Loading [Contrib]/a11y/accessibility-menu.js

Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays

  • Received: 01 January 2012 Accepted: 29 June 2018 Published: 01 January 2013
  • MSC : Primary: 92D30; Secondary: 34C23.

  • We consider a mathematical model that describes the interactions ofthe HIV virus, CD4 cells and CTLs within host, which is amodification of some existing models by incorporating (i) twodistributed kernels reflecting the variance of time for virus toinvade into cells and the variance of time for invaded virions toreproduce within cells; (ii) a nonlinear incidence function $f$ forvirus infections, and (iii) a nonlinear removal rate function $h$for infected cells. By constructing Lyapunov functionals and subtleestimates of the derivatives of these Lyapunov functionals, we shownthat the model has the threshold dynamics: if the basicreproduction number (BRN) is less than or equal to one, then theinfection free equilibrium is globally asymptotically stable,meaning that HIV virus will be cleared; whereas if the BRN is largerthan one, then there exist an infected equilibrium which is globallyasymptotically stable, implying that the HIV-1 infection willpersist in the host and the viral concentration will approach apositive constant level. This together with thedependence/independence of the BRN on $f$ and $h$ reveals the effectof the adoption of these nonlinear functions.

    Citation: Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays[J]. Mathematical Biosciences and Engineering, 2013, 10(2): 483-498. doi: 10.3934/mbe.2013.10.483

    Related Papers:

    [1] A. M. Elaiw, N. H. AlShamrani, A. D. Hobiny . Stability of an adaptive immunity delayed HIV infection model with active and silent cell-to-cell spread. Mathematical Biosciences and Engineering, 2020, 17(6): 6401-6458. doi: 10.3934/mbe.2020337
    [2] A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059
    [3] Yu Ji . Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences and Engineering, 2015, 12(3): 525-536. doi: 10.3934/mbe.2015.12.525
    [4] Xinran Zhou, Long Zhang, Tao Zheng, Hong-li Li, Zhidong Teng . Global stability for a class of HIV virus-to-cell dynamical model with Beddington-DeAngelis functional response and distributed time delay. Mathematical Biosciences and Engineering, 2020, 17(5): 4527-4543. doi: 10.3934/mbe.2020250
    [5] Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341
    [6] Shengqiang Liu, Lin Wang . Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences and Engineering, 2010, 7(3): 675-685. doi: 10.3934/mbe.2010.7.675
    [7] Yan Wang, Tingting Zhao, Jun Liu . Viral dynamics of an HIV stochastic model with cell-to-cell infection, CTL immune response and distributed delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7126-7154. doi: 10.3934/mbe.2019358
    [8] A. M. Elaiw, A. S. Shflot, A. D. Hobiny . Stability analysis of general delayed HTLV-I dynamics model with mitosis and CTL immunity. Mathematical Biosciences and Engineering, 2022, 19(12): 12693-12729. doi: 10.3934/mbe.2022593
    [9] Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
    [10] Jiawei Deng, Ping Jiang, Hongying Shu . Viral infection dynamics with mitosis, intracellular delays and immune response. Mathematical Biosciences and Engineering, 2023, 20(2): 2937-2963. doi: 10.3934/mbe.2023139
  • We consider a mathematical model that describes the interactions ofthe HIV virus, CD4 cells and CTLs within host, which is amodification of some existing models by incorporating (i) twodistributed kernels reflecting the variance of time for virus toinvade into cells and the variance of time for invaded virions toreproduce within cells; (ii) a nonlinear incidence function $f$ forvirus infections, and (iii) a nonlinear removal rate function $h$for infected cells. By constructing Lyapunov functionals and subtleestimates of the derivatives of these Lyapunov functionals, we shownthat the model has the threshold dynamics: if the basicreproduction number (BRN) is less than or equal to one, then theinfection free equilibrium is globally asymptotically stable,meaning that HIV virus will be cleared; whereas if the BRN is largerthan one, then there exist an infected equilibrium which is globallyasymptotically stable, implying that the HIV-1 infection willpersist in the host and the viral concentration will approach apositive constant level. This together with thedependence/independence of the BRN on $f$ and $h$ reveals the effectof the adoption of these nonlinear functions.


    [1] Bioinformatics, 21 (2005), 1668-1677.
    [2] Proc. Roy. Soc. Lond. B, 265 (2000), 1347-1354.
    [3] J. Virol., 71 (1997), 3275-3278.
    [4] Proc. Natl. Acad. Sci. USA, 94 (1997), 6971-6976.
    [5] Chaos, Solitons and Fractals, 12 (2001), 483-489
    [6] in "Mathematics In Science And Engineering" $2^{nd}$ edition, Elsevier, Amsterdam-Boston, 202 (2005).
    [7] Chaos, Solitons and Fractals, 41 (2009), 175-182.
    [8] Bulletin of Mathematical Biology, 64 (2002), 29-64.
    [9] Physica A, 342 (2004), 234-241.
    [10] Math. Biosci., 200 (2006), 1-27.
    [11] J. Math. Biol., 48 (2004), 545-562.
    [12] J. Theoret. Biol., 175 (1995), 567-576.
    [13] J. Theoret. Biol., 190 (1998), 201-214.
    [14] SIAM J. Appl. Math., 67 (2006), 337-353.
    [15] Discrete Continuous Dynam. Systems-B, 4 (2004), 615-622.
    [16] Academic Press, San Diego, 1993.
    [17] Discrete Dynamics in Nature and Society, 2011 (2011), Art. ID 673843, 13 pp.
    [18] Math. Biosci. and Eng., 7 (2010), 675-685.
    [19] Theor. Popul. Biol., 52 (1997), 224-230.
    [20] J. Math. Anal. Appl., 352 (2009), 672-683.
    [21] Math. Biosci., 152 (1998), 143-163.
    [22] J. Math. Anal. Appl., 375 (2011), 14-27.
    [23] Math. Biosci., 163 (2000), 201-215.
    [24] Math. Biosci., 179 (2002), 73-94.
    [25] Science, 272 (1996), 74-79.
    [26] J. Theor. Biol., 184 (1997), 203-217.
    [27] Math. Biosci., 235 (2012), 98-109.
    [28] SIAM Rev., 41 (1999), 3-44.
    [29] Science, 271 (1996), 1582-1586.
    [30] Science, 271 (1996), 497-499.
    [31] Mathematical Medicine and Biology, IMA.
    [32] Comput. Math. Appl., 51 (2006), 1593-1610.
    [33] Physica D, 226 (2007), 197-208.
    [34] Comput. Math. Appl., 61 (2011), 2799-2805.
    [35] J. Math. Anal. Appl., 375 (2011), 75-81.
    [36] Mathematical Medicine and Biology, IMA, 25 (2008), 99-112.
    [37] Discrete Continuous Dynam. Systems-B, 12 (2009), 511-524.
    [38] Comput. Math. Appl., 62 (2011), 3091-3102.
  • This article has been cited by:

    1. Jinliang Wang, Min Guo, Xianning Liu, Zhitao Zhao, Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay, 2016, 291, 00963003, 149, 10.1016/j.amc.2016.06.032
    2. Yu Yang, Stability and Hopf bifurcation of a delayed virus infection model with Beddington-DeAngelis infection function and cytotoxic T-lymphocyte immune response, 2015, 38, 01704214, 5253, 10.1002/mma.3455
    3. Hongquan Sun, Jin Li, A numerical method for a diffusive virus model with general incidence function, cell-to-cell transmission and time delay, 2020, 545, 03784371, 123477, 10.1016/j.physa.2019.123477
    4. A. M. Elaiw, N. H. AlShamrani, Dynamics of viral infection models with antibodies and general nonlinear incidence and neutralize rates, 2016, 4, 2195-268X, 303, 10.1007/s40435-015-0181-2
    5. Zhiting Xu, Youqing Xu, Stability of a CD4+ T cell viral infection model with diffusion, 2018, 11, 1793-5245, 1850071, 10.1142/S1793524518500717
    6. Jinliang Wang, Jiying Lang, Xianning Liu, Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells, 2015, 20, 1531-3492, 3215, 10.3934/dcdsb.2015.20.3215
    7. A. M. Elaiw, A. S. Alsheri, Global Dynamics of HIV Infection of CD4+T Cells and Macrophages, 2013, 2013, 1026-0226, 1, 10.1155/2013/264759
    8. Jia Liu, Qunying Zhang, Canrong Tian, EFFECT OF TIME DELAY ON SPATIAL PATTERNS IN A AIRAL INFECTION MODEL WITH DIFFUSION, 2016, 21, 1392-6292, 143, 10.3846/13926292.2016.1137503
    9. A. M. Shehata, A. M. Elaiw, E. Kh. Elnahary, M. Abul-Ez, Stability analysis of humoral immunity HIV infection models with RTI and discrete delays, 2017, 5, 2195-268X, 811, 10.1007/s40435-016-0235-0
    10. M.L. Mann Manyombe, J. Mbang, G. Chendjou, Stability and Hopf bifurcation of a CTL-inclusive HIV-1 infection model with both viral and cellular infections, and three delays, 2021, 144, 09600779, 110695, 10.1016/j.chaos.2021.110695
    11. A. M. Elaiw, N. H. AlShamrani, Global Properties of General Viral Infection Models with Humoral Immune Response, 2017, 25, 0971-3514, 453, 10.1007/s12591-015-0247-9
    12. Adrianne Jenner, Chae-Ok Yun, Arum Yoon, Peter S. Kim, Adelle C.F. Coster, Modelling heterogeneity in viral-tumour dynamics: The effects of gene-attenuation on viral characteristics, 2018, 454, 00225193, 41, 10.1016/j.jtbi.2018.05.030
    13. Ting Guo, Haihong Liu, Chenglin Xu, Fang Yan, Dynamics of a Delayed HIV-1 Infection Model with Saturation Incidence Rate and CTL Immune Response, 2016, 26, 0218-1274, 1650234, 10.1142/S0218127416502345
    14. Xiulan Lai, Xingfu Zou, Modeling HIV-1 Virus Dynamics with Both Virus-to-Cell Infection and Cell-to-Cell Transmission, 2014, 74, 0036-1399, 898, 10.1137/130930145
    15. A. M. Elaiw, N. A. Alghamdi, Global Stability of Humoral Immunity HIV Infection Models with Chronically Infected Cells and Discrete Delays, 2015, 2015, 1026-0226, 1, 10.1155/2015/370968
    16. Hai-Feng Huo, Rui Chen, Stability of an HIV/AIDS Treatment Model with Different Stages, 2015, 2015, 1026-0226, 1, 10.1155/2015/630503
    17. Hui Miao, Zhidong Teng, Xamxinur Abdurahman, Stability and Hopf bifurcation for a five-dimensional virus infection model with Beddington–DeAngelis incidence and three delays, 2018, 12, 1751-3758, 146, 10.1080/17513758.2017.1408861
    18. Chengjun Kang, Hui Miao, Xing Chen, Jiabo Xu, Da Huang, Global stability of a diffusive and delayed virus dynamics model with Crowley-Martin incidence function and CTL immune response, 2017, 2017, 1687-1847, 10.1186/s13662-017-1332-x
    19. Hui Miao, Zhidong Teng, Zhiming Li, Global Stability of Delayed Viral Infection Models with Nonlinear Antibody and CTL Immune Responses and General Incidence Rate, 2016, 2016, 1748-670X, 1, 10.1155/2016/3903726
    20. Hui Miao, Zhidong Teng, Xamxinur Abdurahman, Zhiming Li, Global stability of a diffusive and delayed virus infection model with general incidence function and adaptive immune response, 2018, 37, 0101-8205, 3780, 10.1007/s40314-017-0543-9
    21. Jinliang Wang, Xinxin Tian, Xia Wang, Stability analysis for delayed viral infection model with multitarget cells and general incidence rate, 2016, 09, 1793-5245, 1650007, 10.1142/S1793524516500078
    22. A. M. Ełaiw, N. H. AlShamrani, Global stability of a delayed virus dynamics model with multi-staged infected progression and humoral immunity, 2016, 09, 1793-5245, 1650060, 10.1142/S1793524516500601
    23. A. M. Elaiw, N. A. Almuallem, Global dynamics of delay-distributed HIV infection models with differential drug efficacy in cocirculating target cells, 2016, 39, 01704214, 4, 10.1002/mma.3453
    24. A. M. Elaiw, N. H. AlShamrani, Global stability of a delayed humoral immunity virus dynamics model with nonlinear incidence and infected cells removal rates, 2017, 5, 2195-268X, 381, 10.1007/s40435-015-0200-3
    25. Hongquan Sun, Jinliang Wang, Dynamics of a diffusive virus model with general incidence function, cell-to-cell transmission and time delay, 2019, 77, 08981221, 284, 10.1016/j.camwa.2018.09.032
    26. Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Jin, Neda Jahanshad, Gautam Prasad, Talia M. Nir, Cassandra D. Leonardo, Jieping Ye, Paul M. Thompson, , Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease, 2015, 7, 1663-4365, 10.3389/fnagi.2015.00048
    27. Yan Geng, Jinhu Xu, Stability and bifurcation analysis for a delayed viral infection model with full logistic proliferation, 2020, 13, 1793-5245, 2050033, 10.1142/S1793524520500333
    28. Jinliang Wang, Jingmei Pang, Toshikazu Kuniya, Yoichi Enatsu, Global threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays, 2014, 241, 00963003, 298, 10.1016/j.amc.2014.05.015
    29. A.M. Elaiw, N.H. AlShamrani, Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal, 2015, 26, 14681218, 161, 10.1016/j.nonrwa.2015.05.007
    30. A. M. Elaiw, N. H. AlShamrani, Global properties of nonlinear humoral immunity viral infection models, 2015, 08, 1793-5245, 1550058, 10.1142/S1793524515500588
    31. Zhijun Liu, Lianwen Wang, Ronghua Tan, Spatiotemporal dynamics for a diffusive HIV-1 infection model with distributed delays and CTL immune response, 2022, 27, 1531-3492, 2767, 10.3934/dcdsb.2021159
    32. Ke Guo, Songbai Guo, Lyapunov functionals for a general time-delayed virus dynamic model with different CTL responses, 2024, 34, 1054-1500, 10.1063/5.0204169
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3553) PDF downloads(668) Cited by(32)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog