0

)
h

µ0
(9)

− e−µ0t

{(
1 +

ξ̄

µ0
+
p̄

c
+

p̄ξ̄

cµ0

)
h

µ0
− ‖X0‖Y

}
=

h

µ̃0
− e−µ0t

{
h

µ̃0
− ‖X0‖Y

}
≤ h

µ̃0
. (10)

In summary, we have shown that Ξ is positively invariant with respect to Φ. Lastly,
it follows from (9) that lim sup

t→∞
‖Φt(X0)‖Y ≤ h

µ̃0
for any X0 ∈ Y, that is, Φ is point

dissipative and Ξ attracts all points in Y. This completes the proof.

As a consequence of Proposition 2, we have the following result.

Proposition 3. Let A ≥ h
µ̃0

be given. If X0 ∈ Y satisfying ‖X0‖Y ≤ A, then the

following statements hold for all t ≥ 0.

(i) T (t), ‖e(·, t)‖L1 , ‖i(·, t)‖L1 , V (t) ≤ A;
(ii) M(t) ≤ ξ̄A and N(t) ≤ p̄A;

(iii) e(0, t) ≤ fβA2 and i(0, t) ≤ (1− f)βA2 + ξ̄A.

2.4. Existence of equilibria. System (1) always has an infection-free equilibrium

P 0 = (T 0, e0(a), i0(b), V 0) := (
h

d
, 0, 0, 0).

The equations for an equilibrium are obtained from (1) by setting the time deriva-
tives equal to 0 with boundary conditions, that is, infection equilibrium P ∗ =
(T ∗, e∗(·), i∗(·), V ∗) ∈ Y of (1) satisfies

h− dT ∗ − βT ∗V ∗ = 0,
d

da
e∗(a) = −θ1(a)e∗(a),

d

da
i∗(b) = −θ2(b)i∗(b),∫ ∞

0

p(b)i∗(b)db = cV ∗,

e∗(0) = fβT ∗V ∗,

i∗(0) = (1− f)βT ∗V ∗ +

∫ ∞
0

ξ(a)e∗(a)da.

(11)

Denote

K =

∫ ∞
0

ξ(a)Ω(a)da, J =

∫ ∞
0

p(b)Γ(b)db.

Biologically, K is the total number of infected cells activated by latency infected
cells. J accounts for the total number of virus particles produced by an infected
cell during its life-span, i.e., the burst size.

We define basic reproduction number, <0 of (1) as

<0 =
fβT 0KJ

c
+

(1− f)βT 0J

c
.

which accounts for the total number of virons resulted from a single viron through
the virus-to-cell infection mod. 1−f is the fraction of productive infection that leads
to viral production, and fK represents the contribution to productively infected
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cells from activation of latently infected cells. <0 will serves as threshold value for
(1), which completely determines the global behaviors of equilibria of (1).

Direct calculation yields that if <0 > 1, then (1) admits a unique infection
equilibrium P ∗ = (T ∗, e∗(a), i∗(b), V ∗) with

T ∗ =
T 0

<0
, e∗(a) = fh

(
1− 1

<0

)
Ω(a),

i∗(b) = (1− f + fK)h

(
1− 1

<0

)
Γ(b), V ∗ =

1

c

∫ ∞
0

p(b)i∗(b)db. (12)

In summary, we have shown the following result.

Proposition 4. (i) System (1) always has an infection-free equilibrium P 0.
(ii) If <0 > 1, then (1) admits a unique infection equilibrium P ∗, which is defined

by (12).

3. Asymptotic smoothness of Φ(t,X0) . By Proposition 2 and 3, the semiflow
is point-dissipative and Φ(R+ × B) is bounded for every bounded subset B of Y.
By Theorem 3.4.6 in [5], the semiflow has a compact attractor of bounded sets if
it is asymptotically smooth. To give the existence of compact attractor, we follow
the approach in [43, Theorem 4.2 of Chapter IV].

Definition 3.1. [28] A set A in Y is called a compact attractor of a set B ⊆ X
if A is compact, invariant, and non-empty and Φt(B) → A as t → ∞. The last
means that, for every open subset U of Y with A ⊆ U , there is some r > 0 such
that Φt(B) ⊆ U for all t ≥ r (i.e. Φ([r,∞)×B) ⊆ U).

Recall that M(t) and N(t) are defined by (3). The following Proposition is
devoted to prove basic properties of the functions M(t) and N(t) using Proposition
2, Assumption 1.2 and [38, Proposition 4.1].

Proposition 5. For any solution of (1), the associated functions M(t) and N(t)
are Lipschitz continuous on R+ .

Proof. Let t ≥ 0 and h > 0. We can check that

M(t+ h)−M(t) =

∫ ∞
0

ξ(a)e(a, t+ h)da−
∫ ∞

0

ξ(a)e(a, t)da

≤
∫ h

0

ξ(a)e(a, t+ h)da+

∫ ∞
h

ξ(a)e(a, t+ h)da−
∫ ∞

0

ξ(a)e(a, t)da

≤
∫ h

0

ξ(a)e(0, t+ h− a)Ω(a)da

+

∫ ∞
h

ξ(a)e(a, t+ h)da−
∫ ∞

0

ξ(a)e(a, t)da. (13)

By applying ξ(a) ≤ ξ̄, e(0, t) ≤ fβA2 and Ω(a) ≤ 1 for the first integral, and
making the substitution σ = a− h for the second integral to (13), we get

M(t+ h)−M(t) ≤ fβA2ξ̄h+

∫ ∞
0

ξ(σ + h)e(σ + h, t+ h)dσ −
∫ ∞

0

ξ(a)e(a, t)da

It follows from (4) that

e(σ + h, t+ h) = e(σ, t)
Ω(σ + h)

Ω(σ)
.
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Thus,

M(t+ h)−M(t) ≤ fβA2ξ̄h+

∫ ∞
0

(
ξ(a+ h)

Ω(a+ h)

Ω(a)
− ξ(a)

)
e(a, t)da

= fβA2ξ̄h+

∫ ∞
0

(
ξ(a+ h)e−

∫ a+h
a

θ1(s)ds − ξ(a)
)
e(a, t)da

= fβA2ξ̄h+

∫ ∞
0

ξ(a+ h)
(
e−

∫ a+h
a

θ1(s)ds − 1
)
e(a, t)da

+

∫ ∞
0

(ξ(a+ h)− ξ(a))e(a, t)da.

From (ii) of Assumption 1.2, we obtain −θ1h ≤ −
∫ a+h

a
θ1(s)ds ≤ 0. It follows that

1 ≥ e−
∫ a+h
a

θ1(s)ds ≥ e−θ̄1h ≥ 1− θ̄1h. Therefore,

0 ≤ ξ(a+ h)
∣∣∣e− ∫ a+h

a
θ1(s)ds − 1

∣∣∣ ≤ ξ̄θ̄1h.

Recall that
∫∞

0
e(a, t)da ≤ ‖Φt(X0)‖Y ≤ A. From (iii) of Assumption 1.2, we obtain

the following estimate,

M(t+ h)−M(t) ≤ fβA2ξ̄h+ ξ̄θ̄1Ah+MξAh.

Hence, M(t) is Lipschitz continuous with Lipschitz coefficients LM = (ξ̄fβA+ ξ̄θ̄1 +
Mξ)A. Similarly, it is easy to check that N(t) is Lipschitz continuous with Lipschitz
coefficients LN = [p̄(1− f)βA+ p̄ξ̄ + p̄θ̄2 +Mp]A.

Next we divide Φ : R+ × Y → Y into the following two operators Θ, Ψ :
R+ × Y → Y:

Θ(t,X0) := (0, ϕ̃e(·, t), ϕ̃i(·, t), 0),

Ψ(t,X0) := (T (t), ẽ(·, t), ĩ(·, t), V (t)),

where

ϕ̃e(a, t) =

{
0, if t > a ≥ 0,
e(a, t), if a ≥ t ≥ 0;

ϕ̃i(b, t) =

{
0, if t > b ≥ 0,
i(b, t), if b ≥ t ≥ 0;

ẽ(a, t) =

{
e(a, t), if t > a ≥ 0,
0, if a ≥ t ≥ 0;

ĩ(b, t) =

{
i(b, t), if t > b ≥ 0,
0, if b ≥ t ≥ 0.

Then Φ(t,X0) = Θ(t,X0) + Ψ(t,X0) for t ≥ 0. Following the proof of [42,
Proposition 3.13], we can arrive at the following main result of this section.

Theorem 3.2. For X0 ∈ Ξ, the orbit {Φ(t,X0) | t ≥ 0} has a compact closure in
Y if the following two conditions hold,

(i) There exists a function ∆ : R+ × R+ → R+ such that, for any r > 0,
limt→∞∆ (t, r) = 0 and if X0 ∈ Ω with ‖X0‖Y ≤ r then ‖Θ (t,X0)‖Y ≤
∆ (t, r) for t ≥ 0;

(ii) For t ≥ 0, Ψ (t, ·) maps any bounded sets of Ξ into sets with compact closure
in Y.

Proof. Proof of (i) of Theorem 3.2. Let ∆ (t, r) = e−µ0tr, then limt→∞∆(t, r) = 0.
By (4) and (5),

ϕ̃e(a, t) =

{
0, if t > a ≥ 0,

e0(a− t) Ω(a)
Ω(a−t) , if a ≥ t ≥ 0;
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and

ϕ̃i(b, t) =

{
0, if t > b ≥ 0,

i0(b− t) Γ(b)
Γ(b−t) , if b ≥ t ≥ 0.

Then, for X0 ∈ Ξ satisfying ‖X0‖Y ≤ r and for t ≥ 0, we have

‖Θ (t,X0)‖Y = |0|+ ‖ϕ̃e(·, t)‖L1 + ‖ϕ̃i(·, t)‖L1 + |0|

=

∫ ∞
t

∣∣∣∣e0(a− t) Ω(a)

Ω(a− t)

∣∣∣∣ da+

∫ ∞
t

∣∣∣∣i0(b− t) Γ(b)

Γ(b− t)

∣∣∣∣ db
=

∫ ∞
0

∣∣∣∣e0(σ)
Ω(σ + t)

Ω(σ)

∣∣∣∣ dσ +

∫ ∞
0

∣∣∣∣i0(σ)
Γ(σ + t)

Γ(σ)

∣∣∣∣ dσ
=

∫ ∞
0

∣∣∣e0(σ)e−
∫ σ+t
σ

θ1(τ)dτ
∣∣∣ dσ +

∫ ∞
0

∣∣∣i0(σ)e−
∫ σ+t
σ

θ2(τ)dτ
∣∣∣ dσ

≤ e−µ0t‖e0‖L1 + e−µ0t‖i0‖L1

≤ e−µ0t ‖X0‖Y .

Proof of (ii) of Theorem 3.2. It is sufficient to show that Ψ (t, ·) maps any bounded
sets of Ξ into sets with compact closure in Y. From Proposition 2, T (t) and V (t) re-
mains in the compact set [0, h/µ̃0] ⊂ [0, A]. Thus it remains unknown that whether
ẽ (a, t) and ĩ (b, t) remain in a precompact subset of L1

+ (0,∞), which is independent
of X0 ∈ Ξ. To this end, we next to verify the following conditions for ẽ (a, t) and
similar ones for ĩ (b, t) (see, for example, [25, Theorem B.2]).

(i) The supremum of ‖ẽ (·, t) ‖L1 with respect to X0 ∈ Ξ is finite;
(ii) limh→∞

∫∞
h
ẽ (a, t) da = 0 uniformly with respect to X0 ∈ Ξ;

(iii) limh→0+

∫∞
0
|ẽ (a+ h, t)− ẽ (a, t)| da = 0 uniformly with respect to X0 ∈ Ξ;

(iv) limh→0+

∫ h
0
ẽ (a, t) da = 0 uniformly with respect to X0 ∈ Ξ.

It follows from (4), (5), Proposition 3 and (2) that ẽ(a, t) ≤ fβA2e−µ0a, ĩ(b, t) ≤[
(1− f)βA2 + ξ̄A

]
e−µ0b. Thus, (i), (ii) and (iv) are directly satisfied.

Next we verify condition (iii). For sufficiently small h ∈ (0, t), we have∫ ∞
0

|ẽ(a+ h, t)− ẽ(a, t)| da =

∫ t−h

0

|e(a+ h, t)− e(a, t)|da+

∫ t

t−h
|0− e(a, t)|da

=

∫ t−h

0

∣∣∣e(0, t− a− h)Ω(a+ h)− e(0, t− a)Ω(a)
∣∣∣da

+

∫ t

t−h

∣∣∣e(0, t− a)Ω(a)
∣∣∣da

≤ ∆1 + ∆2 + fβA2h,

where

∆1 =

∫ t−h

0

e(0, t− a− h)
∣∣∣Ω(a+ h)− Ω(a)

∣∣∣da
and

∆2 =

∫ t−h

0

∣∣∣e(0, t− a− h)− e(0, t− a)
∣∣∣Ω(a)da.
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We first get an estimate of ∆1. Since∫ t−h

0

|Ω(a+ h)− Ω(a)|da =

∫ t−h

0

(
Ω(a)− Ω(a+ h)

)
da

=

∫ t−h

0

Ω(a)da−
∫ t

h

Ω(a)da

=

∫ t−h

0

Ω(a)da−
∫ t−h

h

Ω(a)da−
∫ t

t−h
Ω(a)da

=

∫ h

0

Ω(a)da−
∫ t

t−h
Ω(a)da

≤ h,

it follows from Proposition 3 that

∆1 ≤ fβA2h.

Next we estimate ∆2. We rewrite ∆2 as

∆2 =

∫ t−h

0

∣∣∣fβT (t− a− h)V (t− a− h)− fβT (t− a)V (t− a)
∣∣∣Ω(a)da.

It is easy to see that T (t) and V (t) are both Lipschitz continuous on R+ with Lip-
schitz constants MT = h+ dA+ βA2 and MV = (p̄+ c)A, respectively. According
to [13, Proposition 6], we conclude that T (t)V (t)is Lipschitz continuous with Lip-
schitz constants MTV = AMV + AMT . Denote that G = fβMTV . This estimate
immediately yields

∆2 ≤ Gh
∫ t−h

0

e−µ0ada ≤ Gh

µ0
.

Hence ∫ ∞
0

|ẽ(a+ h, t)− ẽ(a, t)| da ≤
(

2fβA2 +
G

µ0

)
h,

and condition (iii) directly follows.
As to ĩ (b, t), we have∫ ∞
0

∣∣̃i(b+ h, t)− ĩ(b, t)
∣∣ db =

∫ t−h

0

|i(b+ h, t)− i(b, t)|db+

∫ t

t−h
|0− i(b, t)|db

=

∫ t−h

0

∣∣∣i(0, t− b− h)Γ(b+ h)− i(0, t− b)Γ(b)
∣∣∣db

+

∫ t

t−h

∣∣∣i(0, t− b)Γ(b)
∣∣∣db

≤ Υ1 + Υ2 +
[
(1− f)βA2 + ξ̄A

]
h,

where

Υ1 =

∫ t−h

0

i(0, t− b− h)
∣∣∣Γ(b+ h)− Γ(b)

∣∣∣db
and

Υ2 =

∫ t−h

0

∣∣∣i(0, t− b− h)− i(0, t− b)
∣∣∣Γ(b)db.
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Similarly, we have
∫ t−h

0

∣∣∣Γ(b+ h)− Γ(b)
∣∣∣db ≤ h. Hence from Proposition 3, we can

conclude that

Υ1 ≤
[
(1− f)βA2 + ξ̄A

]
h.

Next we estimate Υ2. Firstly, we have

Υ2 =

∫ t−h

0

∣∣∣(1− f)βT (t− a− h)V (t− a− h) +M(t− a− h)

− (1− f)βT (t− a)V (t− a)−M(t− a)
∣∣∣Γ(b)da

≤ (1− f)β

∫ t−h

0

∣∣∣T (t− a− h)V (t− a− h)− T (t− a)V (t− a)
∣∣∣Γ(b)da

+

∫ t−h

0

∣∣∣M(t− a− h)−M(t− a)
∣∣∣Γ(b)da.

As before, MTV = AMV + AMT . Recall that M(t) is Lipschitz continuous on R+

with Lipschitz constants LM = (ξ̄fβA+ ξ̄θ̄1 +Mξ)A. Set H = (1− f)βMTV +LM ,
By a zero-trick, then we have

Υ2 ≤M1h

∫ t−h

0

e−µ0bdb ≤ Hh

µ0
.

Finally, we have∫ ∞
0

∣∣̃i(b+ h, t)− ĩ(b, t)
∣∣ db ≤ {2

[
(1− f)βA2 + ξ̄A

]
+
H

µ0

}
h,

thus condition (iii) directly follows. This completes the proof.

Consequently, we have the following theorem for the semi-flow {Φ(t)}t≥0, which
establish the existence of global attractors by Smith and Thieme [25].

Theorem 3.3. The semi-flow {Φ(t)}t≥0 has a global attractor A in Y, which at-
tracts any bounded subset of Y.

4. The uniform persistence. This section is spent on proving that (1) is uni-
formly persistent under the condition <0 > 1, which indicates that <0 > 1 is a
threshold index for infection persistence.

Let ê(t) := e(0, t) and î(t) := i(0, t). We rewrite the first three equations of (1)
as 

dT (t)

dt
= h− dT (t)− 1

f
ê(t),

e(a, t) =

{
ê(t− a)Ω(a), if t ≥ a ≥ 0,

e0(a− t) Ω(a)
Ω(a−t) , if a ≥ t ≥ 0;

i(b, t) =

{
î(t− b)Γ(b), if t ≥ b ≥ 0,

i0(b− t) Γ(b)
Γ(b−t) , if b ≥ t ≥ 0,

(14)

where

ê(t) = fβT (t)V (t) (15)

and

î(t) = (1− f)βT (t)V (t) +

∫ t

0

ξ(a)Ω(a)ê(t− a)da (16)
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+

∫ ∞
t

ξ(a)
Ω(a)

Ω(a− t)
e0(a− t)da.

Lemma 4.1. If <0 > 1, then there exists a positive constant ε0 > 0 such that

lim sup
t→∞

ê(t) > ε0. (17)

Proof. We first get an estimate on î(t) as follows. By (16), we have

î(t) ≥ (1− f)βT (t)V (t) +

∫ t

0

ξ(a)Ω(a)ê(t− a)da. (18)

Solving the fourth equation of (1) with initial condition V (0) = V0, we have that

V (t) = V0e
−ct +

∫ t

0

∫ ∞
0

p(b)i(b, τ)db · e−c(t−τ)dτ

Then

V (t) ≥
∫ t

0

e−c(t−τ)

∫ τ

0

p(b)i(b, τ)dbdτ =

∫ t

0

e−c(t−τ)

∫ τ

0

p(b)Γ(b)̂i(τ − b)dbdτ.

This, combined with (18), gives us

î(t) ≥ (1− f)βT (t)

∫ t

0

e−c(t−τ)

∫ τ

0

p(b)Γ(b)̂i(τ − b)dbdτ

+ fβ

∫ t

0

ξ(a)Ω(a)T (t− a)

∫ t−a

0

e−c(t−a−τ)

∫ τ

0

p(b)Γ(b)̂i(τ − b)dbdτda.

(19)

Since <0 > 1, there exists a sufficiently small ε1 > 0(ε1 = 1
f ε0) such that

(1− f)β

c

h− ε1
d

∫ ∞
0

p(b)Γ(b)db+
fβ

c

h− ε1
d

∫ ∞
0

p(b)Γ(b)db

∫ ∞
0

ξ(a)Ω(a)da > 1.

We claim that (17) holds for this ε0.Suppose that there exists a T > 0 such that

ê(t) ≤ ε0 for all t ≥ T.

Then it follows from (14) that dT (t)
dt ≥ h− dT (t)− ε1 for t ≥ T . This implies that

lim inf
t→∞

T (t) ≥ h−ε1
d . Thus there exists T̂ > T such that T (t) ≥ h−ε1

d for all t ≥ T̂

and hence (19) becomes

î(t) ≥ (1− f)β
h− ε1
d

∫ t

0

e−c(t−τ)

∫ τ

0

p(b)Γ(b)̂i(τ − b)dbdτ

+ fβ
h− ε1
d

∫ t

0

ξ(a)Ω(a)

∫ t−a

0

e−c(t−a−τ)

∫ τ

0

p(b)Γ(b)̂i(τ − b)dbdτda (20)

for all t ≥ T̂ . Without loss of generality, we can assume that (20) holds for all t ≥ 0

(just replace X0 by Φ(T̂ ,X0)). Then taking the Laplace transforms of both sides
of (20), we obtain

L[̂i] ≥ (1− f)β
h− ε1
d

∫ ∞
0

e−λt
∫ t

0

e−c(t−τ)

∫ τ

0

p(b)Γ(b)̂i(τ − b)dbdτdt

+ fβ
h− ε1
d

∫ ∞
0

e−λt
∫ t

0

ξ(a)Ω(a)

∫ t−a

0

e−c(t−a−τ)

∫ τ

0

p(b)Γ(b)̂i(τ − b)dbdτdadt
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= (1− f)β
h− ε1
d

1

c+ λ

∫ ∞
0

e−λbp(b)Γ(b)dbL[̂i]

+ fβ
h− ε1
d

1

c+ λ

∫ ∞
0

e−λbp(b)Γ(b)db

∫ ∞
0

e−λaξ(a)Ω(a)daL[̂i].

Here L[̂i] denotes the Laplace transform of î, which is strictly positive because

of (15) and Assumption 1.2. Dividing both sides of the above inequality by L[̂i]
and letting λ→ 0 give us

1 ≥ (1− f)β

c

h− ε1
d

∫ ∞
0

p(b)Γ(b)db+
fβ

c

h− ε1
d

∫ ∞
0

p(b)Γ(b)db

∫ ∞
0

ξ(a)Ω(a)da,

which yields a contradiction.

In order to apply a technique used by Smith and Thieme [25, Chapter 9] (see
also McCluskey [13, Section 8]), we consider a total Φ-trajectory of (1) in space Y.
A total trajectory of Φ is a function X : R → Y such that Φs(X(t)) = X(t + s)

for all t ∈ R and all s ≥ 0. For a non-empty compact set Ã, it is said to be a

compact attractor of a class C of set if Ã is invariant and d
(

Φt(C), Ã
)
→ 0 for each

C ∈ C. For each X0 ∈ Ã, there exists a total trajectory X such that X(0) = X0

and X(t) ∈ Ã for all t ∈ R.
Let φ : R→ Y be a total Φ-trajectory such that φ(r) = (T (r), e(·, r), i(·, r), V (r)),

r ∈ R. Then

φ(r + t) = Φ(t, φ(r)) for t ≥ 0 and r ∈ R,
e(a, r) = e (0, r − a) Ω(a) = ê(r − a)Ω(a) for r ∈ R and a ≥ 0,

i(b, r) = i (0, r − b) Γ(b) = î(r − b)Γ(b) for r ∈ R and b ≥ 0.

So it follows from (14)–(15) that

dT (r)

dr
= h− dT (r)− 1

f
ê(r),

ê(r) = fβT (r)V (r),

î(r) = (1− f)βT (r)V (r) +

∫ ∞
0

ξ(a)Ω(a)ê(r − a)da,

dV (r)

dr
=

∫ ∞
0

p(b)Γ(b)̂i(r − b)db− cV (r), for r ∈ R.

By the similar arguments as in McCluskey [13, Section 8] and Wang et al. [38,
Section 5] and a slight modification of the proof in [17, Lemma 4.1], actually, a total
Φ-trajectory φ enjoys the following nice properties.

Thus Lemma 4.1 tells us that if <0 > 1 then the semi-flow Φ is uniformly weakly
ρ-persistent. Moreover, with the help of Theorem 3.3 and the Lipschitz continuity
of î (which immediately follows from Proposition 5), we can apply Theorem 5.2
of Smith and Thieme [25] to conclude that the uniform weak ρ-persistence of the
semi-flow Φ implies its uniform (strong) ρ-persistence, that is, we have obtained the
following result.

Theorem 4.2. If <0 > 1, then the semi-flow Φ is uniformly (strongly) ρ-persistent.

When <0 > 1, the uniform persistence of (1) immediately follows from Theo-

rem 4.2. In fact, it follows from (14) that ‖e(·, t)‖L1 ≥
∫ t

0
ê(t− a)Ω(a)da and hence
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from a variation of the Lebesgue-Fatou lemma [26, Section B.2] we get

lim inf
t→∞

‖e(·, t)‖L1 ≥ ê∞
∫ ∞

0

Ω(a)da,

where ê∞ = lim inft→∞ ê(t). Under Theorem 4.2, there exists a positive constant
ε > 0 such that ê∞ > ε if <0 > 1 and hence the persistence of e(a, t) with respect to
‖·‖L1 follows. By a similar argument, we can prove that T (t) and V (t) are persistent
with respect to | · | and i(a, t) is persistent with respect to ‖ · ‖L1 . In a summary,
we get the following result.

Theorem 4.3. If <0 > 1, then the semiflow {Φ(t)}t≥0 is uniformly persistent in
Y, that is, there exists a constant ε > 0 such that, for each X0 ∈ Y,

lim inf
t→∞

T (t) ≥ ε, lim inf
t→∞

‖e(·, t)‖L1 ≥ ε, lim inf
t→∞

‖i(·, t)‖L1 ≥ ε, lim inf
t→∞

V (t) ≥ ε.

5. The local stability of equilibria. This section is devoted to investigate the
local stability of equilibria of (1).

Theorem 5.1. (i) If <0 < 1, the infection-free equilibrium P 0 of (1) is locally
asymptotically stable while it is unstable if <0 > 1.

(ii) If <0 > 1, the infection equilibrium P ∗ of (1) is locally asymptotically stable.

Proof. Proof of (i) of Theorem 5.1. Linearizing (1) around the infection-free equi-
librium P 0 by using

x1(t) = T (t)− h

d
, x2(a, t) = e(a, t), x3(b, t) = i(b, t), x4(t) = V (t),

we get 

dx1(t)

dt
= −dx1(t)− βh

d
x4(t),(

∂

∂t
+

∂

∂a

)
x2(a, t) = −θ1(a)x2(a, t),(

∂

∂t
+

∂

∂b

)
x3(b, t) = −θ2(b)x3(b, t),

dx4(t)

dt
=

∫ ∞
0

p(b)x3(b, t)db− cx4(t),

x2(0, t) = fβ
h

d
x4(t),

x3(0, t) = (1− f)β
h

d
x4(t) +

∫ ∞
0

ξ(a)x2(a, t)da.

(21)

Set

x1(t) = x0
1e
λt, x2(a, t) = x0

2(a)eλt, x3(b, t) = x0
3(b)eλt, x4(t) = x0

4e
λt, (22)

where x0
1, x

0
2(a), x0

3(b), x0
4 are to be determined later. Substituting (22) into (21),

we have

λx0
1 = −dx0

1 −
hβ

d
x0

4, λx0
2(a) +

dx0
2(a)

da
= −θ1(a)x0

2(a),

x0
2(0) = fβ

h

d
x0

4,
(23)
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λx0

3(b) +
dx0

3(b)

db
= −θ2(b)x0

3(b),

x0
3(0) = (1− f)

hβ

d
x0

4 +

∫ ∞
0

ξ(a)x0
2(a)da,

(24)

λx0
4 =

∫ ∞
0

p(b)x0
3(b)db− cx0

4. (25)

We integrate the first equation of Equ (23) and Equ (24) from 0 to a,

x0
2(a) = x0

2(0)e−λa−
∫ a
0
θ1(s)ds, (26)

and

x0
3(b) = x0

3(0)e−λb−
∫ b
0
θ2(s)ds

=

[
(1− f)

hβ

d
x0

4 +

∫ ∞
0

ξ(a)x0
2(a)da

]
e−λb−

∫ b
0
θ2(s)ds. (27)

From (25), (26) and (27),

x0
4 =

∫∞
0
p(b)x0

3(b)db

λ+ c

=
1− f
λ+ c

hβ

d
x0

4

∫ ∞
0

p(b)e−λb−
∫ b
0
θ2(s)dsdb

+
x0

2(0)

λ+ c

h

d

∫ ∞
0

ξ(a)e−λa−
∫ a
0
θ1(s)dsda

∫ ∞
0

p(b)e−λb−
∫ b
0
θ2(s)dsdb. (28)

Combining (23) into (28), it follows the equation that

W(λ) = 1, (29)

where

W(λ) =
fβ

λ+ c

h

d

∫ ∞
0

ξ(a)e−λa−
∫ a
0
θ1(s)dsda

∫ ∞
0

p(b)e−λb−
∫ b
0
θ2(s)dsdb

+
1− f
λ+ c

hβ

d

∫ ∞
0

p(b)e−λb−
∫ b
0
θ2(s)dsdb.

Since W have the properties that

lim
λ→∞

W(λ) = 0, lim
λ→−∞

W(λ) =∞, W ′(λ) < 0,

Thus (29) admits a unique real root, λ∗. Recall that W(0) = <0, it follows that,
λ∗ < 0 if <0 < 1 and λ∗ > 0 if <0 > 1, that is, P 0 is unstable if <0 > 1. Suppose
that <0 < 1. Let λ = µ+ νi be an arbitrary complex root of (29). It is easy to see
that

1 = |W(λ)| = |W(µ+ νi)| ≤ W(µ),

which implies that 0 > λ∗ ≥ µ. Hence all roots of (29) have negative real parts,
that is P 0 is locally asymptotically stable if <0 < 1.
Proof of (ii) of Theorem 5.1. Linearizing the system (1) at P ∗ by using

y1(t) = T (t)− T ∗, y2(a, t) = e(a, t)− e∗(a),

y3(b, t) = i(b, t)− i∗(b), y4(t) = V (t)− V ∗,
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we get

dy1(t)

dt
= −d<0y1(t)− βT ∗y4(t),(

∂

∂t
+

∂

∂a

)
y2(a, t) = −θ1(a)y2(a, t),(

∂

∂t
+

∂

∂b

)
y3(b, t) = −θ2(b)y3(b, t),

dy4(t)

dt
=

∫ ∞
0

p(b)y3(b, t)db− cy4(t),

y2(0, t) = fd(<0 − 1)y1(t) + fβT ∗y4(t),

y3(0, t) = (1− f)d(<0 − 1)y1(t) + (1− f)βT ∗y4(t) +

∫ ∞
0

ξ(a)y2(a, t)da,

(30)
Set

y1(t) = y0
1e
λt, y2(a, t) = y0

2(a)eλt, y3(b, t) = y0
3(b)eλt, y4(t) = y0

4e
λt, (31)

where y0
1 , y

0
2(a), y0

3(b), y0
4 are to be determined. Substituting (31) into (30) yields

λy0
1 = −d<0y

0
1 − βT ∗y0

4 , (32) λy0
2(a) +

dy0
2(a)

da
= −θ1(a)y0

2(a),

y0
2(0) = fd(<0 − 1)y0

1 + fβT ∗y0
4 ,

(33)


λy0

3(b) +
dy0

3(b)

db
= −θ2(b)y0

3(b),

y0
3(0) = (1− f)d(<0 − 1)y0

1 + (1− f)βT ∗y0
4 + y0

2(0)

∫ ∞
0

ξ(a)e−λa−
∫ a
0
θ1(s)dsda,

(34)
and

λy0
4 =

∫ ∞
0

p(b)y0
3(b)db− cy0

4 . (35)

We integrate the first equation of (33), (34) from 0 to a,

y0
2(a) = y0

2(0)e−λa−
∫ a
0
θ1(s)ds,

and

y0
3(b) = y0

3(0)e−λb−
∫ b
0
θ2(s)ds

=
[
(1− f)d(<0 − 1)y0

1 + (1− f)βT ∗y0
4

]
e−λb−

∫ b
0
θ2(s)ds

+ y0
2(0)

∫ ∞
0

ξ(a)e−λa−
∫ a
0
θ1(s)dsda · e−λb−

∫ b
0
θ2(s)ds.

and from (35), we have

y0
4 =

∫∞
0
p(b)y0

3(b)db

λ+ c

=
1− f
λ+ c

(
d(<0 − 1)y0

1 + βT ∗y0
4

) ∫ ∞
0

p(b)e−λb−
∫ b
0
θ2(s)dsdb

+
y0

2(0)

λ+ c

∫ ∞
0

ξ(a)e−λa−
∫ a
0
θ1(s)dsda

∫ ∞
0

p(b)e−λb−
∫ b
0
θ2(s)dsdb. (36)
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Combining (32), (33) into (36), yields the characteristic equation at P ∗ that

G(λ) = (λ+ d)W1(λ)− λ− d<0 = 0, (37)

where

W1(λ) =
(1− f)βT ∗

λ+ c

∫ ∞
0

p(b)e−λb−
∫ b
0
θ2(s)dsdb

+
fβT ∗

λ+ c

∫ ∞
0

ξ(a)e−λa−
∫ a
0
θ1(s)dsda

∫ ∞
0

p(b)e−λb−
∫ b
0
θ2(s)dsdb.

It is sufficient to show that (37) has no roots with non-negative real parts. Suppose
that it has a root λ = µ+ νi with µ ≥ 0. Then we have

(µ+ νi+ d)W1(µ+ νi)− µ− νi− d<0 = 0.

Separating the real part of the above equality gives

Re W1(µ+ νi) =
(µ+ d<0)(µ+ d) + ν2

(µ+ d)2 + ν2
> 1. (38)

Noticing that W1(0) = T ∗ <0

T0
= 1 and W1 is a decreasing function, we have

Re W1(µ+ νi) ≤ |W1(µ)| =W1(µ) ≤ W1(0) = 1,

which yields a contradiction. This completes the proof.

6. Global stability of equilibria. This section is devoted to investigate the global
stability of the equilibria by using Lyapunov functionals under the threshold value.
In what follows, we introduce an important function g on (0,∞) defined by g(x) =
x−1−lnx for x ∈ (0,∞). This function is continuous and concave up with g(1) = 0.
By Theorem 5.1, it is suffice to show that equilibria of (1) are globally attractive
in Y.

Theorem 6.1. The infection-free equilibrium P 0 of (1) is globally attractive if
<0 ≤ 1.

Proof. Considering the candidate Lyapunov function as follows,

LIFE(t) = L1(t) + L2(t) + L3(t) + L4(t),

where L1(t) = T 0g
(
T (t)
T 0

)
, L2(t) =

∫∞
0
φ(a)e(a, t)da, L3(t) =

∫∞
0
ψ(b)i(b, t)db,

and L4(t) = βT 0

c V (t). Here the nonnegative kernel functions φ(a) and ψ(b) will be
determined later. Firstly, we calculate the derivative of Li, i = 1, 2, 3, 4, respectively,

dL1(t)

dt
= −dT0

(
T 0

T
+
T

T0
− 2

)
− βTV + βT 0V.

By integration by parts, we calculate the derivative of L2,

dL2(t)

dt
=

∫ ∞
0

φ(a)
∂e(a, t)

∂t
da = −

∫ ∞
0

φ(a)

[
θ1(a)e(a, t) +

∂e(a, t)

∂a

]
da

= − φ(a)e(a, t)

∣∣∣∣∞
0

+

∫ ∞
0

φ′(a)e(a, t)da−
∫ ∞

0

φ(a)θ1(a)e(a, t)da

= φ(0)e(0, t) +

∫ ∞
0

(
φ′(a)− φ(a)θ1(a)

)
e(a, t)da.
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An argument similar to the one used in calculating the derivative of L2, we get

dL3(t)

dt
= ψ(0)i(0, t) +

∫ ∞
0

(
ψ′(b)− ψ(b)θ2(b)

)
i(b, t)db.

We calculate the derivative of L4,

dL4(t)

dt
=
βT 0

c

∫ ∞
0

p(b)i(b, t)db− βT 0V.

Secondly, we have

dLIFE(t)

dt
= − dT 0

(
T 0

T
+
T

T0
− 2

)
− βTV + φ(0)fβTV + ψ(0)(1− f)βTV

+

∫ ∞
0

(
φ′(a)− φ(a)θ1(a) + ψ(0)ξ(a)

)
e(a, t)da

+

∫ ∞
0

(
ψ′(b)− ψ(b)θ2(b) +

βT 0

c
p(b)

)
i(b, t)db.

Choosing 
ψ(b) =

∫ ∞
b

βT 0

c
p(u)e−

∫ u
b
θ2(ω)dωdu,

φ(a) =

∫ ∞
a

ψ(0)ξ(u)e−
∫ u
a
θ1(ω)dωdu.

Then it is easy to see that
ψ(0) =

βT 0J

c
, φ(0) =

βT 0JK

c
,

ψ′(b)− ψ(b)θ2(b) +
βT 0

c
p(b) = 0,

φ′(a)− φ(a)θ1(a) + ψ(0)ξ(a) = 0.

Consequently, LIFE satisfies

dLIFE(t)

dt
= −dT0

(
T 0

T
+
T

T0
− 2

)
+
(
<0 − 1

)
βTV.

Notice that dLIFE(t)
dt = 0 implies that T = T 0. It can be verified that the largest

invariant set where dLIFE(t)
dt = 0 is the singleton {P 0}. Therefore, by the invariance

principle, P 0 is globally attractive when <0 ≤ 1.

To establish the global stability of the infection equilibrium, we introduce the
following Lemma.

Lemma 6.2. Suppose that <0 > 1. Then, for any solution (T (t), e(a, t), i(b, t), V (t))
of (1), the following equalities hold,

(1− f)βT ∗V ∗
[
1− e(0, t)i∗(0)

e∗(0)i(0, t)

]
+

∫ ∞
0

ξ(a)e∗(a)

[
1− e(a, t)i∗(0)

e∗(a)i(0, t)

]
da = 0,(39)

Proof. We give the proof for (39). In fact,

(1− f)βT ∗V ∗ +

∫ ∞
0

ξ(a)e∗(a)da

− (1− f)βT ∗V ∗
e(0, t)i∗(0)

e∗(0)i(0, t)
−
∫ ∞

0

ξ(a)e∗(a)
e(a, t)i∗(0)

e∗(a)i(0, t)
da
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= i∗(0)−
(

(1− f)βTV +

∫ ∞
0

ξ(a)e(a, t)da

)
i∗(0)

i(0, t)

= 0

This immediately gives (39).

Theorem 6.3. If <0 > 1, then the infection equilibrium P ∗ = (T ∗, e∗(a), i∗(a), V ∗)
of (1) is globally attractive.

Proof. Let

G[x, y] = x− y − y ln
x

y
, for x, y > 0.

It is easy to see that G is non-negative on (0,∞)× (0,∞) with the minimum value
0 only when x = y. Furthermore, it is easy to verify that xGx[x, y] + yGy[x, y] =
G[x, y].

Considering the following candidate Lyapunov function,

LEE(t) = H1(t) +H2(t) +H3(t) +H4(t),

where

H1(t) = G[T, T ∗], H2(t) =

∫ ∞
0

φ1(a)G
[
e(a, t), e∗(a)

]
da,

H3(t) =

∫ ∞
0

ψ1(b)G
[
i(b, t), i∗(b)

]
db, H4(t) =

βT ∗

c
G[V, V ∗].

We define φ1(a) and ψ1(b) as

ψ1(b) =

∫ ∞
b

βT ∗

c
p(u)e−

∫ u
b
θ2(ω)dωdu,

and

φ1(a) =

∫ ∞
a

ψ1(0)ξ(u)e−
∫ u
a
θ1(ω)dωdu,

it follows that ψ1(0) = βT∗J
c , φ1(0) = βT∗KJ

c and

ψ′1(b)− ψ1(b)θ2(b) = − βT ∗

c
p(b).

φ′1(a)− φ1(a)θ1(a) = − ψ1(0)ξ(a).

Firstly, we calculate the derivative of Hi, i = 1, 2, 3, 4, respectively,

dH1(t)

dt
= −dT ∗

(
T

T ∗
+
T ∗

T
− 2

)
+

1

f

(
1− T ∗

T

)
(e∗(0)− e(0, t))

By using (4),

H2(t) =

∫ t

0

φ1(a)G[e(0, t− a)Ω(a), e∗(a)]da

+

∫ ∞
t

φ1(a)G[e0(a− t)e−
∫ a
a−t θ1(ω)dω, e∗(a)]da

=

∫ t

0

φ1(t− r)G[e(0, r)Ω(t− r), e∗(t− r)]dr

+

∫ ∞
0

φ1(t+ r)G[e0(r)e−
∫ t+r
r

θ1(ω)dω, e∗(t+ r)]dr

= B∞(t) + B∈(t).
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The derivative of B∞ and B∈ take the following form,

dB∞(t)

dt

= φ1(0)G[e(0, t), e∗(0)] +

∫ t

0

φ′1(t− r)G
[
e(0, r)e−

∫ t−r
0

θ1(ω)dω, e∗(t− r)
]
dr

−
∫ t

0

φ1(t− r)θ1(t− r)
[
e(0, r)e−

∫ t−r
0

θ1(ω)dωGx

[
e(0, r)e−

∫ t−r
0

θ1(ω)dω, e∗(t− r)
]

+ e∗(t− r)Gy
[
e(0, r)e−

∫ t−r
0

θ1(ω)dω, e∗(t− r)
] ]
dr,

and

dB∈(t)

dt
=

∫ ∞
0

φ′1(t+ r)G
[
e0(r)e−

∫ t+r
r

θ1(ω)dω, e∗(t+ r)
]
dr

−
∫ ∞

0

φ1(t+ r)θ1(t+ r)

[
e0(r)e−

∫ t+r
r

θ1(ω)dωGx

[
e0(r)e−

∫ t+r
r

θ1(ω)dω, e∗(t+ r)
]

+ e∗(t+ r)Gy

[
e0(r)e−

∫ t+r
r

θ1(ω)dω, e∗(t+ r)
] ]
dr.

We obtain the derivative of H2(t),

dH2(t)

dt
= φ1(0)G[e(0, t), e∗(0)] +

∫ ∞
0

[
φ′1(a)− φ1(a)θ1(a)

]
G[e(a, t), e∗(a)]da

= φ1(0)G[e(0, t), e∗(0)]−
∫ ∞

0

ψ1(0)ξ(a)G[e(a, t), e∗(a)]da.

A similar argument as in the derivative of H2, we calculate the derivative of H3,

dH3(t)

dt
= ψ1(0)G[i(0, t), i∗(0)] +

∫ ∞
0

[
ψ′(b)− ψ(b)θ2(b)

]
G[i(b, t), i∗(b)]db

= ψ1(0)G[i(0, t), i∗(0)]−
∫ ∞

0

βT ∗

c
p(b)G[i(b, t), i∗(b)]db.

We calculate the derivative of H4,

dH4(t)

dt
=
βT ∗

c

∫ ∞
0

p(b)i(b, t)db− βT ∗V + βT ∗V ∗ − βT ∗V ∗

cV

∫ ∞
0

p(b)i(b, t)db.

If follows from ψ1(0) = βT∗J
c and φ1(0) = βT∗KJ

c that

dLEE
dt

= − dT ∗
(
T

T ∗
+
T ∗

T
− 2

)
+

1

f

(
1− T ∗

T

)
(e∗(0)− e(0, t))

+ φ1(0)G[e(0, t), e∗(0)]−
∫ ∞

0

ψ1(0)ξ(a)G[e(a, t), e∗(a)]da

+ ψ1(0)G[i(0, t), i∗(0)]−
∫ ∞

0

βT ∗

c
p(b)G[i(b, t), i∗(b)]db (40)

+

∫ ∞
0

βT ∗

c
p(b)i(b, t)db+ βT ∗V ∗ − βT ∗V − V ∗

V

∫ ∞
0

βT ∗

c
p(b)i(b, t)db.

Recall that

(1− f)(βT ∗V ∗ − βTV ) +

∫ ∞
0

ξ(a)

(
e∗(a)− e(a, t)

)
da = i∗(0)− i(0, t),
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and

fβT ∗KJ

c
+

(1− f)βT ∗J

c
=

(
fβKJ

c
+

(1− f)βJ

c

)
T 0

<0
= 1.

Thus (40) becomes

dLEE(t)

dt
= −dT ∗

(
T

T ∗
+
T ∗

T
− 2

)
+

1

f

(
1− T ∗

T

)
(e∗(0)− e(0, t))

+
1

f
G[e(0, t), e∗(0)]−

∫ ∞
0

βT ∗

c
p(b)G[i(b, t), i∗(b)]db

+
βT ∗J

c

[
(1− f)βT ∗V ∗ ln

e(0, t)i∗(0)

e∗(0)i(0, t)
+

∫ ∞
0

ξ(a)e∗(a) ln
e(a, t)i∗(0)

e∗(a)i(0, t)
da

]
+

∫ ∞
0

βT ∗

c
p(b)i(b, t)db+ βT ∗V ∗ − βT ∗V − V ∗

V

∫ ∞
0

βT ∗

c
p(b)i(b, t)db.

It follows that,

dLEE(t)

dt
= −dT ∗

(
T

T ∗
+
T ∗

T
− 2

)
− 1

f
e∗(0)

(
T ∗

T
− ln

e(0, t)

e∗(0)

)
−
∫ ∞

0

βT ∗

c
p(b)G[i(b, t), i∗(b)]db

+
βT ∗J

c

[
(1− f)βT ∗V ∗ ln

e(0, t)i∗(0)

e∗(0)i(0, t)
+

∫ ∞
0

ξ(a)e∗(a) ln
e(a, t)i∗(0)

e∗(a)i(0, t)
da

]
(41)

+

∫ ∞
0

βT ∗

c
p(b)i(b, t)db+ βT ∗V ∗ − V ∗

V

∫ ∞
0

βT ∗

c
p(b)i(b, t)db.

Recall that e∗(0) = fβT ∗V ∗ and
∫∞

0
p(b)i∗(b)db = cV ∗ in (11). Collecting the

terms of (41) yields

dLEE(t)

dt
= −dT ∗

(
T

T ∗
+
T ∗

T
− 2

)
+
βT ∗J

c

[
(1− f)βT ∗V ∗ ln

e(0, t)i∗(0)

e∗(0)i(0, t)
+

∫ ∞
0

ξ(a)e∗(a) ln
e(a, t)i∗(0)

e∗(a)i(0, t)
da

]
+

∫ ∞
0

βT ∗

c
p(b)i∗(b)

(
2 + ln

i(b, t)

i∗(b)
− T ∗

T
− ln

e(0, t)

e∗(0)
− V ∗i(b, t)

V i∗(b)

)
db.

Further, we have

dLEE(t)

dt
= − dT ∗

(
T

T ∗
+
T ∗

T
− 2

)
+
βT ∗J

c
(1− f)βT ∗V ∗

(
1− e(0, t)i∗(0)

e∗(0)i(0, t)
+ ln

e(0, t)i∗(0)

e∗(0)i(0, t)

)
+
βT ∗J

c

∫ ∞
0

ξ(a)e∗(a)

(
1− e(a, t)i∗(0)

e∗(a)i(0, t)
+ ln

e(a, t)i∗(0)

e∗(a)i(0, t)

)
da (42)

+

∫ ∞
0

βT ∗p(b)

c
i∗(b)

(
2− T ∗

T
+ ln

T ∗

T
− V ∗i(b, t)

V i∗(b)
+ ln

V ∗i(b, t)

V i∗(b)

)
db
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− βT ∗J

c

{
(1− f)βT ∗V ∗

[
1− e(0, t)i∗(0)

e∗(0)i(0, t)

]
+

∫ ∞
0

ξ(a)e∗(a)

[
1− e(a, t)i∗(0)

e∗(a)i(0, t)

]
da

}
.

Recall that Lemma 6.2 holds. Putting (39) into (42), we have

dLEE(t)

dt
= − dT ∗

(
T

T ∗
+
T ∗

T
− 2

)
− βT ∗J

c

[ ∫ ∞
0

ξ(a)e∗(a)g

(
e(a, t)i∗(0)

e∗(a)i(0, t)

)
da

+ (1− f)

∫ ∞
0

βT ∗

c
p(b)i∗(b)g

(
e(0, t)i∗(0)

e∗(0)i(0, t)

)
db

]
−
∫ ∞

0

βT ∗

c
p(b)i∗(b)

[
g

(
T ∗

T

)
+ g

(
V ∗i(b, t)

V i∗(b)

)]
db

≤ 0

and dLEE(t)
dt = 0 implies that T = T ∗ and

i(b, t)

i∗(b)
=
i(0, t)

i∗(0)
=

V

V ∗
=
e(0, t)

e∗(0)
=
e(a, t)

e∗(a)
, for all a, b ≥ 0.

It is not difficult to check that the largest invariant subset {dLEE(t)
dt = 0} is the

singleton {P ∗}. By the invariance principle, P ∗ is globally attractive and hence the
proof is complete.

7. Discussion. This paper is devoted to the global dynamics of an HIV infection
model subject to latency age and infection age, where the model formulation, basic
reproduction number computation, and rigorous mathematical analysis, such as
relative compactness and persistence of the solution semi-flows, and existence of
a global attractor are involved. We have shown that the existence of a compact
attractor of all compact sets of nonnegative initial data and used the Lyapunov
functional to show that this attractor is the singleton set containing the equilibrium.
Given that the model is so complex, the proof does require some rigorous calculation.
The dynamics (at least the long-term dynamics) of the model do not appear to have
been altered by adding the e(a, t) component. We hope the model studied here
have a contribution to improve the broader contexts of investigating viral infection
subject to age structure.
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