Loading [Contrib]/a11y/accessibility-menu.js
Special Issues

Parameter space exploration within dynamic simulations of signaling networks

  • Received: 01 April 2012 Accepted: 29 June 2018 Published: 01 December 2012
  • MSC : Primary: 92C42; Secondary: 92C40.

  • We started offering an introduction to very basic aspects of molecular biology, for the reader coming from computer sciences, information technology, mathematics. Similarly we offered a minimum of information about pathways and networks in graph theory, for a reader coming from the bio-medical sector. At the crossover about the two different types of expertise, we offered some definition about Systems Biology. The core of the article deals with a Molecular Interaction Map (MIM), a network of biochemical interactions involved in a small signaling-network sub-region relevant in breast cancer. We explored robustness/sensitivity to random perturbations. It turns out that our MIM is a non-isomorphic directed graph. For non physiological directions of propagation of the signal the network is quite resistant to perturbations. The opposite happens for biologically significant directions of signal propagation. In these cases we can have no signal attenuation, and even signal amplification. Signal propagation along a given pathway is highly unidirectional, with the exception of signal-feedbacks, that again have a specific biological role and significance. In conclusion, even a relatively small network like our present MIM reveals the preponderance of specific biological functions over unspecific isomorphic behaviors. This is perhaps the consequence of hundreds of millions of years of biological evolution.

    Citation: Cristina De Ambrosi, Annalisa Barla, Lorenzo Tortolina, Nicoletta Castagnino, Raffaele Pesenti, Alessandro Verri, Alberto Ballestrero, Franco Patrone, Silvio Parodi. Parameter space exploration within dynamic simulations of signaling networks[J]. Mathematical Biosciences and Engineering, 2013, 10(1): 103-120. doi: 10.3934/mbe.2013.10.103

    Related Papers:

    [1] Quoc T. Luu, Paul DuChateau . The relative biologic effectiveness versus linear energy transfer curve as an output-input relation for linear cellular systems. Mathematical Biosciences and Engineering, 2009, 6(3): 591-602. doi: 10.3934/mbe.2009.6.591
    [2] Hilla Behar, Alexandra Agranovich, Yoram Louzoun . Diffusion rate determines balance between extinction and proliferationin birth-death processes. Mathematical Biosciences and Engineering, 2013, 10(3): 523-550. doi: 10.3934/mbe.2013.10.523
    [3] Yikang Xu, Zhaohua Sun, Wei Gu, Wangping Qian, Qiangru Shen, Jian Gong . Three-dimensional inversion analysis of transient electromagnetic response signals of water-bearing abnormal bodies in tunnels based on numerical characteristic parameters. Mathematical Biosciences and Engineering, 2023, 20(1): 1106-1121. doi: 10.3934/mbe.2023051
    [4] Wenlong Wang, Chunrui Zhang . Bifurcation of a feed forward neural network with delay and application in image contrast enhancement. Mathematical Biosciences and Engineering, 2020, 17(1): 387-403. doi: 10.3934/mbe.2020021
    [5] Yong-hong Hu, Xue-ying Wang, Xi-wen Zhang, Jian Chen, Fu Li . Investigation of the mechanisms and experimental verification of Shao yao gan cao decoction against Sphincter of Oddi Dysfunction via systems pharmacology. Mathematical Biosciences and Engineering, 2022, 19(12): 13374-13398. doi: 10.3934/mbe.2022626
    [6] Abdulhadi Ibrahim H. Bima, Ayman Zaky Elsamanoudy, Walaa F Albaqami, Zeenath Khan, Snijesh Valiya Parambath, Nuha Al-Rayes, Prabhakar Rao Kaipa, Ramu Elango, Babajan Banaganapalli, Noor A. Shaik . Integrative system biology and mathematical modeling of genetic networks identifies shared biomarkers for obesity and diabetes. Mathematical Biosciences and Engineering, 2022, 19(3): 2310-2329. doi: 10.3934/mbe.2022107
    [7] Giorgos Minas, David A Rand . Parameter sensitivity analysis for biochemical reaction networks. Mathematical Biosciences and Engineering, 2019, 16(5): 3965-3987. doi: 10.3934/mbe.2019196
    [8] Chun Li, Ying Chen, Zhijin Zhao . Frequency hopping signal detection based on optimized generalized S transform and ResNet. Mathematical Biosciences and Engineering, 2023, 20(7): 12843-12863. doi: 10.3934/mbe.2023573
    [9] Lishui Shen, Xiaofeng Hu, Ting Chen, Guilin Shen, Dong Cheng . Integrated network analysis to explore the key mRNAs and lncRNAs in acute myocardial infarction. Mathematical Biosciences and Engineering, 2019, 16(6): 6426-6437. doi: 10.3934/mbe.2019321
    [10] F. S. Vannucchi, S. Boccaletti . Chaotic spreading of epidemics in complex networks of excitable units. Mathematical Biosciences and Engineering, 2004, 1(1): 49-55. doi: 10.3934/mbe.2004.1.49
  • We started offering an introduction to very basic aspects of molecular biology, for the reader coming from computer sciences, information technology, mathematics. Similarly we offered a minimum of information about pathways and networks in graph theory, for a reader coming from the bio-medical sector. At the crossover about the two different types of expertise, we offered some definition about Systems Biology. The core of the article deals with a Molecular Interaction Map (MIM), a network of biochemical interactions involved in a small signaling-network sub-region relevant in breast cancer. We explored robustness/sensitivity to random perturbations. It turns out that our MIM is a non-isomorphic directed graph. For non physiological directions of propagation of the signal the network is quite resistant to perturbations. The opposite happens for biologically significant directions of signal propagation. In these cases we can have no signal attenuation, and even signal amplification. Signal propagation along a given pathway is highly unidirectional, with the exception of signal-feedbacks, that again have a specific biological role and significance. In conclusion, even a relatively small network like our present MIM reveals the preponderance of specific biological functions over unspecific isomorphic behaviors. This is perhaps the consequence of hundreds of millions of years of biological evolution.


    [1] Blackwell Science Ltd. Reprinted, 1995
    [2] Blackwell Publishing Company, 2004.
    [3] Annu Rev Genomics Hum Genet., 2 (2001), 343-372.
    [4] Nature, 420 (2002), 206-210.
    [5] Mech Ageing Dev., 124 (2003), 9-16.
    [6] World Technology Evaluation Center. SpringerLink, Chapter I, (2007), 1-13.
    [7] Trends Microbiol., 15 (2007), 45-50.
    [8] Nature, 387 (1997), 913-917.
    [9] Nat. Rev. Mol. Cell Biol., 7 (2006), 165-176.
    [10] Mol Syst Biol., 5 (2009), 256.
    [11] Current Cancer Drug Target (CCDT), 12 (2012), 339-355.
    [12] Proc Natl Acad Sci U S A., 99 (2002), 15112-15117.
    [13] Nat Genet., 37 (2005), 77-83.
    [14] Drug Discov Today, 12 (2007), 295-303.
    [15] J. Phys.Chem., 81 (1977), 2340-2361.
    [16] Nat Rev Genet., 10 (2009), 122-33.
    [17] Science, 314 (2006), 268-274.
    [18] Science, 318 (2007), 1108-1113.
    [19] FASEB J., 22 (2008), 2605-2622.
    [20] Sci STKE., 222 (2004), pe8.
    [21] Mol. Biol. Cell, 17 (2006), 1-13.
    [22] Mol Syst Biol., 2 (2006), 51.
    [23] BMC Bioinformatics, 12 (2011), 167.
    [24] Version 0.5 2010 November 30.
    [25] http://globocan.iarc.fr/.
    [26] N Engl J Med., 332 (1995), 1589-1593.
    [27] http://www.sanger.ac.uk/genetics/CGP/cosmic/.
    [28] Biochemistry, 45 (2006), 15529-15540.
    [29] Biochem. J., 382 (2004), 1-11.
    [30] Breast Cancer Res. Treat., 101 (2007), 249-257.
    [31] Current Cancer Drug Targets (CCDT), 10 (2010), 737-757.
    [32] Trends Cell Biol., 10 (2000), 173-178.
    [33] FEBS J., 274 (2007), 5505-5517.
    [34] J Biol. Chem., 274 (1999), 30169-30181.
    [35] Syst Biol (Stevenage), 1 2004, 104-113.
    [36] J. Biol. Chem., 281 (2006), 19925-19938.
    [37] Mol. Syst. Biol., 3 (2007), e144.
    [38] Mol. Syst. Biol., 5 (2009), e239.
    [39] Cell., 141 (2010), 884-896.
    [40] Springer-Verlag, 1996.
    [41] Trends Biochem. Sci., 21 (1996), 89-96.
    [42] J Biol Chem., 284 (2009), 35308-35313.
    [43] F1000 Biol Rep., 2 (2010), 82.
  • This article has been cited by:

    1. Lorenzo Tortolina, David J. Duffy, Massimo Maffei, Nicoletta Castagnino, Aimée M. Carmody, Walter Kolch, Boris N. Kholodenko, Cristina De Ambrosi, Annalisa Barla, Elia M. Biganzoli, Alessio Nencioni, Franco Patrone, Alberto Ballestrero, Gabriele Zoppoli, Alessandro Verri, Silvio Parodi, Advances in dynamic modeling of colorectal cancer signaling-network regions, a path toward targeted therapies, 2015, 6, 1949-2553, 5041, 10.18632/oncotarget.3238
    2. Nicoletta Castagnino, Massimo Maffei, Lorenzo Tortolina, Gabriele Zoppoli, Daniela Piras, Alessio Nencioni, Alberto Ballestrero, Franco Patrone, Silvio Parodi, Transcription Factors Synergistically Activated at the Crossing of the Restriction Point between G1 and S Cell Cycle Phases. Pathologic Gate Opening during Multi-Hit Malignant Transformation, 2016, 3, 2314-5714, 10.11131/2016/101201
    3. Silvio Parodi, Giuseppe Riccardi, Nicoletta Castagnino, Lorenzo Tortolina, Massimo Maffei, Gabriele Zoppoli, Alessio Nencioni, Alberto Ballestrero, Franco Patrone, 2016, Chapter 10, 978-1-4939-3282-5, 181, 10.1007/978-1-4939-3283-2_10
    4. Nicoletta Castagnino, Massimo Maffei, Lorenzo Tortolina, Gabriele Zoppoli, Daniela Piras, Alessio Nencioni, Eva Moran, Alberto Ballestrero, Franco Patrone, Silvio Parodi, Systems medicine in colorectal cancer: from a mathematical model toward a new type of clinical trial, 2016, 8, 19395094, 314, 10.1002/wsbm.1342
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3332) PDF downloads(456) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog