Loading [Contrib]/a11y/accessibility-menu.js

Ebola outbreak in West Africa: real-time estimation and multiple-wave prediction

  • Received: 01 April 2015 Accepted: 29 June 2018 Published: 01 June 2015
  • MSC : Primary: 92B05; Secondary: 62P10.

  • Based on the reported data until 18 March 2015 and numerical fitting via a simple formula of cumulative case number, we provide real-time estimation on basic reproduction number, inflection point, peak time and final outbreak size of ongoing Ebola outbreak in West Africa. From our simulation, we conclude that the first wave has passed its inflection point and predict that a second epidemic wave may appear in the near future.

    Citation: Xiang-Sheng Wang, Luoyi Zhong. Ebola outbreak in West Africa: real-time estimation and multiple-wave prediction[J]. Mathematical Biosciences and Engineering, 2015, 12(5): 1055-1063. doi: 10.3934/mbe.2015.12.1055

    Related Papers:

    [1] Mondal Hasan Zahid, Christopher M. Kribs . Ebola: Impact of hospital's admission policy in an overwhelmed scenario. Mathematical Biosciences and Engineering, 2018, 15(6): 1387-1399. doi: 10.3934/mbe.2018063
    [2] Luis Ponce, Ryo Kinoshita, Hiroshi Nishiura . Exploring the human-animal interface of Ebola virus disease outbreaks. Mathematical Biosciences and Engineering, 2019, 16(4): 3130-3143. doi: 10.3934/mbe.2019155
    [3] Erin N. Bodine, Connor Cook, Mikayla Shorten . The potential impact of a prophylactic vaccine for Ebola in Sierra Leone. Mathematical Biosciences and Engineering, 2018, 15(2): 337-359. doi: 10.3934/mbe.2018015
    [4] Chenxi Dai, ZhiWang, Weiming Wang, Yongqin Li, Kaifa Wang . Epidemics and underlying factors of multiple-peak pattern on hand, foot and mouth disease inWenzhou, China. Mathematical Biosciences and Engineering, 2019, 16(4): 2168-2188. doi: 10.3934/mbe.2019106
    [5] Andreas Widder . On the usefulness of set-membership estimation in the epidemiology of infectious diseases. Mathematical Biosciences and Engineering, 2018, 15(1): 141-152. doi: 10.3934/mbe.2018006
    [6] Narges Montazeri Shahtori, Tanvir Ferdousi, Caterina Scoglio, Faryad Darabi Sahneh . Quantifying the impact of early-stage contact tracing on controlling Ebola diffusion. Mathematical Biosciences and Engineering, 2018, 15(5): 1165-1180. doi: 10.3934/mbe.2018053
    [7] Julijana Gjorgjieva, Kelly Smith, Gerardo Chowell, Fabio Sánchez, Jessica Snyder, Carlos Castillo-Chavez . The Role of Vaccination in the Control of SARS. Mathematical Biosciences and Engineering, 2005, 2(4): 753-769. doi: 10.3934/mbe.2005.2.753
    [8] Mark G. Burch, Karly A. Jacobsen, Joseph H. Tien, Grzegorz A. Rempała . Network-based analysis of a small Ebola outbreak. Mathematical Biosciences and Engineering, 2017, 14(1): 67-77. doi: 10.3934/mbe.2017005
    [9] Weike Zhou, Aili Wang, Fan Xia, Yanni Xiao, Sanyi Tang . Effects of media reporting on mitigating spread of COVID-19 in the early phase of the outbreak. Mathematical Biosciences and Engineering, 2020, 17(3): 2693-2707. doi: 10.3934/mbe.2020147
    [10] Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman . The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1455-1474. doi: 10.3934/mbe.2013.10.1455
  • Based on the reported data until 18 March 2015 and numerical fitting via a simple formula of cumulative case number, we provide real-time estimation on basic reproduction number, inflection point, peak time and final outbreak size of ongoing Ebola outbreak in West Africa. From our simulation, we conclude that the first wave has passed its inflection point and predict that a second epidemic wave may appear in the near future.


    [1] PLOS Currents Outbreaks, 2014.
    [2] The Journal of Infectious Diseases, 196 (2007), S142-147.
    [3] Available from: http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/cumulative-cases-graphs.html. (Last accessed on 18 March 2015.)
    [4] Available from: http://www.cdc.gov/vhf/ebola/healthcare-us/preparing/clinicians.html. (Last accessed on 18 March 2015.)
    [5] PLOS Currents Outbreaks, (2014), 1-12.
    [6] Journal of Mathematical Biology, 28 (1990), 365-382.
    [7] Emerging Infectious Diseases, 12 (2006), 122-127.
    [8] Journal of Experimental Botany, 10 (1959), 290-301.
    [9] Mathematical Biosciences, 180 (2002), 29-48.
    [10] Journal of Theoretical Biology, 313 (2012), 12-19.
    [11] Available from: http://apps.who.int/iris/bitstream/10665/137376/1/roadmapsitrep_29Oct2014_eng.pdf?ua=1. (Last accessed on 18 March 2015.)
    [12] Available from: http://apps.who.int/ebola/en/current-situation. (Last accessed on 18 March 2015.)
  • This article has been cited by:

    1. Doracelly Hincapié-Palacio, Juan Ospina, Delfim F. M. Torres, Approximated analytical solution to an Ebola optimal control problem, 2016, 17, 1550-2287, 382, 10.1080/15502287.2016.1231236
    2. Zineb El Rhoubari, Hajar Besbassi, Khalid Hattaf, Noura Yousfi, 2019, Chapter 3, 978-3-030-23432-4, 35, 10.1007/978-3-030-23433-1_3
    3. Jianquan Li, Yijun Lou, Characteristics of an epidemic outbreak with a large initial infection size, 2016, 10, 1751-3758, 366, 10.1080/17513758.2016.1205223
    4. Dongmei Luo, Rongjiong Zheng, Duolao Wang, Xueliang Zhang, Yi Yin, Kai Wang, Weiming Wang, Effect of sexual transmission on the West Africa Ebola outbreak in 2014: a mathematical modelling study, 2019, 9, 2045-2322, 10.1038/s41598-018-38397-3
    5. Zineb EL Rhoubari, Hajar Besbassi, Khalid Hattaf, Noura Yousfi, Mathematical Modeling of Ebola Virus Disease in Bat Population, 2018, 2018, 1026-0226, 1, 10.1155/2018/5104524
    6. T. Berge, J.M.-S. Lubuma, G.M. Moremedi, N. Morris, R. Kondera-Shava, A simple mathematical model for Ebola in Africa, 2017, 11, 1751-3758, 42, 10.1080/17513758.2016.1229817
    7. Aqsa Nazir, Naveed Ahmed, Umar Khan, Syed Tauseef Mohyud-Din, Kottakkaran Sooppy Nisar, Ilyas Khan, An advanced version of a conformable mathematical model of Ebola virus disease in Africa, 2020, 59, 11100168, 3261, 10.1016/j.aej.2020.08.050
    8. Waheed Ahmad, Muhammad Rafiq, Mujahid Abbas, Mathematical analysis to control the spread of Ebola virus epidemic through voluntary vaccination, 2020, 135, 2190-5444, 10.1140/epjp/s13360-020-00683-3
    9. Khan Muhammad Altaf, Abdon Atangana, Dynamics of Ebola Disease in the Framework of Different Fractional Derivatives, 2019, 21, 1099-4300, 303, 10.3390/e21030303
    10. T. Berge, A. J. Ouemba Tassé, H. M. Tenkam, J. Lubuma, Mathematical modeling of contact tracing as a control strategy of Ebola virus disease, 2018, 11, 1793-5245, 1850093, 10.1142/S1793524518500936
    11. Zineb El Rhoubari, Khalid Hattaf, Noura Yousfi, 2020, Chapter 11, 978-3-030-49895-5, 295, 10.1007/978-3-030-49896-2_11
    12. Muhammad Rafiq, Waheed Ahmad, Mujahid Abbas, Dumitru Baleanu, A reliable and competitive mathematical analysis of Ebola epidemic model, 2020, 2020, 1687-1847, 10.1186/s13662-020-02994-2
    13. Jean-Paul Chretien, Steven Riley, Dylan B George, Mathematical modeling of the West Africa Ebola epidemic, 2015, 4, 2050-084X, 10.7554/eLife.09186
    14. Fengqin Zhang, Jianquan Li, Jia Li, Epidemic characteristics of two classic SIS models with disease-induced death, 2017, 424, 00225193, 73, 10.1016/j.jtbi.2017.04.029
    15. SHAHER MOMANI, R. P. CHAUHAN, SUNIL KUMAR, SAMIR HADID, A THEORETICAL STUDY ON FRACTIONAL EBOLA HEMORRHAGIC FEVER MODEL, 2022, 30, 0218-348X, 10.1142/S0218348X22400321
    16. P. Goswami, S. Sharma, I. Khan, R.S. Dubey, A. Khan, Fractional model of Ebola virus in population of bats in frame of Atangana-Baleanu fractional derivative, 2021, 26, 22113797, 104295, 10.1016/j.rinp.2021.104295
    17. Anwarud Din, Asad Khan, Yassine Sabbar, Long-Term Bifurcation and Stochastic Optimal Control of a Triple-Delayed Ebola Virus Model with Vaccination and Quarantine Strategies, 2022, 6, 2504-3110, 578, 10.3390/fractalfract6100578
    18. Nripendra Narayan Das, Manoj Kumar Sharma, 2021, COVID – Development of Mathematical Model for Transmission of Corona Virus and Analysis of Its Data, 978-1-6654-3811-7, 2085, 10.1109/ICAC3N53548.2021.9725754
    19. Basilua Andre Muzembo, Kei Kitahara, Debmalya Mitra, Ngangu Patrick Ntontolo, Nlandu Roger Ngatu, Ayumu Ohno, Januka Khatiwada, Shanta Dutta, Shin-Ichi Miyoshi, The basic reproduction number (R0) of ebola virus disease: A systematic review and meta-analysis, 2024, 14778939, 102685, 10.1016/j.tmaid.2023.102685
    20. JAMES ANDRAWUS, ABDULLAHI YUSUF, UMAR TASIU MUSTAPHA, ALI S. ALSHOMRANI, DUMITRU BALEANU, UNRAVELING THE DYNAMICS OF EBOLA VIRUS WITH CONTACT TRACING AS CONTROL STRATEGY, 2023, 31, 0218-348X, 10.1142/S0218348X2340159X
    21. Isaac Kwasi Adu, Fredrick Asenso Wireko, Sacrifice Nana-Kyere, Ebenezer Appiagyei, Mojeeb A. L.-Rahman E. L.-Nor Osman, Joshua Kiddy K. Asamoah, Modelling the dynamics of Ebola disease transmission with optimal control analysis, 2024, 2363-6203, 10.1007/s40808-024-02020-4
    22. Priyanka Mandal, Ayan Chatterjee, Mathematical Modelling of Transmission of Covid-19 in Indian Context: An Impact of Lockdown, 2023, 0022-2755, 678, 10.18311/jmmf/2023/34169
    23. Parvaiz Ahmad Naik, Muhammad Farman, Khadija Jamil, Kottakkaran Sooppy Nisar, Muntazim Abbas Hashmi, Zhengxin Huang, Modeling and analysis using piecewise hybrid fractional operator in time scale measure for ebola virus epidemics under Mittag–Leffler kernel, 2024, 14, 2045-2322, 10.1038/s41598-024-75644-2
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2503) PDF downloads(484) Cited by(23)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog