
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2016025
AND ENGINEERING
Volume 13, Number 5, October 2016 pp. 969–980

MODELING THE SPREAD OF BED BUG INFESTATION AND

OPTIMAL RESOURCE ALLOCATION FOR DISINFESTATION

Ali Gharouni and Lin Wang∗

Department of Mathematics and Statistics, University of New Brunswick
Fredericton, NB, E3B 5A3, Canada

(Communicated by Xingfu Zou)

Abstract. A patch-structured multigroup-like SIS epidemiological model is

proposed to study the spread of the common bed bug infestation. It is shown

that the model exhibits global threshold dynamics with the basic reproduction
number as the threshold parameter. Costs associated with the disinfestation

process are incorporated into setting up the optimization problems. Procedures

are proposed and simulated for finding optimal resource allocation strategies to
achieve the infestation free state. Our analysis and simulations provide useful

insights on how to efficiently distribute the available exterminators among the

infested patches for optimal disinfestation management.

1. Introduction. Mathematical models are practically and conceptually valuable
to address questions and challenges raised by complex demographic processes in
ecology [22]. In urban systems, individuals travel daily between distinct spatial
locations such as urban centers, cities, or local communities. The spread of societal
pests such as the common bed bug, Cimex lectularius L., is largely influenced by
the mobility of individuals.

The common bed bug is ranked as one of the most challenging of all insect
pests to control due to the cryptic behavior and the insecticide resistance they have
developed in recent years [11]. Since the 1990s, bed bugs have been considered
widespread societal pests [10]. The number of infestations of the common bed
bug and the risk of exposure through normal daily life have undergone a major
resurgence worldwide and particularly in developed nations [2, 16, 23]. This has
raised tremendous concerns and the challenge of pest management subject to a
financially optimal criterion is of great interest to public health departments [8, 26].

The majority of the bed bug infestations are associated with unsanitary living
conditions and severe crowding, there are numerous evidences that infestations can
occur in single-family dwellings, apartments, hotels [15], public transports such as
trains [6], schools [26], furnished temporary housing including corporate apartments
and serviced apartments [6] and hospitals [8]. It has been documented that cities
with a high concentration of migratory factory workers experience frequent bed bug
infestation [33]. The transmission process of the bed bugs occurs primarily when
people visit infested sites or move the furniture and furnishings from infested sites
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[7]. Additionally, bed bugs can hitchhike on items such as clothing, backpacks and
luggage [26].

Successful bed bug infestation management is extremely difficult due to the fol-
lowing reasons: (1) increased worldwide travel, which increases the risk of having
multiple infestation sources [32]; (2) the cryptic behavior of the insects, which may
allow them to remain undetected for several months until the infestation occurs
on a large scale [14, 25]; (3) its pesticide resistance, which can allow a reduction
but not eradication in bed bug populations [18]. The integrated pest management
method that combines the nonchemical means of control (such as heat) with the
use of approved insecticides has been proven to be effective in the treatment of bed
bug infestations [18, 21].

Managing a bed bug infestation can be expensive in the costs of labor and chem-
icals. For instance, from 2001 to 2004, Australia experienced a resurgence in bed
bug infestations involving both the common (Cimex lectularius L.) and Tropical
(Cimex hemipterus) species. It was found that all Australian mainland states had
experienced an exponential rise in bed bug infestations since 2001, with an overall
national increase of 4.5%. A conservative estimate of the economic impact of the
resurgence was 100 million Australian dollars [12]. A survey in New York during
2010 revealed that the average bed bug disinfestation cost was $1, 310, while across
the United States, the average costs were around $800 to $1, 200 for the disinfesta-
tion treatment of a single unit [8].

The epidemiological approach has been employed to model many biological and
ecological phenomena such as the viral propagation of memes [34]. There also
has been some work on pest control management within a single patch (see, for
example, [13, 35]). In both [13] and [35], impulsive biological control strategies
were proposed for pest control management purposes. However, no patch-structure
or control related costs were considered in [13, 35].

The purpose of this work is to understand the infestation dynamics of bed bugs
and to explore optimal management strategies via a mathematical modeling ap-
proach. More precisely, we propose a patch-structured multigroup-like SIS system
to model the processes of transmission and extermination of the common bed bugs,
and we set up optimization problems to find the optimal resource allocation strate-
gies to efficiently distribute the available exterminators among the infested patches
for optimal disinfestation management.

The rest of the paper is organized as follows. We formulate our model and
establish the global threshold dynamics in Section 2, with the proof of our main
theorem postponed to the Appendix. In Section 3, we set up the optimization
problems and propose procedures to find the practical optimal resource allocation
strategies. In Section 4 the case of two patches is considered, basic reproduction
number is computed and the optimization problems have been set up as an example
and for illustration purposes. We summarize and discuss our findings in Section 5.

2. Model formulation and analysis. Assume that there are n patches under
consideration in a spatially homogeneous environment. Here a patch can be as
large as a continent or as small as a local community. In patch i (i = 1, . . . , n), the
total population Ni is divided into two compartments: the susceptibles Si and the
infesteds Ii (thus Ni = Si + Ii). Here by population we mean the number of units,
which can be a house, an apartment unit, a dormitory or a hotel. At time t, a
susceptible unit is a unit that has no bed bugs but can be infested. An infested unit
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is a unit which has bed bugs. It is assumed that if a unit is partially infested (for
example only one room of a house is infested), then the whole unit will be considered
to be an infested unit. This is due to the bed bugs’ active movement through wall
voids such as those used for wires or pipes allowing for a greater potential for other
rooms to be affected by the bed bugs[26, 27]. Since the transmission of the bed bug
infestations primarily occur when people’s daily activities involve visiting infested
sites, it is reasonable to assume that the transmission occurs not only within a patch
but also among patches. We use βij to denote the transmission rate of the bed bug
infestation from patch j to patch i (j 6= i) and βii the transmission rate of the bed
bug infestation within patch i. It has been documented [12] that in the absence of a
thorough treatment, the bed bug infestation increases exponentially. Therefore, βijs
can be assumed to be positive constants. The incidence rate, the average number
of new infested cases per unit time, in patch i due to the effective contacts from
patch j is in the form of standard incidence βijSiIj/Nj . Thus, the overall incidence
rate is the summation of contributions from all patches. The constant per capita
extermination rate of the infested units in patch i is denoted by γi. Thus, 1/γi is
the duration of the infestation period with an exponential waiting time in patch
i. Once an infested unit becomes infestation free, it goes back to the susceptible
compartment as it can be infested again. Thus, a repeat infestation right after an
extermination treatment is possible [9].

The above assumptions lead to the following susceptible-infested-susceptible
(SIS) model described by a system of 2n ordinary differential equations

dSi/dt = −Si

n∑
j=1

βijIj/Nj + γiIi

dIi/dt = Si

n∑
j=1

βijIj/Nj − γiIi

i = 1, 2, . . . , n

(1)

with initial conditions Si(0) > 0, Ii(0) ≥ 0, and

n∑
j=1

Ij(0) > 0. A schematic flow

chart of the model with n = 2 is shown in Figure 1.
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Figure 1. The flow chart of our SIS model (1) with two patches (i.e.,n=2).

It is convenient to work with proportions in all compartments given that Ni(t) =
Ni(0) for i = 1, . . . , n. Rescaling the variables in system (1) as follows

Si(t)/Ni → Si(t), Ii(t)/Ni → Ii(t) (2)
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yields

dSi/dt = −Si

n∑
j=1

βijIj + γiIi

dIi/dt = Si

n∑
j=1

βijIj − γiIi.
(3)

Here in system (3), Ni is rescaled to 1 for i = 1, . . . , n.
The non-negative transmission matrix of the bed bugs, F = (βij), can be further

assumed to be irreducible. This means that the n patches cannot be separated
into two groups such that there is no transmission of the bed bugs between these
two groups. Mathematically, matrix F is irreducible if for every nonempty, proper
subset J of the set N = {1, . . . , n}, there is an i ∈ J and j ∈ N \J such that βij 6= 0
[28].

Since the population size in each patch is fixed, system (3) can indeed be totally
decoupled into two subsystems: the susceptible subsystem and the infested subsys-
tem. The infested subsystem obtained by replacing Si with 1−Ii is of the following
form

dIi/dt =

n∑
j=1

βij(1− Ii)Ij − γiIi =: fi(I), i = 1, . . . , n, (4)

where I = (I1, I2, . . . , In)T . Thanks to the results developed in the theory of asymp-
totically autonomous systems [3], it suffices to analyze the infested subsystem only.

Clearly system (4) admits an infestation-free equilibrium (IFE), I0 = 0 ∈ Rn.
Linearizing (4) about the IFE yields

dI/dt = Df(0)I = (F − V )I,

where Df(0) is the associated Jacobian matrix of system (4) at I0, F = (βij), and
V = diag(γi) for i = 1, . . . , n. Then the IFE is locally asymptotically stable if
s(Df(0)) < 0, where s(Df(0)) := max{Re(λ) : λ is an eigenvalue of Df(0)}. It
has been proven that s(Df(0)) < 0 is equivalent to ρ(FV −1) < 1 [31], where ρ(M)
denotes the spectral radius of matrix M . According to [31], ρ(FV −1) is indeed the
basic reproduction number R0, which is attained at the largest positive eigenvalue
of FV −1 since FV −1 is entrywise nonnegative. That is, for system (4),

R0 = ρ(FV −1) = ρ ([βij/γj ]) . (5)

Our main result is the following theorem, whose proof is postponed to the Ap-
pendix.

Theorem 2.1. Consider system (4). If R0 ≤ 1, then the IFE I0 is globally asymp-
totically stable and if R0 > 1, then I0 is unstable and there exists a unique positive
equilibrium I∗, which is globally asymptotically stable.

3. Optimal resource allocation for disinfestation management. In this sec-
tion we first identify the underlying parameters involved in the definition of the
basic reproduction number R0 in (5) and then explore optimal resource allocation
strategies for disinfestation management by associating the disinfestation process
with a cost function. To demonstrate our analysis, numerical simulations are carried
out for an example of 2 patches.

Note that contacts do not necessarily transmit bed bugs [8]. For each contact
made between two units, of which one is infested and the other is susceptible, there
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is a mean probability that the bed bugs can be transmitted. This probability is
often called “transmissibility” [1]. We denote by pij the transmissibility from patch
j to patch i. Another factor that can affect βij is the average number of contacts
per unit in patch i with units in patch j per unit time which we denote by cij . This
can be interpreted as the average number of visits or travels from patch j to patch
i per unit time. Thus, the transmission rate is

βij = pijcij . (6)

The other parameters involved in the basic reproduction number are the exter-
mination rates, γi for i = 1, 2, . . . , n. The extermination rate of bed bugs in each
patch depends on many factors such as the number of pest control companies that
offer disinfestation services, methods of extermination, civilian knowledge of bed
bugs, and media coverage. We choose the first two key factors to define the exter-
mination rate γi in patch i. In practice, each exterminator has several approved
extermination methods, each of which takes a certain amount of time to fulfill the
extermination process. Here an exterminator refers to an extermination unit which
is equipped with required equipment and one or more licensed individuals who can
perform the disinfestation procedure. Thus the extermination rate in patch i is
given by

γi =

mi∑
k=1

Mki/Tki, (7)

where Mki is the number of exterminators in patch i using method k, Tki is the
time taken by method k in patch i to exterminate the bed bugs, and the index mi

represents the total number of extermination methods applied in patch i.
Let Cki be the average cost of method k applied in patch i, then the total cost

of the disinfestation of bed bugs among n patches is given by

Ctotal =

n∑
i=1

mi∑
k=1

CkiMki. (8)

In practice, the extermination methods applied by exterminators to treat a typi-
cal bed bug infestation can be characterized into two types: (1) preliminary method
and (2) advanced method. The preliminary methods refer to those at low cost but
require a longer treatment time (relative to advanced methods), while the advanced
methods refer to those at high cost but require a shorter treatment time. Examples
of the preliminary method include the use of trained canines, regular and thorough
inspections by residents of a site or via pest managers, the use of bed bug monitors
or traps, quarantining of infested rooms and items, vacuuming, hot washing and
drying infested items, the use of insecticides for small infestations, and the use of
silicate products which are slow acting but have a long shelf life and a low possi-
bility of resistance [7, 8]. Examples of the advanced method include contained or
circulated heat which might be integrated with some advanced chemical treatments.
The use of dry heat and cold for bed bug control are relatively new and developing
technologies, and the utility and effectiveness of these techniques has been subject
to debate among pest experts [7, 8, 26]. We are interested in finding the opti-
mal resource allocation that ensures the eradication of bed bugs in the system. In
particular, we consider two scenarios.

In scenario I (S-I), the total number of exterminators, ki,in each patch is fixed
and we need to determine the number of exterminators that are using the advanced
method in order to achieve the infestation free state (i.e., find optimal vector of
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(x1, x2, . . . , xn) resulting in the minimum total cost subject to R0 ≤ 1 ). Thus, the
associated optimization problem reads as

Minimize
0≤xi≤ki

i=1,2,...,n

Ctotal =

n∑
i=1

C1i(ki − xi) + C2ixi

subject to R0 ≤ 1,

(9)

where R0 is given by (5) with βij and γi given in (6) and (7), respectively, for
i, j = 1, 2, . . . , n.

In scenario II (S-II), the total number of exterminators (K =

n∑
i=1

ki) in all patches

is fixed and we need to determine the optimal distribution of the exterminators to
each patch and also the number of exterminators using the advanced method for
reaching the infestation free state. Thus the optimization problem is

Minimize
0≤xi≤ki≤K
i=1,2,...,n

Ctotal =

n∑
i=1

C1i(ki − xi) + C2ixi

subject to


R0 ≤ 1,
n∑

i=1

ki = K.

(10)

4. Examples. To give a specific example, we consider two cities in New Brunswick,
Canada, namely, the city of Fredericton and the city of Saint John. Saint John is
the most industrial city in New Brunswick and Fredericton is the capital city of
the province. The distance between these two cities is about 113 km, and many
people commute between two cities on a daily basis. Both cities are geographically
close and there is not a significant difference between disinfestation standards and
methods applied for the management of bed bug infestations. Given that Saint
John has a history with bed bug outbreaks [4, 5], the extensive human activities
between these two cities put Fredericton at the risk of bed bug infestation as well.
Thus, it is interesting to explore how disinfestation of bed bugs can be managed
between these two cities.

We use the 2−patch model as a prototype to explore the optimal resource allo-
cation for disinfestation of bed bugs in this case. The basic reproduction number,
R0, in equation (5) for two patches can be explicitly expressed as

R0 =
β11/γ1 + β22/γ2 +

√
(β11/γ1 − β22/γ2)2 + 4β12β21/γ1γ2

2
. (11)

It is straightforward to note the following relation

R0 ≥ max{R(i)
0 , i = 1, 2}, (12)

where R(i)
0 = βii/γi is the patch-specific basic reproduction number of patch i

(i = 1, 2). This indicates that if R(i)
0 > 1 for i = 1 or i = 2, that is, if one patch

undergoes an outbreak, then the bed bug infestation will spread throughout both
patches.

The total cost (8) takes the following form

C = C11(k1 − x1) + C21x1 + C12(k2 − x2) + C22x2, (13)
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where k1 and k2 are the number of exterminators in patches 1 and 2, respectively, x1
and x2 are the number of exterminators applying the advanced method in patches
1 and 2, respectively.

For simplicity, we can assume that the time taken for an extermination method
does not vary from one patch to another. That is, T1 = T11 = T12 and T2 = T21 =
T22, then the extermination rates for patches 1 and 2 are given by

γ1 = (k1 − x1)/T1 + x1/T2 and γ2 = (k2 − x2)/T1 + x2/T2, (14)

respectively.
For simulation purpose, we fix the following parameters: T1 = 60 , T2 = 2

(days); p11 = 0.2, p12 = 0.7, p21 = 0.4, p22 = 0.6; c11 = 4, c12 = 2, c21 = 3, c22 =
4 (#contacts unit−1day−1); and C11 = 400, C12 = 500, C21 = 950, C22 = 1000
(dollars).

For (S-I), we take k1 = 8 and k2 = 12. Thus, (9) simplifies to

Minimize
0≤x1≤8,0≤x2≤12

C = 550x1 + 500x2 + 9200

subject to R0 ≤ 1.
(15)

For (S-II), we set K = k1 + k2 = 20 and hence (10) simplifies to

Minimize
0≤x1≤k1≤20,0≤x2≤k2≤20

C = 400k1 + 550x1 + 500k2 + 500x2

subject to R0 ≤ 1 and k1 + k2 = 20.
(16)

In optimization theory, the Lagrange multipliers method can be applied to find
the local maximum or minimum of a continuous function subject to some equality
constraints. For (S-I), we use the computer Algebra system Maple 14.00 (Maple
2010) to numerically minimize the total cost function in (15) subject to R0 = 1,
with two unknown variables x1 and x2. The LagrangeMultipliers() command in
“Student[MultivariateCalculus]” subpackage, is then applied for this purpose. Note
that according to our Theorem 2.1, the infestation diminishes to zero when R0 ≤ 1,
whereas the Lagrange multipliers method provides a real-valued pair (x̄1, x̄2) as the
intersection point of the curves defined by the total cost function and R0 = 1 in
the x1− x2 plane. This theoretical real-valued optimized pair is represented by the
symbol • in Figure 2. A simple search procedure is then implemented to locate
the practical optimal pair (x∗1, x

∗
2) among the neighboring feasible integer pairs to

obtain the minimum cost. Note that the cost function (13) is an increasing function
of x1 and x2, thus, increasing the number of exterminators applying the advanced
method results in an increase of the total cost. This property of the cost function
implies that in the x1−x2 plane, only three integer pairs: (bx̄1c, dx̄2e), (dx̄1e, bx̄2c),
and (dx̄1e, dx̄2e) need to be checked (See Figure 2). Here for a real-valued number
x, bxc denotes the largest integer no larger than x and dxe is defined to be the
smallest integer no smaller than x. Thus, the practical optimal pair will be the one
with lowest total cost value. If the cost was identical for two pairs, the one with the
smallest reproduction number R0 would be chosen. The latter is due to the fact
that a system with smaller R0 takes less time to be disinfested.

For example, with the parameters chosen as above, the theoretical optimized
pair of the problem in (15) is (x̄1, x̄2) = (3.9, 7.4) represented by symbol • in Figure
2. The three pairs to be checked are: (3, 8), (4, 7), and (4, 8). For the first two,
R0 > 1, thus the practical optimal pair is (x∗1, x

∗
2) = (4, 8) with R0 ≈ 0.95 and the

total cost $15, 400.
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Figure 2. Theoretical and practical optimal solutions and a
non-optimal feasible solution to (S-I). The dashed line represents
the cost function in (13) with k1 = 8 and k2 = 12. The solid
curve is defined by R0 = 1. The symbol ∗ indicates the practical
optimal pair (4, 8) and the circle represents a non-optimal feasible
pair (6, 10).

To find the optimal solution for (S-II), the procedure employed in (S-I) is looped
for k1 from 1 to k1+k2 = K. The optimal solution is then given by the combination
(k1, k2, x1, x2)that gives the minimum cost among all feasible combinations. For the
above chosen parameters, the optimal combination is (k∗1 , k

∗
2 , x
∗
1, x
∗
2) = (12, 8, 4, 8).

This indicates that to achieve the infestation free state with the minimum cost,
among 20 available exterminators, 12 should be allocated to patch 1, of which 4
should apply the advanced method, and the rest 8 exterminators should be allocated
to patch 2, all of them should apply the advanced method. The optimal cost is
$15, 000 and the corresponding R0 ≈ 0.94.

We define a proportion-index, Ie, to be the indicator of successful management.
That is, if Ii < Ie for i = 1, 2, . . . , n, then we say the infestation can be negligible.
We use te to denote the index-time at which the indicator state is achieved. In our
simulations, we take Ie = 0.01 (i.e, if the infested units in a patch are less than 1%,
then the indicator state is achieved).

Based on the 2011 Canada census profile provided in [29], the total number of
private dwellings in Fredericton and Saint John were 41, 581 and 84, 542, respec-
tively, which can be regarded as reasonable estimates of the total number of units
in these two cities, namely, N1 and N2, in system (1).

Suppose, initially, there were 2, 079 infested units in Fredericton, and 8, 454 in-
fested units in Saint John. This gives the initial value of system (4): I1(0) = 0.05
and I2(0) = 0.1. Assume that there are 8 exterminators in Fredericton and 12
exterminators available in Saint John, i.e.,k1 = 8, k2 = 12. This corresponds to
scenario (S-I) and it follows from our proposed optimization procedure that the op-
timal pair is (x∗1, x

∗
2) = (4, 8), and the corresponding basic reproduction number is

R0 ≈ 0.94, while the minimum total cost is C = $15, 400, and the index-time taken
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Figure 3. The effect of the optimal and non-optimal disinfestation
allocations on the solutions of the 2-patch infested subsystem (4).
The total number of exterminators in patches 1 and 2 are fixed
and denoted by k1 = 8 and k2 = 12, respectively. The parameter
values are defined in the text, and the initial proportion of the
infested units in each patch is I1(0) = 0.05 and I2(0) = 0.1. (a)
The optimal pair (x∗1, x

∗
2) = (4, 8) results in the minimum cost of

C = $15, 400, R0 ≈ 0.94, and the index-time of te = 9.2 days);
(b) The non-optimal pair (x1, x2) = (6, 10) gives the total cost of
C = $17, 500, R0 ≈ 0.76 which is less compared to the optimal
case and consequently lowers the index-time to te = 1.7 days.

to reduce the infested units in both patches to be below 1% is te = 9.2 days; while
at a non-optimal pair, say, (x1, x2) = (6, 10), the corresponding R0 ≈ 0.76 and the
total cost is C = $17, 500. It takes te = 1.7 days to reach the indicator state, but
at the cost of extra $2, 100 (See Figure 3). In practice, there should be a trade-off
between management time and the corresponding cost and more information should
be collected for the decision makers to determine the best strategy.

The procedure of finding the optimal pair that gives practical resource allocation
strategy we proposed for the case with n = 2 can be extended to general case
with n > 2 under similar management scenarios as (S-I) and (S-II). However, in
practice, it is very difficult to express R0 defined in (5) explicitly as a function of
transmission and extermination rates when n > 2. In this case, we employ the
idea of the method of exhaustion and loop n times through xis from 1 to ki to
numerically compute the corresponding R0. This will allow us to obtain the cost
associated to each n-dimensional vector (x1, x2, . . . , xn) satisfying R0 < 1 . Finally,
a simple search among all feasible solution vectors will find the minimum cost. Note
that the minimum cost can be achieved at multiple feasible solution vectors. The
optimal solution vector is the one that gives the minimum cost with the smallest
corresponding R0. For example, for (S-I) with n = 4 and k1 = 8, k2 = 12, k3 =
12, k4 = 20,

(pij) =


0.2 0.7 0.5 0.5
0.4 0.6 0.5 0.3
0.3 0.5 0.4 0.3
0.2 0.4 0.3 0.4

 , (cij) =


4 2 3 3
3 4 3 2
3 4 3 3
3 4 3 3

 . (17)
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Assume that the extermination time taken for the preliminary and the advanced
methods are T1 = 60 and T2 = 2 (days), respectively and the associated costs
for both methods in those 4 patches are C11 = 400, C12 = 500, C13 = 450, C14 =
550, C21 = 950, C22 = 1000, C23 = 1000, C24 = 1100 (dollars). Then the optimal so-
lution vector is (x∗1, x

∗
2, x
∗
3, x
∗
4) = (8, 12, 11, 9), which gives the optimal cost $47, 000

with R0 ≈ 0.9947.

5. Summary and discussion. In this paper we have proposed a modeling frame-
work for studying the spread of bed bug infestation among multiple patches. Sus-
ceptible units in each patch can become infested due to human activities among
connected patches. Assuming irreducible transmission matrix F = (βij) and con-
stant extermination rates, we have shown that our model exhibits global threshold
dynamics in the sense that if the basic reproduction number is less than 1, then the
infestation free equilibrium is globally asymptotically stable and all involved patches
will eventually become bed bug infestation free. Further, if the basic reproduction
number is larger than 1, then the positive equilibrium is globally asymptotically
stable and the bed bug infestation persists in all involved patches.

To manage the bed bug infestation, by considering costs associated with exter-
mination processes, we set up the corresponding optimization problems. For the
two practical scenarios considered here, we proposed procedures to find the optimal
resource allocation strategies. The optimal resource allocation for disinfestation
management we explored is optimal in the sense that the total cost is minimum
subject to R0 ≤ 1. This does not imply that the associated R0 is the smallest
among all feasible resource allocations. Indeed, R0 obtained at any other feasible
resource allocations is always smaller, resulting in a quicker disinfestation process,
but a higher cost.

Note that in our modelling framework, it is assumed that there is no time delay
for a susceptible unit to become infested after encountering the infested units via
human activities. It is also possible to incorporate the time delay into the modelling
and follow the approaches employed in [24, 30] to establish the global threshold
dynamics. In addition, the idea can be extended to the case with non-constant
transmission rates and Allee effect [17], to the case with varying population sizes
[20] and to the case with nonlinear incidence rate [19, 36].

Appendix A. Proof of Theorem 2.1. We proceed by applying the following
corollary

Lemma A.1. [37, Corollary 3.2] Consider a continuously differentiable map f :
Rn

+ → Rn with the following properties:

(1) f is cooperative on Rn
+ and Df(x) = (∂fi/∂xj)1≤i,j≤n is irreducible for every

x ∈ Rn
+;

(2) f(0) = 0 and fi(x) ≥ 0 for all x ∈ Rn
+ with xi = 0, i = 1, 2, · · · , n;

(3) f is strictly sublinear on Rn
+, that is, for any α ∈ (0, 1) and any x � 0,

f(αx) > αf(x).

If s(D(f(0))) = max{Reλ; det(λ−D(f(0)))} ≤ 0, then x = 0 is globally asymptoti-
cally stable with respect to Rn

+; If s(D(f(0))) > 0, then either (i) for any x ∈ Rn
+\0,

limt→∞ |φ(x, t)| = +∞, or alternately, (ii) the system dx(t)/dt = f(x) admits a
unique positive steady state x∗ � 0 and x = x∗ is globally asymptotically stable with
respect to Rn

+ \ 0.
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For our model, let E =
∏n

i=1[0, 1], then it is easy to verify that E is positively
invariant with respect to system (4). Note that for i 6= j and I ∈ E,

(Df)ij(I) = ∂fi(I)/∂Ij = βij(1− Ii) ≥ 0. (18)

Thus the map f defined by the righthand side of (4) is continuously differentiable
and is cooperative and Df(I) is irreducible. That is, condition (1) of Lemma A.1
is satisfied. Since I0 = 0 is the IFE, and E is positively invariant, condition (2) of
Lemma A.1 is easily met. For any λ ∈ (0, 1) and I ∈ E with Ii > 0 for i = 1, . . . , n,
we have f is strictly sublinear and hence condition (3) of Lemma A.1 is verified.
Consequently, we arrive at the threshold dynamics stated in Theorem 2.1.

Acknowledgments. We would like to thank J. Watmough for useful discussion
about the model, and 2 anonymous reviewers for useful comments. L. Wang is
partially supported by NSERC of Canada (RGPIN-2015-05686).

REFERENCES

[1] L. J. S. Allen, F. Brauer, P. van den Driessche and J. Wu, Mathematical Epidemiology,
Springer-Verlag, Berlin Heidelberg, 2008.

[2] C. Boase, Bedbugs-back from the brink, Pestic. Outlook , 12 (2001), 159–162.

[3] C. Castillo-Chevez and H. R. Thieme, Asymptotically autonomous epidemic models, Math-
ematical Population Dynamics: Analysis of Heterogeneity Vol. One: Theory of Epidemics,

(eds. O. Arino, D. Axelrod, M. Kimmel, M. Langlais), Wuerz (1995), 33–50.

[4] CBC News, Bedbug outbreaks hit Saint John, Sept. 22, 2010, http://www.cbc.ca/news/

canada/new-brunswick/bedbug-outbreaks-hit-saint-john-1.870474 (Lastly accessed on

February 09, 2015).

[5] CBC News, Saint John hospital hit by bed bugs, Sept. 17, 2010, http://www.cbc.ca/news/
canada/new-brunswick/saint-john-hospital-hit-by-bed-bugs-1.870475 (Lastly accessed

on February 09, 2015).

[6] S. L. Doggett and R. C. Russell Bed bugs-latest trends and developments, Synopsis Aust. En-
viron. Pest Manag. Assoc. Natl. Conf., Pacific Bay Resort, Coffs Harbour Australia, (2007),

22–37.
[7] S. L. Doggett and A. E. P.t Managers Association, A Code of Practice for the Control of

Bed Bug Infestations in Australia, Westmead Hospital, Department of Medical Entomology,

Australia, 2011.
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