Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms

  • Received: 01 September 2012 Accepted: 29 June 2018 Published: 01 April 2013
  • MSC : Primary: 58F15, 58F17; Secondary: 53C35.

  • Two different generalized Newtonian mathematical models for blood flow, derived for the same experimental data, are compared, together with the Newtonian model, in three different anatomically realistic geometries of saccular cerebral aneurysms obtained from rotational CTA. The geometries differ in size of the aneurysm and the existence or not of side branches within the aneurysm.Results show that the differences between the two generalized Newtonian mathematical models are smaller than the differences between these and the Newtonian solution, in both steady and unsteady simulations.

    Citation: Alberto Gambaruto, João Janela, Alexandra Moura, Adélia Sequeira. Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms[J]. Mathematical Biosciences and Engineering, 2013, 10(3): 649-665. doi: 10.3934/mbe.2013.10.649

    Related Papers:

    [1] Alberto M. Gambaruto, João Janela, Alexandra Moura, Adélia Sequeira . Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology. Mathematical Biosciences and Engineering, 2011, 8(2): 409-423. doi: 10.3934/mbe.2011.8.409
    [2] Yuqian Mei, Debao Guan, Xinyu Tong, Qian Liu, Mingcheng Hu, Guangxin Chen, Caijuan Li . Association of cerebral infarction with vertebral arterial fenestration using non-Newtonian hemodynamic evaluation. Mathematical Biosciences and Engineering, 2022, 19(7): 7076-7090. doi: 10.3934/mbe.2022334
    [3] Yan Wang, Yonghui Qiao, Yankai Mao, Chenyang Jiang, Jianren Fan, Kun Luo . Numerical prediction of thrombosis risk in left atrium under atrial fibrillation. Mathematical Biosciences and Engineering, 2020, 17(3): 2348-2360. doi: 10.3934/mbe.2020125
    [4] Yannick Lutz, Rosa Daschner, Lorena Krames, Axel Loewe, Giorgio Cattaneo, Stephan Meckel, Olaf Dössel . Modeling selective therapeutic hypothermia in case of acute ischemic stroke using a 1D hemodynamics model and a simplified brain geometry. Mathematical Biosciences and Engineering, 2020, 17(2): 1147-1167. doi: 10.3934/mbe.2020060
    [5] Benchawan Wiwatanapataphee, Yong Hong Wu, Thanongchai Siriapisith, Buraskorn Nuntadilok . Effect of branchings on blood flow in the system of human coronary arteries. Mathematical Biosciences and Engineering, 2012, 9(1): 199-214. doi: 10.3934/mbe.2012.9.199
    [6] Austin Baird, Laura Oelsner, Charles Fisher, Matt Witte, My Huynh . A multiscale computational model of angiogenesis after traumatic brain injury, investigating the role location plays in volumetric recovery. Mathematical Biosciences and Engineering, 2021, 18(4): 3227-3257. doi: 10.3934/mbe.2021161
    [7] Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen . Estimation and identification of parameters in a lumped cerebrovascular model. Mathematical Biosciences and Engineering, 2009, 6(1): 93-115. doi: 10.3934/mbe.2009.6.93
    [8] Guoyi Ke, Chetan Hans, Gunjan Agarwal, Kristine Orion, Michael Go, Wenrui Hao . Mathematical model of atherosclerotic aneurysm. Mathematical Biosciences and Engineering, 2021, 18(2): 1465-1484. doi: 10.3934/mbe.2021076
    [9] B. Wiwatanapataphee, D. Poltem, Yong Hong Wu, Y. Lenbury . Simulation of Pulsatile Flow of Blood in Stenosed Coronary Artery Bypass with Graft. Mathematical Biosciences and Engineering, 2006, 3(2): 371-383. doi: 10.3934/mbe.2006.3.371
    [10] Nattawan Chuchalerm, Wannika Sawangtong, Benchawan Wiwatanapataphee, Thanongchai Siriapisith . Study of Non-Newtonian blood flow - heat transfer characteristics in the human coronary system with an external magnetic field. Mathematical Biosciences and Engineering, 2022, 19(9): 9550-9570. doi: 10.3934/mbe.2022444
  • Two different generalized Newtonian mathematical models for blood flow, derived for the same experimental data, are compared, together with the Newtonian model, in three different anatomically realistic geometries of saccular cerebral aneurysms obtained from rotational CTA. The geometries differ in size of the aneurysm and the existence or not of side branches within the aneurysm.Results show that the differences between the two generalized Newtonian mathematical models are smaller than the differences between these and the Newtonian solution, in both steady and unsteady simulations.


    [1] Journal of The Royal Society Interface, 7 (2010), 967-988.
    [2] Springer-Verlag, 1973.
    [3] Neurosurgery, 37 (1995), 774-784.
    [4] Oxford University Press, 1978.
    [5] IEEE Transactions on Medical Imaging, 24 (2005), 457-467.
    [6] AJNR Am. J. Neuroradiol, 32 (2011), 27-33.
    [7] AJNR Am. J. Neuroradiol, 32 (2011), 145-152.
    [8] Journal of Biomechanics, 41 (2008), 241-248.
    [9] Mathematical Biosciences and Engineering, 8 (2011), 409-423.
    [10] Int. J. Numer. Meth. Biomed. Engng., 26 (2010), 926-953.
    [11] Int. J. Numer. Meth. Fluids, 57 (2008), 495-517.
    [12] Journal of Neurosurgery, 103 (2005), 662-680.
    [13] American Journal of Neuroradiology, 22 (2001), 721-724.
    [14] in "Advances in Mathematical Fluid Mechanics", Springer, Berlin and Heidelberg, (2010), 295-310.
    [15] Annals of Biomedical Engineering, 36 (2008), 726-741.
    [16] Acta Neurochirurgica, 143 (2001), 429-449.
    [17] J. Biomech. Eng., 129 (2007), 273-278.
    [18] CRC Press, Boca Raton, FL, 1988.
    [19] Stroke, 38 (2007), 1924-1931.
    [20] Cardiovascular Engineering and Technology, 3 (2012), 22-40.
    [21] Math. Comput. Modelling, 25 (1997), 57-70.
    [22] International Journal for Numerical Methods in Biomedical Engineering, 28 (2012), 697-713.
    [23] in "Mathematical Methods and Models in Biomedicine" (Eds. U. Ledzewicz, H. Schättler, A. Friedman and E. Kashdan), Springer, (2013), 149-175.
    [24] Ann. Biomed. Eng., 36 (2008), 1793-1804.
    [25] in "Hemodynamical Flows", Modeling, Analysis and Simulation, Oberwolfach Seminars, 37 (2008), 63-120, Birkhäuser.
    [26] Stroke, 36 (2005), 193338.
    [27] American Journal of Neuroradiology, 24 (2003), 55966.
    [28] Journal of Neurosurgery, 106 (2007), 1051-1060.
    [29] Mech. Res. Commun., 25 (1998), 257-262.
    [30] Journal of Biomechanical Engineering, 132 (2010), 091009.
  • This article has been cited by:

    1. T. Bodnár, M. Pires, J. Janela, A. Sequeira, V. Volpert, Blood Flow Simulation Using Traceless Variant of Johnson-Segalman Viscoelastic Model, 2014, 9, 0973-5348, 117, 10.1051/mmnp/20149609
    2. T. Rodrigues, F.J. Galindo-Rosales, L. Campo-Deaño, Haemodynamics around confined microscopic cylinders, 2020, 286, 03770257, 104406, 10.1016/j.jnnfm.2020.104406
    3. Vahid Goodarzi Ardakani, Xin Tu, Alberto M. Gambaruto, Iolanda Velho, Jorge Tiago, Adélia Sequeira, Ricardo Pereira, Near-Wall Flow in Cerebral Aneurysms, 2019, 4, 2311-5521, 89, 10.3390/fluids4020089
    4. J. Tiago, A. Gambaruto, A. Sequeira, A. Sequeira, V. Volpert, Patient-specific Blood Flow Simulations: Setting Dirichlet Boundary Conditions for Minimal Error with Respect to Measured Data, 2014, 9, 0973-5348, 98, 10.1051/mmnp/20149608
    5. Adélia Sequeira, 2018, Chapter 1, 978-3-319-74795-8, 1, 10.1007/978-3-319-74796-5_1
    6. D Liepsch, S Sindeev, S Frolov, An impact of non-Newtonian blood viscosity on hemodynamics in a patient-specific model of a cerebral aneurysm, 2018, 1084, 1742-6588, 012001, 10.1088/1742-6596/1084/1/012001
    7. Simon Wolfgang Funke, Magne Nordaas, Øyvind Evju, Martin Sandve Alnaes, Kent Andre Mardal, Variational data assimilation for transient blood flow simulations: Cerebral aneurysms as an illustrative example, 2019, 35, 20407939, e3152, 10.1002/cnm.3152
    8. João M. Nunes, Francisco J. Galindo-Rosales, Laura Campo-Deaño, Extensional Magnetorheology of Viscoelastic Human Blood Analogues Loaded with Magnetic Particles, 2021, 14, 1996-1944, 6930, 10.3390/ma14226930
    9. Haipeng Liu, Linfang Lan, Jill Abrigo, Hing Lung Ip, Yannie Soo, Dingchang Zheng, Ka Sing Wong, Defeng Wang, Lin Shi, Thomas W. Leung, Xinyi Leng, Comparison of Newtonian and Non-newtonian Fluid Models in Blood Flow Simulation in Patients With Intracranial Arterial Stenosis, 2021, 12, 1664-042X, 10.3389/fphys.2021.718540
    10. Augusto Fava Sanches, Suprosanna Shit, Yigit Özpeynirci, Thomas Liebig, CFD to Quantify Idealized Intra-Aneurysmal Blood Flow in Response to Regular and Flow Diverter Stent Treatment, 2022, 7, 2311-5521, 254, 10.3390/fluids7080254
    11. Pawan Kumar Pandey, Chandan Paul, Malay K Das, Krishnamurthy Muralidhar, Assessment and visualization of hemodynamic loading in aneurysm sac and neck: Effect of foam insertion, 2021, 235, 0954-4119, 927, 10.1177/09544119211015569
    12. Sireetorn Kuharat, M. A. Chaudhry, O. Anwar Beg, Tasveer A. Bég, Computational hemodynamic simulation of non-Newtonian fluid-structure interaction in a curved stenotic artery, 2024, 8, 2587-1110, 226, 10.26701/ems.1492905
    13. Abdulgaphur Athani, Nik Nazri Nik Ghazali, Irfan Anjum Badruddin, Abdullah Y. Usmani, Mohammad Amir, Digamber Singh, Sanan H. Khan, Image-Based Hemodynamic and Rheological Study of Patient’s Diseased Arterial Vasculatures Using Computational Fluid Dynamics (CFD) and Fluid–Structure Interactions (FSI) Analysis: A review, 2024, 1134-3060, 10.1007/s11831-024-10193-5
    14. Felipe Ramirez-Velandia, Vincenzo T.R. Loly, Emmanuel O. Mensah, Jean Filo, Rafael T. Tatit, João de Sá Brasil Lima, Christopher S. Ogilvy, Carlos E. Baccin, Management of cervical carotid pseudoaneurysms: Integrating clinical practice with computational fluid dynamics insights, 2025, 251, 03038467, 108836, 10.1016/j.clineuro.2025.108836
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2953) PDF downloads(507) Cited by(14)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog