Citation: Alberto Gambaruto, João Janela, Alexandra Moura, Adélia Sequeira. Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms[J]. Mathematical Biosciences and Engineering, 2013, 10(3): 649-665. doi: 10.3934/mbe.2013.10.649
[1] | Alberto M. Gambaruto, João Janela, Alexandra Moura, Adélia Sequeira . Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology. Mathematical Biosciences and Engineering, 2011, 8(2): 409-423. doi: 10.3934/mbe.2011.8.409 |
[2] | Yuqian Mei, Debao Guan, Xinyu Tong, Qian Liu, Mingcheng Hu, Guangxin Chen, Caijuan Li . Association of cerebral infarction with vertebral arterial fenestration using non-Newtonian hemodynamic evaluation. Mathematical Biosciences and Engineering, 2022, 19(7): 7076-7090. doi: 10.3934/mbe.2022334 |
[3] | Yan Wang, Yonghui Qiao, Yankai Mao, Chenyang Jiang, Jianren Fan, Kun Luo . Numerical prediction of thrombosis risk in left atrium under atrial fibrillation. Mathematical Biosciences and Engineering, 2020, 17(3): 2348-2360. doi: 10.3934/mbe.2020125 |
[4] | Yannick Lutz, Rosa Daschner, Lorena Krames, Axel Loewe, Giorgio Cattaneo, Stephan Meckel, Olaf Dössel . Modeling selective therapeutic hypothermia in case of acute ischemic stroke using a 1D hemodynamics model and a simplified brain geometry. Mathematical Biosciences and Engineering, 2020, 17(2): 1147-1167. doi: 10.3934/mbe.2020060 |
[5] | Benchawan Wiwatanapataphee, Yong Hong Wu, Thanongchai Siriapisith, Buraskorn Nuntadilok . Effect of branchings on blood flow in the system of human coronary arteries. Mathematical Biosciences and Engineering, 2012, 9(1): 199-214. doi: 10.3934/mbe.2012.9.199 |
[6] | Austin Baird, Laura Oelsner, Charles Fisher, Matt Witte, My Huynh . A multiscale computational model of angiogenesis after traumatic brain injury, investigating the role location plays in volumetric recovery. Mathematical Biosciences and Engineering, 2021, 18(4): 3227-3257. doi: 10.3934/mbe.2021161 |
[7] | Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen . Estimation and identification of parameters in a lumped cerebrovascular model. Mathematical Biosciences and Engineering, 2009, 6(1): 93-115. doi: 10.3934/mbe.2009.6.93 |
[8] | Guoyi Ke, Chetan Hans, Gunjan Agarwal, Kristine Orion, Michael Go, Wenrui Hao . Mathematical model of atherosclerotic aneurysm. Mathematical Biosciences and Engineering, 2021, 18(2): 1465-1484. doi: 10.3934/mbe.2021076 |
[9] | B. Wiwatanapataphee, D. Poltem, Yong Hong Wu, Y. Lenbury . Simulation of Pulsatile Flow of Blood in Stenosed Coronary Artery Bypass with Graft. Mathematical Biosciences and Engineering, 2006, 3(2): 371-383. doi: 10.3934/mbe.2006.3.371 |
[10] | Nattawan Chuchalerm, Wannika Sawangtong, Benchawan Wiwatanapataphee, Thanongchai Siriapisith . Study of Non-Newtonian blood flow - heat transfer characteristics in the human coronary system with an external magnetic field. Mathematical Biosciences and Engineering, 2022, 19(9): 9550-9570. doi: 10.3934/mbe.2022444 |
[1] | Journal of The Royal Society Interface, 7 (2010), 967-988. |
[2] | Springer-Verlag, 1973. |
[3] | Neurosurgery, 37 (1995), 774-784. |
[4] | Oxford University Press, 1978. |
[5] | IEEE Transactions on Medical Imaging, 24 (2005), 457-467. |
[6] | AJNR Am. J. Neuroradiol, 32 (2011), 27-33. |
[7] | AJNR Am. J. Neuroradiol, 32 (2011), 145-152. |
[8] | Journal of Biomechanics, 41 (2008), 241-248. |
[9] | Mathematical Biosciences and Engineering, 8 (2011), 409-423. |
[10] | Int. J. Numer. Meth. Biomed. Engng., 26 (2010), 926-953. |
[11] | Int. J. Numer. Meth. Fluids, 57 (2008), 495-517. |
[12] | Journal of Neurosurgery, 103 (2005), 662-680. |
[13] | American Journal of Neuroradiology, 22 (2001), 721-724. |
[14] | in "Advances in Mathematical Fluid Mechanics", Springer, Berlin and Heidelberg, (2010), 295-310. |
[15] | Annals of Biomedical Engineering, 36 (2008), 726-741. |
[16] | Acta Neurochirurgica, 143 (2001), 429-449. |
[17] | J. Biomech. Eng., 129 (2007), 273-278. |
[18] | CRC Press, Boca Raton, FL, 1988. |
[19] | Stroke, 38 (2007), 1924-1931. |
[20] | Cardiovascular Engineering and Technology, 3 (2012), 22-40. |
[21] | Math. Comput. Modelling, 25 (1997), 57-70. |
[22] | International Journal for Numerical Methods in Biomedical Engineering, 28 (2012), 697-713. |
[23] | in "Mathematical Methods and Models in Biomedicine" (Eds. U. Ledzewicz, H. Schättler, A. Friedman and E. Kashdan), Springer, (2013), 149-175. |
[24] | Ann. Biomed. Eng., 36 (2008), 1793-1804. |
[25] | in "Hemodynamical Flows", Modeling, Analysis and Simulation, Oberwolfach Seminars, 37 (2008), 63-120, Birkhäuser. |
[26] | Stroke, 36 (2005), 193338. |
[27] | American Journal of Neuroradiology, 24 (2003), 55966. |
[28] | Journal of Neurosurgery, 106 (2007), 1051-1060. |
[29] | Mech. Res. Commun., 25 (1998), 257-262. |
[30] | Journal of Biomechanical Engineering, 132 (2010), 091009. |
1. | T. Bodnár, M. Pires, J. Janela, A. Sequeira, V. Volpert, Blood Flow Simulation Using Traceless Variant of Johnson-Segalman Viscoelastic Model, 2014, 9, 0973-5348, 117, 10.1051/mmnp/20149609 | |
2. | T. Rodrigues, F.J. Galindo-Rosales, L. Campo-Deaño, Haemodynamics around confined microscopic cylinders, 2020, 286, 03770257, 104406, 10.1016/j.jnnfm.2020.104406 | |
3. | Vahid Goodarzi Ardakani, Xin Tu, Alberto M. Gambaruto, Iolanda Velho, Jorge Tiago, Adélia Sequeira, Ricardo Pereira, Near-Wall Flow in Cerebral Aneurysms, 2019, 4, 2311-5521, 89, 10.3390/fluids4020089 | |
4. | J. Tiago, A. Gambaruto, A. Sequeira, A. Sequeira, V. Volpert, Patient-specific Blood Flow Simulations: Setting Dirichlet Boundary Conditions for Minimal Error with Respect to Measured Data, 2014, 9, 0973-5348, 98, 10.1051/mmnp/20149608 | |
5. | Adélia Sequeira, 2018, Chapter 1, 978-3-319-74795-8, 1, 10.1007/978-3-319-74796-5_1 | |
6. | D Liepsch, S Sindeev, S Frolov, An impact of non-Newtonian blood viscosity on hemodynamics in a patient-specific model of a cerebral aneurysm, 2018, 1084, 1742-6588, 012001, 10.1088/1742-6596/1084/1/012001 | |
7. | Simon Wolfgang Funke, Magne Nordaas, Øyvind Evju, Martin Sandve Alnaes, Kent Andre Mardal, Variational data assimilation for transient blood flow simulations: Cerebral aneurysms as an illustrative example, 2019, 35, 20407939, e3152, 10.1002/cnm.3152 | |
8. | João M. Nunes, Francisco J. Galindo-Rosales, Laura Campo-Deaño, Extensional Magnetorheology of Viscoelastic Human Blood Analogues Loaded with Magnetic Particles, 2021, 14, 1996-1944, 6930, 10.3390/ma14226930 | |
9. | Haipeng Liu, Linfang Lan, Jill Abrigo, Hing Lung Ip, Yannie Soo, Dingchang Zheng, Ka Sing Wong, Defeng Wang, Lin Shi, Thomas W. Leung, Xinyi Leng, Comparison of Newtonian and Non-newtonian Fluid Models in Blood Flow Simulation in Patients With Intracranial Arterial Stenosis, 2021, 12, 1664-042X, 10.3389/fphys.2021.718540 | |
10. | Augusto Fava Sanches, Suprosanna Shit, Yigit Özpeynirci, Thomas Liebig, CFD to Quantify Idealized Intra-Aneurysmal Blood Flow in Response to Regular and Flow Diverter Stent Treatment, 2022, 7, 2311-5521, 254, 10.3390/fluids7080254 | |
11. | Pawan Kumar Pandey, Chandan Paul, Malay K Das, Krishnamurthy Muralidhar, Assessment and visualization of hemodynamic loading in aneurysm sac and neck: Effect of foam insertion, 2021, 235, 0954-4119, 927, 10.1177/09544119211015569 | |
12. | Sireetorn Kuharat, M. A. Chaudhry, O. Anwar Beg, Tasveer A. Bég, Computational hemodynamic simulation of non-Newtonian fluid-structure interaction in a curved stenotic artery, 2024, 8, 2587-1110, 226, 10.26701/ems.1492905 | |
13. | Abdulgaphur Athani, Nik Nazri Nik Ghazali, Irfan Anjum Badruddin, Abdullah Y. Usmani, Mohammad Amir, Digamber Singh, Sanan H. Khan, Image-Based Hemodynamic and Rheological Study of Patient’s Diseased Arterial Vasculatures Using Computational Fluid Dynamics (CFD) and Fluid–Structure Interactions (FSI) Analysis: A review, 2024, 1134-3060, 10.1007/s11831-024-10193-5 | |
14. | Felipe Ramirez-Velandia, Vincenzo T.R. Loly, Emmanuel O. Mensah, Jean Filo, Rafael T. Tatit, João de Sá Brasil Lima, Christopher S. Ogilvy, Carlos E. Baccin, Management of cervical carotid pseudoaneurysms: Integrating clinical practice with computational fluid dynamics insights, 2025, 251, 03038467, 108836, 10.1016/j.clineuro.2025.108836 |