Diffusion approximation of neuronal models revisited

  • Received: 01 December 2012 Accepted: 29 June 2018 Published: 01 September 2013
  • MSC : 60J60, 60J70, 92C20.

  • Leaky integrate-and-fire neuronal models with reversal potentials have a number of different diffusion approximations, each depending on the form of the amplitudes of the postsynaptic potentials.Probability distributions of the first-passage times of the membrane potential in the original model and itsdiffusion approximations are numerically compared in order to find whichof the approximations is the most suitable one.The properties of the random amplitudes of postsynapticpotentials are discussed.It is shown on a simple example that the quality of the approximation depends directly on them.

    Citation: Jakub Cupera. Diffusion approximation of neuronal models revisited[J]. Mathematical Biosciences and Engineering, 2014, 11(1): 11-25. doi: 10.3934/mbe.2014.11.11

    Related Papers:

  • Leaky integrate-and-fire neuronal models with reversal potentials have a number of different diffusion approximations, each depending on the form of the amplitudes of the postsynaptic potentials.Probability distributions of the first-passage times of the membrane potential in the original model and itsdiffusion approximations are numerically compared in order to find whichof the approximations is the most suitable one.The properties of the random amplitudes of postsynapticpotentials are discussed.It is shown on a simple example that the quality of the approximation depends directly on them.


    加载中
    [1] Springer-Verlag, New York, 1998.
    [2] Phys. Rev. E (3), 73 (2006), 061910, 9 pp.
    [3] Biol. Cybern., 99 (2008), 279-301.
    [4] J. Theor. Neurobiol., 2 (1983), 127-153.
    [5] J. Physiol., 117 (1952), 500-544.
    [6] Mass. MIT Press, Cambridge, 1989.
    [7] Brain Res., 1434 (2012), 136-141.
    [8] J. Theor. Biol., 166 (1994), 393-406.
    [9] J. Theor. Biol., 107 (1984), 631-647.
    [10] Biol. Cybern., 56 (1987), 19-26.
    [11] Biol. Cybern., 73 (1995), 457-465.
    [12] Biosystems, 25 (1991), 179-191.
    [13] J. Theor. Biol., 171 (1994), 225-232.
    [14] Notes taken by Charles E. Smith, Lecture Notes in Biomathematics, Vol. 14, Springer-Verlag, Berlin-New York, 1977.
    [15] Biol. Cybern., 35 (1979), 1-9.
    [16] Phys. Rev. E, 76 (2007), 021919.
    [17] Springer Series in Synergetics, 18, Springer-Verlag, Berlin, 1989.
    [18] Neural Comput., 17 (2005), 2301-2315.
    [19] Springer-Verlag, Berlin, 1978.
    [20] J. Theor. Neurobiol., 3 (1984), 67-77.
    [21] Biophys. J., 5 (1965), 173-194.
    [22] J. Theor. Biol., 77 (1979), 65-81.
    [23] J. Theor. Biol., 83 (1980), 377-387.
    [24] Comput. Biol. Med., 27 (1997), 1-7.
    [25] J. Theor. Biol., 105 (1983), 345-368.
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2215) PDF downloads(470) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog