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Abstract. Two different generalized Newtonian mathematical models for blood
flow, derived for the same experimental data, are compared, together with the

Newtonian model, in three different anatomically realistic geometries of sac-

cular cerebral aneurysms obtained from rotational CTA. The geometries differ
in size of the aneurysm and the existence or not of side branches within the

aneurysm. Results show that the differences between the two generalized New-
tonian mathematical models are smaller than the differences between these and

the Newtonian solution, in both steady and unsteady simulations.

1. Introduction. Cerebral aneurysms are localized pathological dilations of the
brain vessels, due to the weakening of the wall media. They potentially result in
the sudden death or morbidity of the patient, through rupture and massive hemor-
rhage, or by pressing adjacent brain tissue. In the majority of the cases intracranial
aneurysms remain asymptomatic until rupture. Based on autopsy and angiography
data it is estimated that up to 6% of the population harbors one or more intracranial
aneurysm [23, 16]. They often occur at the apices of bifurcations and outer bends
of curved arterial segments [19, 30, 8, 12] suggesting, together with the numerous
studies found in literature [23, 5, 7, 22, 9, 3, 24, 26, 20], their strong correlation
with local hemodynamics, among other factors that include genetic predisposition,
lifestyle and extra-vascular structure. Consequently, the medical community is in-
creasingly demanding for scientifically rigorous and quantitive studies of blood flow
dynamics within patient-specific aneurysms, driving the development and use of
mathematical models and numerical methods for the computational hemodynamic
simulations [23, 22, 7, 27, 13, 6]. Nowadays, computer simulations already play a
decisive role in better understanding the mechanisms of initiation and progression
of aneurysms [23, 22, 7, 27, 13, 6], providing valuable information on the details of
hemodynamic characteristics believed to be related with the weakening of the wall
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[1, 16, 15], such as wall shear stress (WSS), oscillatory shear index (OSI), elevated
pressure or area of flow impingement. Nevertheless, the numerical simulations are
prone to a number of uncertainties [28, 11, 23, 22, 9] that should be quantified when
using their outcome to analyze aneurysm formation and development, or to draw
clinical conclusions such as the risk of aneurysm rupture or the success of surgical
treatment. Indeed, despite the increasing feasibility and capability of performing
numerical simulations, these hold intrinsic errors associated to in vivo medical im-
age data and techniques for geometry reconstruction, and translation of physical
observations to mathematical models.

The choice of the fluid mathematical model is mostly related with red blood cell
(RBC) behavior. The mechanical response of blood, hence its rheological character-
istics, largely depend on the state of its RBC, that can range from three-dimensional
microstructures, at low shear rates, to uniformly dispersed individual cells, aligned
with the flow field, at high shear rates [25]. This is relevant because RBCs have a
high volume concentration in whole blood (hematocrit Ht ≈ 45%). Besides RBC,
blood is formed by white blood cells and platelets, suspended in an aqueous polymer
solution, the plasma [25]. While plasma is nearly Newtonian, whole blood exhibits
non-Newtonian properties, such as a varying shear-thinning viscosity. However,
throughout most of the arterial system of healthy individuals, the RBC are dis-
persed, and the viscosity of blood can be considered effectively constant, hence it
is sufficient to model blood as a Newtonian fluid [25, 17, 7, 20]. Many authors
advocate this argument, nevertheless this simplifying assumption may not be valid
in some diseased states where the vascular geometry is altered and induces regions
of slow recirculation, such as in aneurysms or downstream of stenoses. In these
cases the non-Newtonian behavior may become relevant and constitutive models
with shear-thinning viscosity or yield-stress should be applied [25, 21].

Several studies can be found in literature regarding the comparison between
Newtonian and non-Newtonian blood models, both in idealized and patient-specific
scenarios [22, 23, 9, 5]. Although the error bounds due to the fluid model might
have a lower impact with respect to the one’s related with the image reconstruc-
tion [17], it can be shown that the variability of the blood viscosity can lead to
differences in the wall shear stress and other important hemodynamic indexes with
clinical significance [23, 9, 5], indicating that non-Newtonian models should be ana-
lyzed. However, very little can be found in the literature regarding the comparison
between different non-Newtonian models. In [21] the authors compare the Casson
and Bingham’s models in a specific pathological situation, with no direct relation
with aneurysms. While the uncertainty quantification in the fluid mathematical
model is mostly carried out through Newtonian vs non-Newtonian studies [23, 9, 5],
there exist several non-Newtonian constitutive models considered appropriate to
describe blood flow [9, 5, 21, 25]. Hence, the choice of a certain non-Newtonian
constitutive model also constitutes a source of uncertainty with respect to the com-
puted flow field, and should be further analyzed. The present work focuses on the
comparison of two non-Newtonian fluid models commonly used in blood flow simu-
lations: the Carreau and the Cross shear-thinning models [25, 9], together with the
standard Newtonian one.

The fluid dynamics strongly depends on the geometry surface definition, mak-
ing it essential to use anatomically realistic geometries to study aneurysms. In-
deed, patient-specific geometries can be highly complex, with several side branches,
non-planarity and sharp bends, leading to a disturbed flow field that is usually
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over simplified in idealized geometries [10]. The size of the aneurysm also plays
an important role in the existence of recirculation areas, where the use of proper
non-Newtonian fluid models might be crucial. Hence, three different anatomically
realistic geometries, reconstructed from data obtained from in vivo rotational CTA
scan, are studied in this work: a small aneurysm, a big aneurysm and an aneurysm
with a side branch within the saccular region.

The paper is organized as follows. Section 2 is devoted to detailing the patient-
specific geometries and their reconstruction. In Section 3 the mathematical mod-
els, including the non-Newtonian constitutive relations, are described in detail. In
Section 4 the numerical methods and setup are introduced. The numerical simu-
lations are carried out by means of the Finite Volume Method, using OpenFoam
(www.openfoam.com). Steady and unsteady simulations are performed and ana-
lyzed. In Section 5 the numerical results are presented and discussed. Finally, the
conclusions are drawn in Section 6.

2. Patient data sets. The medical images used in this study were obtained from
in vivo rotational CTA as part of clinical procedures of cerebral aneurysm exclusion
by coiling. The patient data sets are used and termed in this study ‘big’, ‘branch’
and ‘small’, due to their different characteristics (see figure 1). The chosen data
sets reflect a variety of shape, location and presence of large side-branches within
the aneurysm, that can be considered typical cases. The portion of the aneurysm
location along the cerebral arterial system varies in each case. The voxel resolution
was 0.4122 mm on a 5123 grid for the ‘big’ and ‘branch’ cases, while ‘small’ was of
0.8244 mm on a 2563 grid. The reconstruction of the three-dimensional geometry for
numerical simulations consists of image segmentation through a constant threshold
approach, surface extraction using linear interpolation from the voxel grey-scale
values, and finally surface smoothing based on the mesh connectivity [9, 11]. The
resulting surface models of the arteries are prepared for the numerical simulations
by identifying the regions of interest, removing secondary branches, and creating an
unstructured tetrahedral volumetric mesh. The meshes consisted in approximately
500K to 800K tetrahedral elements for the different cases studied. A mesh sensitivity
analysis was performed in a previous work [9].

Figure 1. Geometries used in this study, named (from left to
right) ‘big’, ‘branch’ and ‘small’, with crosses indicating the sam-
pling location used in the analysis of Section 5.2

3. Blood rheology. The circulation of blood in the human cardiovascular system
depends on the driving force of the heart, on the geometry and mechanical properties
of the vascular system, and also on the mechanical properties of blood. Here we
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will focus on hemorheology, the study of flow properties of blood and its elements.
For a comprehensive description of blood components and properties, we refer to
Robertson, Sequeira and Kameneva [25] and references therein.

It is widely accepted that hemodynamic factors like flow separation, recircu-
lation, low and oscillatory wall shear stress, all play a role in the localization and
development of vascular diseases. For this reason, the development of mathematical
models and numerical simulations in the vascular system can lead to a better un-
derstanding of the factors that trigger such diseases as well as to improve diagnosis
and therapeutic planning.

In order to derive proper constitutive models for blood we must explore the
connection between the composition of blood and its physical properties. As already
mentioned, whole blood roughly consists of a suspension of cellular elements, red
blood cells, white blood cells and platelets in plasma. While plasma is usually
considered a Newtonian fluid, whole blood exhibits non-Newtonian properties like
shear-thinning, as well as viscoelasticity, thixotropy and yield-stress, mainly due to
RBCs behavior and to their high volume concentration in whole blood.

Shear-thinning. The main non-Newtonian property of blood, confirmed by very
simple rheometric experiments, is its non constant viscosity. Blood viscosity is a
decreasing function of shear rate. When blood is at rest or at low shear rates the
RBCs aggregate in rod-shaped structures called rouleaux. These structures create
an increased resistance to motion and cause blood to exhibit a higher apparent
viscosity (Figure 2 (a) ).

(a) (b) (c)

Figure 2. View of red blood cells in normal human blood: (a)
forming rouleaux at low shear rates [2]; (b) under a shear stress of
10Pa; (c) under a shear stress of 300Pa [4]

As shear rate increases, these large aggregates breakdown into smaller aggregates
and eventually into individualized RBCs (Figure 2 (b)), leading to a decrease in
viscosity. As shear rate increases even further, the RBCs become deformed and
align with the main flow, decreasing the viscosity. It has been shown that this
process is reversible, i.e. if the shear rate is decreased the RBC will return to an
undeformed state and eventually the rouleaux are formed again. The dynamics
of viscosity variation is in fact more complex because viscosity does nor change
instantly with shear rate. When shear rate is stepped up or down, it takes some
time for the formation and breakdown of RBCs aggregates, and consequently for
the stabilization of the viscosity value. This effect is known as thixotropy and
is commonly neglected in most rheological models. In fact, the amount of time
necessary for the rouleaux to form, together with the small dimension of regions



SHEAR-THINNING EFFECTS IN PATIENT-SPECIFIC CEREBRAL ANEURYSMS 653

of consistently low shear rate, prevents their existence in most parts of the arterial
system of healthy individuals and, for this reason, it is acceptable to consider a
constant value for viscosity. However, if in some part of the arterial system the
stability of the RBCs aggregates is augmented, for example in the case of saccular
aneurysms where a large recirculation area is created, the viscosity variation and
consequently shear-thinning models must be taken into consideration.

Most shear-thinning models just amount to prescribe a functional dependence
between shear rate and viscosity. The viscosity function µ(γ̇) is fixed a priori by
fitting experimental data, and can be written in the general form

µ(γ̇) = µ∞ + (µ0 − µ∞)F (γ̇), (1)

where µ0 and µ∞ are the asymptotic viscosities at zero and infinite shear rate,
respectively, and F (γ̇) is a continuous and monotonic function such that

lim
γ̇→0

F (γ̇) = 1, lim
γ̇→∞

F (γ̇) = 0.

Notice that, given the properties of F (γ̇), the viscosity function (1) is bounded by µ0

from above, and µ∞ from below. These limit viscosities have solely a mathematical
meaning since for very high shear rates the RBCs would be destroyed and for very
low shear rates it is experimentally impossible to accurately measure the viscosity.

The experimental viscosity data used in this work were obtained by Prof. M.V.
Kameneva (Univ. Pittsburgh) for normal human blood at 23oC and for an hema-
tocrit (Ht) of 40%. The measurements were carried out with a Contraves LS30
machine for the values of shear rate under 128 s−1, and with a Contraves MSM
machine for the values of shear rate over 300 s−1. Using the estimates found in [18],
these data were converted to viscosity values at body temperature, i.e. 37oC (see
[9] for details).

In Table 1 are listed the well known Carreau and Cross viscosity functions, to-
gether with the correspondent parameter values, which were obtained by means of
a nonlinear least squares fit from the viscosity data [9].

Model Viscosity Model Model constants for blood

Carreau F (γ̇) = (1 + (λγ̇)2)(n−1)/2
µ0 = 0.456Poi, µ∞ = 0.032Poi
λ = 10.03s, n = 0.344

Cross F (γ̇) = (1 + (λγ̇)m)−1
µ0 = 0.618Poi, µ∞ = 0.034Poi
λ = 7.683s,m = 0.810

Table 1. Selected generalized Newtonian models for blood vis-
cosity with the corresponding material constants. Parameter con-
stants were obtained by nonlinear least squares fit from viscosity
data, with Ht = 40% and T = 37o C.

In Figure 3 the viscosity models of Table 1 are plotted. It can be seen that the zero
shear rate viscosity µ0 changes considerably between models, for the same viscosity
data. In fact, even if different viscosity models fit very well the experimental data,
they can present quite different values regarding the zero shear viscosity. This is
related to the lack of viscosity data for very low shear rates which, in the present
study, start at a minimum of 0.06 s−1.
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Figure 3. Apparent viscosity as a function of shear rate for whole
blood at Ht = 40%, T = 37o.

A possible fix for this increased uncertainty in the choice of the zero–shear vis-
cosity is to use additional experimental or numerical data. More precisely, it is
possible to construct semi-analytical solutions for the flow of pseudo-plastic fluids
in pipes, under a constant pressure gradient (see [14]). This allows to choose µ0

in such a way that a certain experimentally measured peak velocity is yielded by
our viscosity model. In this way, the value of µ0, initially calculated from the least
squares fit of the viscosity data, can be tuned to yield the correct velocity for a
certain range of pressure gradients. This procedure is therefore dependent on the
expected flow parameters. The maximum velocity for flow in a straight tube, for
different pressure gradients, is displayed in Figure 4, for the Carreau model with
the initial parameters presented in Table 1.

In this work the Newtonian viscosity is µ = 0.04 Poi (0.004 Kg m−1 s−1), corre-
sponding to the average experimental viscosity in the range γ̇ ∈ [6, 1000] s−1. The
density of the blood is ρ = 1030 Kg m−3.

Fluid equations. Given the considerations on blood rheology presented so far,
we model blood flow as an incompressible and isothermal fluid with varying shear-
dependent viscosity. These fluids are commonly known as generalized Newtonian
fluids and the conservation of mass and linear momentum equations can be written
as

∇ · u = 0 (2)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · τ (3)

where ρ is the constant fluid density, the variables u, p are the fluid velocity and
pressure, and τ is the extra stress tensor which, for this class of models, is given
explicitly by τ = µγ̇(∇u+∇uT ). The variable viscosity is a function of the shear
rate magnitude, a scalar measure of the strain rate tensor given by



SHEAR-THINNING EFFECTS IN PATIENT-SPECIFIC CEREBRAL ANEURYSMS 655

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Zero−shear viscosity

M
ax

im
um

 v
el

oc
ity

 

 

G=1
G=2
G=3

Figure 4. Maximum velocity in pipe flow for the Carreau model
for different zero-shear viscosities, µ0, and pressure gradients, G,
set to G = 1, 2, 3.

γ̇ =

√
1

2
(∇u+∇uT ) : (∇u+∇uT ) =

√√√√∑
i,j

(
∂ui
∂xj

+
∂uj
∂xi

)2

This particular form of the extra stress tensor, being symmetric, is also com-
patible with the conservation of angular momentum. This set of equations must
be endowed with appropriate boundary and initial conditions, depending on the
particular geometry and situation to be modeled. Finally, thermodynamical effects
are neglected since body temperature can be considered constant.

4. Numerical methods and flow parameters. In the scope of this study both
steady-state and unsteady problems were considered. For the steady-state simula-
tions the set of equations described in the previous section was discretized using
a standard finite volume method with linear Gauss integration. In the case of the
unsteady simulations a pressure implicit operator splitting was used to discretize
in time, while the space discretization was similar to the steady case. The simu-
lations were carried out with the OpenFoam CFD software. In the steady-state,
the boundary conditions consisted on imposing a flat velocity profile at the inlet of
each geometry, in such a way that the Reynolds number Re = 250 is based on the
hydraulic diameter. The average diameters in the undamaged part of the vessels
are 4.8 mm, 5.16 mm and 3.35 mm for the geometries named as ‘big’, ‘branch’
and ‘small’, respectively. The no-slip condition was imposed at the vessel wall, and
zero pressure at the outlets. The remaining conditions were set as homogeneous
Neumann. In the unsteady simulations the inlet velocity was modulated in order
to obtain a physiological volume flow rate.

Although much more elaborate options could be considered for the boundary
conditions, namely using reduced mathematical models [22] to account for the global
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circulation, we decided to simplify this particular aspect of the work. The inlet
sections are chosen to be far from the aneurysm, so that the flow can develop and
the effects of the choice of inflow conditions are reduced.

5. Numerical results and discussion.

5.1. Steady-state simulations. A total of nine cases were considered to illustrate
the impact of the model choice in relevant hemodynamic indicators like the wall
shear stress (WSS), velocity magnitude and local viscosity. These cases correspond
to the use of three rheological models (Carreau, Cross and Newtonian) on three
geometries.

Figure 5. WSS [Pa] results in the ‘branch’ geometry. Top: Car-
reau model. Bottom: difference with respect to the Newtonian
(left) and the Cross (right) models.

It is possible to conclude that the three rheological models are qualitatively sim-
ilar in the three geometries, although relevant quantitative differences are recorded.
Figures 5-7 display the WSS distributions. The WSS is on the whole lower within
the aneurysm than in the artery. The ‘small’ geometry exhibits the smallest velocity
magnitude within the aneurysm, while the ‘big’ geometry has the largest due to its
location at the outer bend of the artery and its size that facilitates the entrance of
the flow, while in the ‘branch’ geometry the larger velocity is due to flow circulating
around the dome and exiting through the secondary branch. Quantitatively, an
average WSS within the aneurysm is approximately 3Pa and the maximum WSS
greater than 10Pa is located at the distal part of the neck. The observed relative
differences with respect to the Carreau model are as follows:
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Figure 6. WSS [Pa] results in the ‘big’ geometry. Top: Carreau
model. Bottom: difference with respect to the Newtonian (left)
and the Cross (right) models

Figure 7. WSS [Pa] results in the ‘small’ geometry. Top: Carreau
model. Bottom: difference with respect to the Newtonian (left) and
the Cross (right) models
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Figure 8. Velocity magnitude [m s−1] results in the ‘branch’ ge-
ometry. Top: Carreau model. Bottom: difference with respect to
the Newtonian (left) and the Cross (right) models

Max(|WssCarrbranch −WssNewtbranch|)
Max(|WssCarrbranch|)

= 12%
Max(|WssCarrbranch −WssCrossbranch|)

Max(|WssCarrbranch|)
= 4%

Max(|WssCarrbig −WssNewtbig )|)
Max(|WssCarrbig |)

= 10%
Max(|WssCarrbig −WssCrossbig |)

Max(|WssCarrbig |)
= 3%

Max(|WssCarrsmall −WssNewtsmall|)
Max(|WssCarrsmall|)

= 9%
Max(|WssCarrsmall −WssCrosssmall |)

Max(|WssCarrsmall|)
= 5%

It is to be noted that even though the difference between the shear-thinning
models is lower than between them and the Newtonian one, the choice of viscosity
model impacts the results. This difference is noticeable mostly inside the aneurysm,
where the low average shear rate enhances the role of µ0, which can be quite different
from one shear-thinning model to another.

In order to observe the flow region within the aneurysm, a slice perpendicular to
the artery is extracted. In this analysis we focus on the ‘branch’ geometry. Figure 8
shows the velocity magnitude and Figure 9 shows the dynamic viscosity magnitude
in the slice. It can be noted that the differences in velocity and viscosity are less
prominent than for the WSS, however the greatest differences are clearly identified
to be at regions of both higher and lower velocity gradients. This indicates that in
the regions of both low and high shear rates the computed solution will differ more
noticeably. The presence of the secondary branch within the aneurysm causes the
flow to impinge on the distal region of the aneurysm neck and in part flow along the
top portion of the dome and exit in the secondary branch. This causes a region of
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Figure 9. Viscosity [Kg m−1s−1] results in the ‘branch’ geome-
try. Top: Carreau model. Bottom: difference with respect to the
Newtonian (left) and the Cross (right) models

relatively slow recirculating flow at the centre of the aneurysm. This complex flow
field, as similarly present in the other geometries studied, exhibits recirculation and
flow stagnation while the main artery has higher velocities. This causes a broad
range of shear rates to be present, and hence shear-thinning rheological behavior
can play a noticeable role in the resulting computed flow field. The observed relative
differences in the slice, with respect to the Carreau model, are as follows:

Max(|V elCarrbranch − V elNewtbranch|)
Max(|V elCarbranch|)

= 5%
Max(|V elCarrbranch − V elCrossbranch|)

Max(|V elCarbranch|)
= 1%

Max(|V iscCarrbranch − V iscNewtbranch|)
Max(|V iscCarbranch|)

= 10%
Max(|V iscCarrbranch − V iscCrossbranch|)

Max(|V iscCarbranch|)
= 3%

As a final comparison we observe the integrated effects of the different rheological
models for blood by computing the pressure drop between the inlet and outlet
sections along the main artery. These pressure drops are given as follows:

∆PCarrbranch = 136 Pa ∆PCrossbranch = 138Pa ∆PNewtbranch = 149 Pa
∆PCarrbig = 403 Pa ∆PCrossbig = 403 Pa ∆PNewtbig = 415 Pa

∆PCarrsmall = 421 Pa ∆PCrosssmall = 426 Pa ∆PNewtsmall = 447 Pa

It can be seen that the Newtonian model has the highest pressure drop consis-
tently, while the Carreau and Cross models behave similarly but with moderately
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higher pressure drop in the latter case. This indicates that the Newtonian model
tends to have higher viscous forces than the shear-thinning models used here.

5.2. Unsteady simulations. The same nine cases reported for the steady simu-
lations were considered in an unsteady physiological regime. The simulations were
run for a total of twenty cardiac cycles, which was considered sufficient to reach a
periodic behavior of the relevant hemodynamic parameters. The reported results
correspond only to the last cardiac cycle.

All results are qualitatively similar to those obtained in the previous section
but, depending on the geometry, the agreement between the steady solution and
the averaged unsteady solution can vary considerably. In Figure 10 we plot, for
each geometry and with a chosen model, the difference between steady and time-
averaged solutions, as well as the standard deviation for the unsteady solution. For
each geometry, similar differences between steady and time-averaged solutions are
observed. Therefore, results for only one model in each geometry are shown. Con-
sidering the WSS magnitude obtained for the steady-state simulations, we observe
that, for the ‘branch’ and ‘small’ geometries, there is a considerable gap between
the WSS values obtained from the steady and unsteady simulations, while for the
‘big’ geometry the steady solution correctly represents the time-averaged unsteady
solution.

The analysis of standard deviation in the time evolution of WSS gives useful
information that allows to identify regions of higher WSS oscillation. In all cases
under consideration this measure attains its lower values inside the aneurysm and
higher values in or near the neck. In the case of the ‘small’ geometry the region of
higher WSS standard deviation is most likely related to local surface curvature and
not to the presence of the aneurysm.

With the purpose of illustrating the differences between the three models in a
synthetic manner we present the time evolution of WSS in selected locations of
the three geometries, namely in the region of the neck distal to inflow sections (see
Figure 1 for the location of these points). The time evolution of velocity in a selected
cell inside the aneurysm, in the case of the geometry labeled as ‘small’, is also shown
in figures 11. 12. Here we represent the time evolution of the computed velocity field
for the three rheological models, in the case of the ‘small’ aneurysm. The differences
are significant, ranging from 6% to 13% when comparing the Newtonian with the
non-Newtonian models, and around 2% when comparing the two non-Newtonian
models. These results are compatible with the steady-state analysis.

Figure 13 shows the time evolution of the WSS in a selected location in each
geometry, as well as the relative difference between models. It is clear from these
images that there is a significant difference between the WSS values reported by each
model in absolute an relative terms along the cardiac cycle, reaching a maximum
in peak systole and diastole. As expected, the difference between the Carreau and
Cross models is smaller than between either of them and the Newtonian model. The
magnitude of these differences varies between geometries and during the cardiac
cycle, it is almost constant in the ‘branch’ geometry and presents higher variation
in the other geometries.

6. Conclusions. Three patient-specific geometries of saccular cerebral aneurysms
have been used to study the effects of shear-thinning viscosity models for blood
on the computed flow field. The Carreau and Cross non-Newtonian models were
used since these are commonly adopted to describe blood flow behavior and the
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Figure 10. WSS difference [Pa] between steady and time-
averaged solutions (left) and standard deviation of the computed
unsteady WSS (right) for the ‘branch’ geometry with the Cross
model (top row), ‘big’ geometry with the Carreau model (middle
row) and for the ‘small’ geometry with the Newtonian model.

coefficients to these models are obtained from a common experimental data set.
The major source of differences between these non-Newtonian models resides in
relatively large discrepancies in the asymptotic zero-shear viscosity value, µ0, caused
by the lack of experimental data for very low shear rates. This difference does not
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Figure 11. Typical time evolution of the velocity components for
the ‘small’ aneurysm (selected cell inside the aneurysm region), see
Figure 1 for location.
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the ‘small’ aneurysm, see Figure 1 for location.

have a physical meaning but rather is a consequence of data fitting. Both steady
state and unsteady flow simulations highlight noticeable differences between the
Newtonian and the shear-thinning models, however, differences between the non-
Newtonian solutions are also visible. Overall, the wall shear stress indicates that
approximately 10% variation can be present between the Carreau and Newtonian
models, while approximately 4% is seen between the shear-thinning models. These
differences should be understood as average values, as they are not uniform in time
and space. Cross-sectional slice through the aneurysm indicates similar trends and
identifies the regions of greatest differences between the models as due to both the
high and low shear rates. Pressure drops across the main arterial vessel show that
the Newtonian model exhibits the greatest viscous drag.

The three geometries considered present great differences in shape, size, location
and characteristics. Even if this can be considered a limited set of geometries, it is
nevertheless varied while the results indicate similarities in the effects of changing
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Figure 13. Time evolution of the WSS and WSS differences be-
tween the Newtonian, Carreau and Cross models in the ‘branch’
(top row), ‘big’ (middle row) and ‘small’ (bottom row) aneurysms,
respectively.

the rheological model. The obtained results can help to understand the impact of the
choice of the shear-thinning model to capture the rheological behavior of blood, as
well as the possible uncertainty and variability when fitting different shear-thinning
models to the same experimental data set, or opting for a Newtonian assumption.
Our conclusions are limited by the lack of in vivo or in vitro measurements in
these geometries, that could indicate which model is preferable under these flow
conditions.

Acknowledgments. This work has been partially funded by FCT (Fundação para
a Ciência e a Tecnologia, Portugal) through grants SFRH/BPD/34273/2006 and
SFRH/BPD/44478/2008, and through the project UTAustin/CA/0047/2008.

REFERENCES

[1] H. Baek, M. V. Jayaraman, P. D. Richardson and G. E. Karniadakis, Flow instability and

wall shear stress variation in intracranial aneurysms, Journal of The Royal Society Interface,
7 (2010), 967–988.

[2] M. Bessis, “Living Blood Cells and Their Ultrastructure,” Springer-Verlag, 1973.

http://dx.doi.org/10.1098/rsif.2009.0476
http://dx.doi.org/10.1098/rsif.2009.0476


664 A. GAMBARUTO, J. JANELA, A. MOURA AND A. SEQUEIRA

[3] A. C. Burleson, C. M. Strother and V. T. Turitto, Computer modeling of intracranial saccular
and lateral aneurysms for the study of their haemodynamics, Neurosurgery, 37 (1995), 774–

784.

[4] C. G. Caro, T. J. Pedley, R. C. Schroter and W. A. Seed, “The Mechanics of the Circulation,”
Oxford University Press, 1978.

[5] J. R. Cebral, M. A. Castro, S. Appanaboyina, C. M. Putman, D. Millan and A. F. Frangi, Effi-
cient pipeline for image-based patient-specific analysis of cerebral aneurysm haemodynamics:

Technique and sensitivity, IEEE Transactions on Medical Imaging, 24 (2005), 457–467.

[6] J. R. Cebral, F. Mut, M. Raschi, E. Scrivano, P. Lylyk and C. M. Putman, Aneurysm rupture
following treatment with flow diverting stents: Computational hemodynamics analysis of

treatment , AJNR Am. J. Neuroradiol, 32 (2011), 27–33.

[7] J. R. Cebral, F. Mut, J. Weir and C. M. Putman, Quantitative characterization of the hemody-
namic environment in ruptured and unruptured brain aneurysms, AJNR Am. J. Neuroradiol,

32 (2011), 145–152.

[8] M. D. Ford, S. W. Lee, S. P. Lownie, D. W. Holdsworth and D. A. Steinman, On the effect
of parent-aneurysm angle on flow patterns in basilar tip aneurysms: Towards a surrogate

geometric marker of intra-aneurismal haemodynamics, Journal of Biomechanics, 41 (2008),

241–248.
[9] A. Gambaruto, J. Janela, A. Moura and A. Sequeira, Sensitivity of haemodynamics in pa-

tient specific cerebral aneurysms to vascular geometry and blood rheology, Mathematical Bio-
sciences and Engineering, 8 (2011), 409–423.

[10] A. Gambaruto, A. Moura and A. Sequeira, Topological flow structures and stir mixing for

steady flow in a peripheral bypass graft with uncertainty, Int. J. Numer. Meth. Biomed.
Engng., 26 (2010), 926–953.
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