Modeling the spread of bed bug infestation and optimal resource allocation for disinfestation

  • Received: 01 September 2015 Accepted: 29 June 2018 Published: 01 July 2016
  • MSC : Primary: 92B05, 34D23; Secondary: 34C12.

  • A patch-structured multigroup-like SIS epidemiological model is proposed to study the spread of the common bed bug infestation.It is shown that the model exhibits global threshold dynamics with the basic reproduction number as the threshold parameter.Costs associated with the disinfestation process are incorporated into setting up the optimization problems.Procedures are proposed and simulated for finding optimal resource allocation strategies to achieve the infestation free state.Our analysis and simulations provide useful insights on how to efficiently distribute the available exterminators among the infested patches for optimal disinfestation management.

    Citation: Ali Gharouni, Lin Wang. Modeling the spread of bed bug infestation and optimal resource allocation for disinfestation[J]. Mathematical Biosciences and Engineering, 2016, 13(5): 969-980. doi: 10.3934/mbe.2016025

    Related Papers:

    [1] Shahab Shamshirband, Javad Hassannataj Joloudari, Sahar Khanjani Shirkharkolaie, Sanaz Mojrian, Fatemeh Rahmani, Seyedakbar Mostafavi, Zulkefli Mansor . Game theory and evolutionary optimization approaches applied to resource allocation problems in computing environments: A survey. Mathematical Biosciences and Engineering, 2021, 18(6): 9190-9232. doi: 10.3934/mbe.2021453
    [2] Agustín Gabriel Yabo, Jean-Baptiste Caillau, Jean-Luc Gouzé . Optimal bacterial resource allocation: metabolite production in continuous bioreactors. Mathematical Biosciences and Engineering, 2020, 17(6): 7074-7100. doi: 10.3934/mbe.2020364
    [3] Yu Shen, Hecheng Li . A new differential evolution using a bilevel optimization model for solving generalized multi-point dynamic aggregation problems. Mathematical Biosciences and Engineering, 2023, 20(8): 13754-13776. doi: 10.3934/mbe.2023612
    [4] Xuyin Wang, Weiguo Liu, Lu Li, Peizhen Zhao, Ruifeng Zhang . Resource dependent scheduling with truncated learning effects. Mathematical Biosciences and Engineering, 2022, 19(6): 5957-5967. doi: 10.3934/mbe.2022278
    [5] Yafei Li, Yuxi Liu . Multi-airport system flight slot optimization method based on absolute fairness. Mathematical Biosciences and Engineering, 2023, 20(10): 17919-17948. doi: 10.3934/mbe.2023797
    [6] Yanpei Liu, Yunjing Zhu, Yanru Bin, Ningning Chen . Resources allocation optimization algorithm based on the comprehensive utility in edge computing applications. Mathematical Biosciences and Engineering, 2022, 19(9): 9147-9167. doi: 10.3934/mbe.2022425
    [7] Liang Tian, Fengjun Shang, Chenquan Gan . Optimal control analysis of malware propagation in cloud environments. Mathematical Biosciences and Engineering, 2023, 20(8): 14502-14517. doi: 10.3934/mbe.2023649
    [8] Semu Mitiku Kassa . Three-level global resource allocation model for HIV control: A hierarchical decision system approach. Mathematical Biosciences and Engineering, 2018, 15(1): 255-273. doi: 10.3934/mbe.2018011
    [9] Lin Chen, Xiaotian Wu, Yancong Xu, Libin Rong . Modelling the dynamics of Trypanosoma rangeli and triatomine bug with logistic growth of vector and systemic transmission. Mathematical Biosciences and Engineering, 2022, 19(8): 8452-8478. doi: 10.3934/mbe.2022393
    [10] Irina Kareva, Faina Berezovkaya, Georgy Karev . Mixed strategies and natural selection in resource allocation. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1561-1586. doi: 10.3934/mbe.2013.10.1561
  • A patch-structured multigroup-like SIS epidemiological model is proposed to study the spread of the common bed bug infestation.It is shown that the model exhibits global threshold dynamics with the basic reproduction number as the threshold parameter.Costs associated with the disinfestation process are incorporated into setting up the optimization problems.Procedures are proposed and simulated for finding optimal resource allocation strategies to achieve the infestation free state.Our analysis and simulations provide useful insights on how to efficiently distribute the available exterminators among the infested patches for optimal disinfestation management.


    [1] Springer-Verlag, Berlin Heidelberg, 2008.
    [2] Pestic. Outlook, 12 (2001), 159-162.
    [3] Mathematical Population Dynamics: Analysis of Heterogeneity Vol. One: Theory of Epidemics, (eds. O. Arino, D. Axelrod, M. Kimmel, M. Langlais), Wuerz (1995), 33-50.
    [4] http://www.cbc.ca/news/canada/new-brunswick/bedbug-outbreaks-hit-saint-john-1.870474 (Lastly accessed on February 09, 2015).
    [5] http://www.cbc.ca/news/canada/new-brunswick/saint-john-hospital-hit-by-bed-bugs-1.870475 (Lastly accessed on February 09, 2015).
    [6] Synopsis Aust. Environ. Pest Manag. Assoc. Natl. Conf., Pacific Bay Resort, Coffs Harbour Australia, (2007), 22-37.
    [7] {Westmead Hospital, Department of Medical Entomology}, Australia, 2011.
    [8] Clin. Microbiol. Rev. 25 (2012), 164-192.
    [9] Environmental Health, 4 (2004), 30-38.
    [10] Aust. Environ. Pest Manag. Assoc. NSW Conf. 2011, Sess. 2A, 2 (2011), 1-24.
    [11] Aust. Fam. Physician, 38 (2009), 880-884.
    [12] Proc. Sixth Int. Conf. Urban Pests, 6, OOK-Press Kft, Pápai út, Hungary, 37 (2008), 407-425.
    [13] Appl. Math. Comput., 190 (2007), 790-803.
    [14] Am. Entomol., 52 (2006), 99-101.
    [15] Emerg. Infect. Dis., 11 (2005), 533-538.
    [16] Pest Control, 68 (2000), 58-64.
    [17] Math. Biosci., 248 (2014), 97-116.
    [18] Med. Vet. Entomol., 25 (2011), 460-464.
    [19] Math. Comput. Simulat., 60 (2002), 107-118.
    [20] Mathematical Medicine and Biology, 24 (2007), 17-34.
    [21] Pest Manag. Sci., 65 (2009), 332-338.
    [22] vol. 17 of Interdisciplinary Applied Mathematics, Springer, New York, NY, USA, 2002.
    [23] BMJ, 320 (2000), 1141-1141.
    [24] J. Biol. Dyn., 9 (2014), 45-50.
    [25] J. Med. Entomol., 46 (2009), 1015-1020.
    [26] MD: Pinto & Associates, Mechanicsville, ON Canada, 2008.
    [27] Annu. Rev. Entomol., 52 (2007), 351-374.
    [28] AMS Math. Surveys and Monographs, Vol. 41, American Mathematical Society, Providence RI, 1995.
    [29] http://www12.statcan.gc.ca/census-recensement/2011/dp-pd/index-eng.cfm (Lastly accessed on February 09,2015).
    [30] Nonlinear Anal. Real World Appl., 13 (2012), 1581-1592.
    [31] Math. Biosci., 180 (2002), 29-48.
    [32] 7th Int. Conf. Urban Pests, Ouro Preto, Brazil, 7 (2011), 319-323.
    [33] Insects, 2 (2011), 83-95.
    [34] Appl. Math. Model., 35 (2011), 5442-5447.
    [35] Nonlinear Anal. Real World Appl., 10 (2009), 2335-2345.
    [36] Nonlinear Anal. Real World Appl., 11 (2010), 995-1004.
    [37] Canad. Appl. Math. Quart., 4 (1996), 421-444.
  • This article has been cited by:

    1. Sherrie Xie, Alison L. Hill, Chris R. Rehmann, Michael Z. Levy, Dynamics of bed bug infestations and control under disclosure policies, 2019, 116, 0027-8424, 6473, 10.1073/pnas.1814647116
    2. Samuel M. Naandam, Paul Chataa, Gideon K. Gogovi, Oluwole D. Makinde, A Mathematical Model for Bed Bug Infestation Dynamics With Limited Disinfestation, 2025, 2025, 1110-757X, 10.1155/jama/9981379
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2621) PDF downloads(529) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog