Loading [Contrib]/a11y/accessibility-menu.js

Fano factor estimation

  • Received: 01 December 2012 Accepted: 29 June 2018 Published: 01 September 2013
  • MSC : Primary: 60K05, 62-07; Secondary: 62P10.

  • Fano factor is one of the most widely used measures ofvariability of spike trains. Its standard estimator is the ratio of samplevariance to sample mean of spike counts observed in a time window and thequality of the estimator strongly depends on the length of the window. Weinvestigate this dependence under the assumption that the spike trainbehaves as an equilibrium renewal process. It is shown whatcharacteristics of the spike train have large effect on the estimatorbias. Namely, the effect of refractory period is analytically evaluated.Next, we create an approximate asymptotic formula for the mean squareerror of the estimator, which can also be used to find minimum of theerror in estimation from single spike trains. The accuracy of the Fano factorestimator is compared with the accuracy of the estimator based on the squaredcoefficient of variation. All the results are illustrated for spike trainswith gamma and inverseGaussian probability distributions of interspike intervals. Finally, wediscuss possibilities of how to select a suitable observation window for the Fanofactor estimation.

    Citation: Kamil Rajdl, Petr Lansky. Fano factor estimation[J]. Mathematical Biosciences and Engineering, 2014, 11(1): 105-123. doi: 10.3934/mbe.2014.11.105

    Related Papers:

    [1] Guilherme Giovanini, Alan U. Sabino, Luciana R. C. Barros, Alexandre F. Ramos . A comparative analysis of noise properties of stochastic binary models for a self-repressing and for an externally regulating gene. Mathematical Biosciences and Engineering, 2020, 17(5): 5477-5503. doi: 10.3934/mbe.2020295
    [2] Kimberlyn Roosa, Ruiyan Luo, Gerardo Chowell . Comparative assessment of parameter estimation methods in the presence of overdispersion: a simulation study. Mathematical Biosciences and Engineering, 2019, 16(5): 4299-4313. doi: 10.3934/mbe.2019214
    [3] Kseniia Kravchuk, Alexander Vidybida . Non-Markovian spiking statistics of a neuron with delayed feedback in presence of refractoriness. Mathematical Biosciences and Engineering, 2014, 11(1): 81-104. doi: 10.3934/mbe.2014.11.81
    [4] H.T. Banks, Jimena L. Davis . Quantifying uncertainty in the estimation of probability distributions. Mathematical Biosciences and Engineering, 2008, 5(4): 647-667. doi: 10.3934/mbe.2008.5.647
    [5] Xiaoshan Qian, Lisha Xu, Xinmei Yuan . Dynamic correction of soft measurement model for evaporation process parameters based on ARMA. Mathematical Biosciences and Engineering, 2024, 21(1): 712-735. doi: 10.3934/mbe.2024030
    [6] Ji Zhou, Zhanlin Su, Shahab Hosseini, Qiong Tian, Yijun Lu, Hao Luo, Xingquan Xu, Chupeng Chen, Jiandong Huang . Decision tree models for the estimation of geo-polymer concrete compressive strength. Mathematical Biosciences and Engineering, 2024, 21(1): 1413-1444. doi: 10.3934/mbe.2024061
    [7] Ariel Cintrón-Arias, Carlos Castillo-Chávez, Luís M. A. Bettencourt, Alun L. Lloyd, H. T. Banks . The estimation of the effective reproductive number from disease outbreak data. Mathematical Biosciences and Engineering, 2009, 6(2): 261-282. doi: 10.3934/mbe.2009.6.261
    [8] Hasan Güzel, Fatih Üneş, Merve Erginer, Yunus Ziya Kaya, Bestami Taşar, İbrahim Erginer, Mustafa Demirci . A comparative study on daily evapotranspiration estimation by using various artificial intelligence techniques and traditional regression calculations. Mathematical Biosciences and Engineering, 2023, 20(6): 11328-11352. doi: 10.3934/mbe.2023502
    [9] Mark Kei Fong Wong, Hao Hei, Si Zhou Lim, Eddie Yin-Kwee Ng . Applied machine learning for blood pressure estimation using a small, real-world electrocardiogram and photoplethysmogram dataset. Mathematical Biosciences and Engineering, 2023, 20(1): 975-997. doi: 10.3934/mbe.2023045
    [10] Said G. Nassr, Amal S. Hassan, Rehab Alsultan, Ahmed R. El-Saeed . Acceptance sampling plans for the three-parameter inverted Topp–Leone model. Mathematical Biosciences and Engineering, 2022, 19(12): 13628-13659. doi: 10.3934/mbe.2022636
  • Fano factor is one of the most widely used measures ofvariability of spike trains. Its standard estimator is the ratio of samplevariance to sample mean of spike counts observed in a time window and thequality of the estimator strongly depends on the length of the window. Weinvestigate this dependence under the assumption that the spike trainbehaves as an equilibrium renewal process. It is shown whatcharacteristics of the spike train have large effect on the estimatorbias. Namely, the effect of refractory period is analytically evaluated.Next, we create an approximate asymptotic formula for the mean squareerror of the estimator, which can also be used to find minimum of theerror in estimation from single spike trains. The accuracy of the Fano factorestimator is compared with the accuracy of the estimator based on the squaredcoefficient of variation. All the results are illustrated for spike trainswith gamma and inverseGaussian probability distributions of interspike intervals. Finally, wediscuss possibilities of how to select a suitable observation window for the Fanofactor estimation.


    [1] Exp. Brain Res., 210 (2011), 353-371.
    [2] J. Neurosci., 21 (2001), 5328-5343.
    [3] J. Neurosci. Methods, 32 (2012), 2204-2216.
    [4] Nat. Neurosci., 13 (2010), 369-378.
    [5] Methuen & Co., Ltd., London; John Wiley & Sons, Inc., New York, 1962.
    [6] Brain Res., 1118 (2006), 84-93.
    [7] J. Comput. Neurosci., 32 (2012), 443-463.
    [8] Neural. Comput., 23 (2011), 1944-1966.
    [9] J. Neurosci. Methods, 190 (2010), 149-152.
    [10] Phys. Rev. E, 79 (2009), 021905.
    [11] Cambridge University Press, Cambridge, 2002.
    [12] P. Natl. Acad. Sci. USA, 107 (2010), 21842-21847.
    [13] Oper. Res., 8 (1960), 446-472.
    [14] PLOS ONE, 6 (2011), e21998.
    [15] BioSystems, 89 (2007), 69-73.
    [16] McGraw-Hill, Inc., 1974.
    [17] in "Analysis of Parallel Spike Trains," Springer, Inc., New York, (2010), 37-58.
    [18] J. Neurosci. Methods, 169 (2008), 374-390.
    [19] Neural. Comput., 23 (2011), 3125-3144.
    [20] Neural. Comput., 20 (2008), 1325-1343.
    [21] Cambridge University Press, Cambridge, 1950.
    [22] J. Comput. Neurosci., 29 (2010), 351-365.
    [23] Neural. Comput., 21 (2009), 1931-1951.
    [24] BioSystems, 79 (2005), 67-72.
    [25] Hearing Res., 46 (1990), 41-52.
  • This article has been cited by:

    1. Kamil Rajdl, Petr Lansky, Shot-noise Fano factor, 2015, 92, 1539-3755, 10.1103/PhysRevE.92.052135
    2. Adam J. Peterson, Peter Heil, A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times, 2018, 363, 03785955, 1, 10.1016/j.heares.2017.09.005
    3. Dominic Standage, Martin Paré, Slot-like capacity and resource-like coding in a neural model of multiple-item working memory, 2018, 120, 0022-3077, 1945, 10.1152/jn.00778.2017
    4. Giuseppe D’Onofrio, Petr Lansky, Massimiliano Tamborrino, Inhibition enhances the coherence in the Jacobi neuronal model, 2019, 128, 09600779, 108, 10.1016/j.chaos.2019.07.040
    5. K. Rajdl, P. Lansky, L. Kostal, Entropy factor for randomness quantification in neuronal data, 2017, 95, 08936080, 57, 10.1016/j.neunet.2017.07.016
    6. Laura Frangeul, Vassilis Kehayas, Jose V. Sanchez-Mut, Sabine Fièvre, K. Krishna-K, Gabrielle Pouchelon, Ludovic Telley, Camilla Bellone, Anthony Holtmaat, Johannes Gräff, Jeffrey D. Macklis, Denis Jabaudon, Input-dependent regulation of excitability controls dendritic maturation in somatosensory thalamocortical neurons, 2017, 8, 2041-1723, 10.1038/s41467-017-02172-1
    7. Annemnarie Wolff, Sara de la Salle, Alana Sorgini, Emma Lynn, Pierre Blier, Verner Knott, Georg Northoff, Atypical Temporal Dynamics of Resting State Shapes Stimulus-Evoked Activity in Depression—An EEG Study on Rest–Stimulus Interaction, 2019, 10, 1664-0640, 10.3389/fpsyt.2019.00719
    8. Kamil Rajdl, Petr Lansky, Lubomir Kostal, Fano Factor: A Potentially Useful Information, 2020, 14, 1662-5188, 10.3389/fncom.2020.569049
    9. Romi Mankin, Astrid Rekker, Sander Paekivi, Statistical moments of the interspike intervals for a neuron model driven by trichotomous noise, 2021, 103, 2470-0045, 10.1103/PhysRevE.103.062201
    10. Rimjhim Tomar, Lubomir Kostal, Variability and Randomness of the Instantaneous Firing Rate, 2021, 15, 1662-5188, 10.3389/fncom.2021.620410
    11. Adam J. Peterson, Dexter R.F. Irvine, Peter Heil, A Model of Synaptic Vesicle-Pool Depletion and Replenishment Can Account for the Interspike Interval Distributions and Nonrenewal Properties of Spontaneous Spike Trains of Auditory-Nerve Fibers, 2014, 34, 0270-6474, 15097, 10.1523/JNEUROSCI.0903-14.2014
    12. A. Rekker, S. Paekivi, R. Mankin, 2022, 2522, 0094-243X, 070004, 10.1063/5.0100761
    13. Ankan Chandra, G K Singh, Vinay Pant, 2023, Empirical Wavelet Transform and Fano Equality Ratio Test-based Fault Detection Scheme for Inverter Dominated Autonomous Microgrid, 978-1-6654-7517-4, 1, 10.1109/ICONAT57137.2023.10080580
    14. Ragab Abdallah Mahmoud, Om Parkash Malik, Adaptive overcurrent relay (AOCR) based on Fano Factors of current signals, 2023, 2023, 2051-3305, 10.1049/tje2.12267
    15. Kamil Rajdl, Lubomir Kostal, Estimation of the instantaneous spike train variability, 2023, 177, 09600779, 114280, 10.1016/j.chaos.2023.114280
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3479) PDF downloads(747) Cited by(15)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog