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Abstract. We started offering an introduction to very basic aspects of molec-

ular biology, for the reader coming from computer sciences, information tech-
nology, mathematics. Similarly we offered a minimum of information about

pathways and networks in graph theory, for a reader coming from the bio-

medical sector. At the crossover about the two different types of expertise, we
offered some definition about Systems Biology. The core of the article deals

with a Molecular Interaction Map (MIM), a network of biochemical interactions

involved in a small signaling-network sub-region relevant in breast cancer. We
explored robustness/sensitivity to random perturbations. It turns out that our

MIM is a non-isomorphic directed graph. For non physiological directions of

propagation of the signal the network is quite resistant to perturbations. The
opposite happens for biologically significant directions of signal propagation.

In these cases we can have no signal attenuation, and even signal amplifica-

tion. Signal propagation along a given pathway is highly unidirectional, with
the exception of signal-feedbacks, that again have a specific biological role and
significance. In conclusion, even a relatively small network like our present
MIM reveals the preponderance of specific biological functions over unspecific
isomorphic behaviors. This is perhaps the consequence of hundreds of millions

of years of biological evolution.

1. Introduction. We start with a general biological introduction, certainly re-
dundant for the bio-medical component of people working in systems biology and
medicine, but perhaps useful for people coming from the mathematic/information
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sector. Conversely we will give some basic didactic information at the level of sys-
tems biology and information technology, including graph theory, to some extent
redundant for people coming from the mathematic/information sector, but probably
useful for people coming from the bio-medical sector.

On our earth, both living and non-living entities are composed of molecules made
of atoms, such as Carbon, Hydrogen, Oxygen, and Nitrogen. The organization of
these atoms into organic molecules, including macromolecules, of organic molecules
in biochemical-interaction networks, and finally of multiple signaling-networks and
structures into cells capable of reproduction, is one feature that distinguishes living
entities from all other matter. The cell is the smallest unit that can carry on all
the processes of life.

Most biomolecules contain Carbon and many contain Hydrogen, Oxygen, Nitro-
gen, Chlorine, Sodium, Potassium, Calcium, Magnesium, Iron, less common atoms,
are also essential constituents of living cells. During more than three billion years
of evolution cells have ‘learned’ to use atoms whose unique chemistry is compatible
with carrying on the reactions necessary for life. Atoms can be arranged into a series
of small molecules known as building blocks. Building blocks include compounds
such as amino acids, nucleotides, sugars and fatty acids. The building blocks are
organized into larger compounds, known as macromolecules. Macromolecules are
components of different signaling-networks and structures that are found in the
cells.

Four major different types of macromolecules are present in a cell:

• nucleic acids
• proteins
• lipids
• carbohydrates

Each type of macromolecule is used for a specific purpose in the cell. There are
many examples of macromolecules being combined in different configurations to
form larger cell structures.

The nucleic acids can be subdivided into DNA and RNA. DNA is composed of
two kinds of building blocks, the bases (adenine, guanine, cytosine, and thymine)
and a sugar-phosphate backbone. DNA is used by the cell as a repository of repli-
cable information (from parental to daughter cell), necessary for the programs that
direct synthesis of the macromolecules, production of energy for this synthesis, and
control of specific cell differentiations. RNA has a very similar composition to
DNA. The two major differences between DNA and RNA are in the sugar used
in the sugar-phosphate backbone (ribose for RNA and deoxyribose for DNA) and
in one of the bases (uracil for RNA and thymine for DNA). DNA usually exists
as a double-stranded molecule, often in a diploid form: some redundancy of the
information was evolutionary useful. RNA in the cell has at least four different
functions.

1. Messenger RNA (mRNA) is used to direct the synthesis of specific proteins.
2. Transfer RNA (tRNA) is used as an adapter molecule between the mRNA

and the amino acids in the process of making the proteins.
3. Ribosomal RNA (rRNA) is a structural component of a large complex of

proteins and RNA known as the ribosome. The ribosome is responsible for
binding a mRNA and tRNAs, and directing the synthesis of proteins.
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4. The fourth class of RNA is a catch-all class. There are small and less small
relatively stable RNAs whose functions are progressively discovered. Some
of these RNAs have been shown to be involved in regulating expression of
specific regions of the DNA.

Proteins are composed of amino acids. Most proteins are made from a unique
combination of 20 different amino acids. The order in which amino acids appear in
a protein are specified by the mRNA used to direct synthesis of the protein. All
amino acids have a common core of repeating amino-carbon-carboxyl groups, with
varying side chains on the central carbon. Proteins, therefore, have a repeating
backbone with an amino terminus and carboxyl terminus. The amino acids can
be grouped together and described by physical properties such as charge (acid or
basic), size, interactions with water (hydrophobic-water “hating”, or hydrophilic-
water “loving”), a specific element (sulfur containing) or an organic structure they
contain (aromatic rings). The primary sequence and the types of amino acids used
to make up a protein, specify what the protein is capable of doing. Proteins perform
many duties in the cell, including functioning as structural and motor components,
enzymes, signaling molecules, and more in general regulatory molecules. Some
proteins perform only one function while others are multifunctional. Each cell is an
integrated device made of several thousand types of interacting proteins, plus other
organic molecules [1, 2] We hope to have offered to our mathematical/modeling
people a smattering of the biological side of this integrated game.

1.1. How to define systems biology? It is difficult to come up with a concise
and comprehensive definition of systems biology. In fact Systems Biology is already
a vast and multifaceted discipline touching many different types of analysis (mostly
through mathematical modeling and other informatics approaches) toward a deeper
and more integrated understanding of a variety of biological phenomena, seen in
many different perspectives.

A few examples of definitions that have been proposed in the last ten years:

• Systems biology studies biological systems by systematically perturbing them
(biologically, genetically, or chemically); monitoring the gene, protein, and
informational pathway responses; integrating these data; and ultimately, for-
mulating mathematical models that describe the structure of the system and
its response to individual perturbations [3]

• To understand complex biological systems requires the integration of exper-
imental and computational research - in other words a systems biology ap-
proach [4]

• Systems Biology - studying the interrelationships of all of the elements in a
system rather than studying them one at a time [5]

• The objective of systems biology [can be] defined as the understanding of net-
work behavior, and in particular their dynamic aspects, which requires the
utilization of mathematical modeling tightly linked to experiment [6]

• By discovering how function arises in dynamic interactions, systems biology
addresses the missing links between molecules and physiology. Top-down sys-
tems biology identifies molecular interaction networks on the basis of corre-
lated molecular behavior observed in genome-wide omics studies. Bottom-up
systems biology examines the mechanisms through which functional properties
arise in the interactions of known components [7]
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Systems biology is also directly associated with bioinformatics and computational
biology.

1.2. What is a Molecular Interaction Map? Since the 1990s the use of math-
ematical and computational models has become a valuable tool to deal with the
rapid growth of information concerning biological networks. Dynamic simulations
of networks of biochemical interactions among signaling-proteins / molecules have
been applied to different biological systems, among others: concerning chemotaxis
in bacteria, a seminal work of [8]. Small signaling circuits made of few molecules,
involving specific types of feedback interactions have been described; discontinuous
bistable dynamics or oscillations can be generated by some of these circuits [9]. In
recent years the size of biochemical networks increased progressively from less than
a dozen molecules to about 30-60 molecules [10, 11]. The number of different mam-
malian signaling-network regions to which a computational approach was applied
is limited, probably in the order of the fingers of our two hands.

Larger simulations have been implemented in the field of bacterial metabolic
models, to analyze metabolic control and flux balance [12, 13]. Different methods
have been used to implement dynamic simulations of signaling networks, we mention
only some of them: discrete approaches as Petri nets, logic-based descriptions like
Boolean networks, rule-based methods, systems of ordinary differential equations
and/or partial differential equations, stochastic methods involving the interaction of
finite numbers of molecules [14, 15, 16]. It is important to be able to move easily a
given signaling-network model from a given software tool to a different one. The Sys-
tems Biology Markup Language (SBML) is a machine-readable exchange format for
computational models of biological processes [See http://sbml.org/Documents/.
For collections of SBML models: http://www.ebi.ac.uk/biomodels-main/]. Its
strength is in representing phenomena at the scale of biochemical reactions, but it
is not limited to that. By supporting SBML as an input and output format, dif-
ferent software tools can operate on the same representation of a model, removing
chances for errors in translation and assuring a common starting point for analyses
and simulations. At the biochemical level, we may consider a normally differen-
tiated cell as a very complex network of pathways, and we can interpret recent
progress in molecular oncology as a description of a cancer cell bearing in the order
of two dozen mutated pathways [17, 18]. Potential mutations belonging to the same
pathway are hypothesized as being mutually exclusive [19] especially if very close
along the pathway. Each pathway might contain a dozen signaling-molecules. In
principle, one of them could be mutated/altered through gain or loss of function.
The conclusion of these considerations is in agreement with the Vogelstein group’s
observation that about 20-40 different alterations that are present in an individual
tumor are selected out of a pool containing about 200-400 potential oncogenes [18].
It makes sense to hypothesize that the most frequent mutations in a given tumor
type, in some way, give a more important contribution to malignant transformation.
Signaling-network analysis and modeling could contribute to find answers to this
relevant question. In our work, signaling-network molecular pathologies move to
the front stage. In this work we have primarily considered Breast Cancer (BC), and
a fraction of the G0-G1 cell cycle transition. We adopted the approach of recon-
structing the molecular anatomy of our network through a Molecular Interaction
Map (MIM). We simulated the attainment of a stationary state in our biochemical
network through hundreds of ordinary differential equations (ODEs). This approach
belongs to a sub-field of Systems Biology. The opportunity, even the necessity, for

http://sbml.org/Documents/
http://www.ebi.ac.uk/biomodels-main/
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this dynamic simulation approach is a consequence of the fact that the behavior of a
30-40 molecules signaling-network is not intuitive a priori for a “naked-mind”, even
of an expert molecular oncologist. With some effort the mind of a cancer investiga-
tor is however capable of understanding “a posteriori” the suggestions coming from
a computational approach.

A Molecular Interaction Map (MIM) is a diagram convention that is capable of
unambiguous representation of networks containing multi-protein complexes, pro-
tein modifications, and enzymes that are sometimes substrates of other enzymes.
This graphical representation makes it possible to view all of the many interactions
in which a given molecule may be involved, and it can portray competing interac-
tions, which are common in bio-regulatory networks. To avoid an overcrowded map,
each molecular species is represented only once in a diagram. A formal description
of the MIM notation can be found in [20, 21, 22]. An updated formal specifica-
tion for software implementation can be found in [23]. In a Molecular Interaction
Map (MIM), a variety of defined connecting lines serve to describe the interactions
between the molecules (shown only once). A summary of the conventions used to
depict binary interactions between molecules is shown below. Multi-molecular com-
plexes or modified forms are depicted by “nodes” placed on the lines. A line may
originate either at a named molecular species or at a node, and may terminate at a
molecular species, a node, or at another line (contingency symbols, which modulate
another reaction). Lines that cross do not imply an interaction.

Figure 1. Syntactic rules for drawing a Molecular Interaction
Map (MIM). According to [21]

1.3. Networks and pathways. We can analyze a MIM at two different lev-
els: pathways and networks. Pathways imply ‘paths’, simple sequences of ob-
jects (molecules) that transmit information: pathways are the basic multi-molecular
structure of a MIM, through which knowledge of biochemical interactions among
proteins and other molecules is organized. Pathways are often not completely lin-
ear, but have ramifications: they are sub-components of larger networks. Networks
usually represent a broader structure with a more complex connectivity, involv-
ing several pathways. A larger network suggests at least a portion of a function
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Figure 2. The graph G is undirected, meaning that we do not
impose direction on any edges. Without any direction on the edges,
the edge ab is the same as the edge ba [24]

displayed by a cell (for instance, in our case, a portion of the G0 - G1 cell cycle
transition). A pathway may exhibit the name of some characterizing molecular
component. Pathways and biochemical networks are both represented by graphs.

Definition 1.1. Graphs. A graph G=(V,E) is an ordered pair of sets. Elements
of V are called vertices or nodes, and elements of E⊆V×V are called edges or arcs.
We refer to V as the vertex set of G, with E being the edge set. The cardinality of
V is called the order of G, and |E| is called the size of G.

Definition 1.2. Directed graphs. A directed edge is an edge such that one vertex
incident with it is designated as the head vertex and the other incident vertex is
designated as the tail vertex. A directed edge uv is said to be directed from its tail
u to its head v. A directed graph or digraph G is a graph such that each of whose
edges is directed. The in-degree of a vertex v∈V(G) counts the number of edges
such that v is the head of those edges. The out-degree of a vertex u∈V(G) is the
number of edges such that u is the tail of those edges.

2. Methods.

2.1. Case study: Breast cancer. Breast Cancer (BC) is a heterogeneous disease
whose progression depends on its specific biological / molecular characteristics; this
has consequences on the prognosis as well as on the response of individual patients
to treatments. Considering women worldwide, BC is the most common form of
cancer, both in terms of incidence 22.9% and in terms of mortality 13.7% [25]. Like
other forms of cancer, BC can be considered as a genetic disease, since it is linked to
sequential accumulation of mutations/alterations in genes (oncogenes) that control
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growth, differentiation, correct position of a cell in the tissue architecture. These
alterations, both genetic and epigenetic (like gene expression silencing) are in prin-
ciple inherited at a somatic level, from parental cell to daughter cells. BC incidence
can also be modulated by estrogens and progestins levels during life, because these
hormones modulate breast cells differentiation. For instance, the use of estrogens
and progestins increases moderately but significantly the risk of breast cancer in
postmenopausal women [26]. Newly introduced DNA sequencing technologies al-
low us to draw and analyze new and broader landscapes of genes involved in the
process of tumor onset and development. We observe a few genes mutated at high
frequency together with a large number of less frequently mutated genes. It has
been recently suggested that for each individual colorectal cancer (CRC) tumor
the average number of the so-called driver mutations (including low frequency dri-
ver mutations) is about twenty [18], which is significantly higher than the number
estimated up to few years ago. Probably these estimations are complicated by
the fact that we have stronger and progressively weaker driving mutations. The
gene products, primarily proteins, use molecular interactions in order to build up
articulated communication systems (pathways) closely interconnected (molecular
signaling-networks) which encode, process and transmit the information necessary
to regulate all cellular functions. Cancer should be considered as a disease of cross-
talks between normal and mutated-protein signals, rather than a simple sum of
altered genes, a pathology of altered pathways and altered network regions.

The signaling-network immediately downstream of the ErbB-family is crucial in
BC and other tumors, especially in the perspective of treatment strategies focused
on signaling-protein inhibitors within an altered pathway. Within a pathway a pro-
tein could be mutated/altered through gain or loss of function. Exome sequencing
works (Vogelstein group and other groups) tend to suggest the existence in CRC
of 20-40 semi-autonomous pathways. Mutations in these distinct pathways are not
mutually exclusive, but rather complementary, concurring to the completion of an
overall cellular malignant transformation.

We make reference to the mutations database of COSMIC v58 Release, 15th
March 2012) [27]. In BC (all BC types), among the signaling-proteins present
in our MIM, in the pathways downstream of ErbB2, ErbB2 is amplified in 20-
30% of cases [28], PI3KCA is mutated in ≈ 26% of cases [27], PTEN is hypo-
expressed or inactivated in ≈ 40% of cases [29, 30, 27], CDH1 (E-Cadherin) is
mutated in ≈ 17% of cases , APC is mutated in ≈ 4% of cases, AKT in ≈ 4% of
cases , BRAF in ≈ 3% of cases, and β-catenin is mutated in ≈ 2% of cases [27]. A
smaller pathway (one that we explored less extensively) downstream of the ErbB-
family receptors is represented by an activated, mutated, amplified EGFR receptor
which can phosphorylate β-catenin in Y-654 and make it independent from E-
Cadherin, thus making β-catenin able to migrate to the nucleus and co-operate
with the transcription factor TCF/LEF. E-Cadherin (CDH1) is frequently mutated
in BC and is then incapable of binding β-catenin, even in the absence of any EGFR
stimulation. Nuclear β-catenin is a co-transcription factor for the transcription
factor TCF/LEF (TCF-4). Cyclin D1 and c-myc (both transcribed by TCF/LEF
+ other transcription factors) are among the genes that are important to open the
way to the G1-S transition.

As we have repeatedly discussed, close mutations along a given pathway tend to
be mutually exclusive [19]. During cancer progression, not much will happen by
adding two adjacent or close mutations within the same pathway, in the same cell.
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At the same time, and as a consequence of the above considerations, the addition of
all the mutually exclusive alterations along a given pathway represents the overall
pathway alteration frequency for BC. It must be pointed out that along a given
pathway even the loss of function of the gene product of a recessive oncogene (for
instance PTEN) can contribute to the excess of function of the overall pathway.

The study of molecular-network alterations in cancer, in the presence of onco-
protein mutations and onco-protein inhibitors, is a quite modern strategy of cru-
cial importance, and in order to implement this type of research a computational
approach is essential. Even for intensively explored network regions, parameter
knowledge is often incomplete. To study the degree of tolerance of a network to
parameter uncertainty, becomes a very important task, for a critical evaluation of
the dynamic modeling of a given network region, after careful training of the model
with direct and indirect literature inputs. This was the intent of the present study,
obviously it is a work in progress.

2.2. Molecular Interaction Map. Our MIM, see Figure 3 , has been created
using the symbol table originally proposed by [20, 21], slightly modified/adapted to
fit to some new semantic requirement of our MIM [31].

Figure 3. MIM of the signaling-network downstream of ErbB-
family receptors.

A List of Abbreviations (a very synthetic definition of each molecule) is reported
in a Glossary, Table 2SM in [31]. Our MIM describes a network downstream of
the ErbB-family receptors that is relevant for BC. Similar networks are also op-
erative in colon cancer, in Non Small Cell Lung Cancer (NSCLC) and perhaps in
most tumors. In our mathematical modeling, a stationary, temporary equilibrium
is assured by a growth factor (EGF), 10 kinases (ErbB1, ErbB2, ErbB3 counted
separately), 14 phosphatases (including GAP),10 signaling / adaptor proteins, and
4 small signaling-molecules, for a total of 39 basic molecular species. Following the
suggestion of [32, 33] we introduced in our simulation a phenomenon of ‘piggyback’
binding of SOS and GAP to an activated ErbB receptor in the sub-membrane re-
gion where KRAS is also anchored. This was equivalent to local association rate
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increases of about 250 times [31], Table 3SM. Table 3SM shows a list of 279 reversible
reactions and 110 catalytic reactions, rate-constants included, which represent the
complete set of our dynamic simulations. Table 3SM also reports the concentrations
of the 39 basic species. It is accompanied by the references source of the data. Some
numerical values have been interpolated by taking into account the constraints im-
posed by: existing values, molecular anatomy of the network, indirect evidence at
the molecular, cellular and clinical level. Narrow ranges of the interpolated val-
ues were practically imposed by the rest of the network system. The GDP and
GTP species, as well as the cytoskeleton-protein, were considered in large excess
(non-consumable).

2.3. Ordinary differential equations. The dynamics of the signaling network is
numerically simulated by solving a system of ordinary differential equations (ODEs),
with the help of dedicated software, such as the SimBiology toolbox of Matlab
(http://www.mathworks.com/products/simbiology/?BB=1).

This kind of numerical approach has been pursued by different authors, among
them [34, 35, 36, 37, 33, 38, 39], and all the other authors whose models are
available in the BioModels Database [BioModels Database http://www.ebi.ac.

uk/biomodels-main/]. The numerical solver adopted in our mathematical model-
ing was ode23tb, a solver for stiff differential equations that is an implementation
of TR-BDF2, an implicit Runge-Kutta formula [40]. In our simulations, we started
from a situation out of equilibrium. The total concentration, relative to a given basic
protein/small-molecule species and all its complexes and post-translational modifi-
cations, was initially entirely attributed to the corresponding unbound factors. We
brought the reactions to a quasi-stationary equilibrium, causing a redistribution of
each factor among all its forms/complexes with binding partners. We verified (in
a significant number of explored cases) that given constant molar concentrations
of each component and constant virtual reaction rates inputs, regardless of the out
of equilibrium starting state (and resultant variable transitional products), within
a virtual time of 7-10 hours, end products consistently converged toward the same
stationary equilibrium. For the limited complexity of the present MIM, few seconds
of pc computation were in general sufficient for coming very close to a stationary
equilibrium. We make reference to our pc model (Dell Optiplex 960, Intel Core 2
Duo processors @3.00 GHz, 4.00GB of RAM) and the SimBiology toolbox of Matlab
software.

2.4. Signaling network simulation. In this paper we do not provide a detailed
analysis, but when the system is already in a quasi-stationary state and we vary
only the EGF concentration, for instance from a physiological EGF concentration (.1
nM) to a pharmacological EGF concentration (10 nM), a new quasi-stationary state
is reached within few seconds of our pc computation. To simulate the signaling-
network we considered in this paper, we mathematically formalized the reaction
scheme of Table 3SM of [31], in terms of the reactions’ kinetic laws [41]. The kinetic
laws of a reaction describe the velocity at which the reactants are transformed into
the products of the reaction. We assumed that all reactions followed a mass action
kinetic law (a consequence of the IInd law of thermodynamics). According to this
kinetic law, the velocity of the reaction is directly proportional to the concentration
of the reactants multiplied by the reaction rate. As an example, given the reversible
reaction:

[A] + [B] ↔ [A-B]

http://www.mathworks.com/products/simbiology/?BB=1
http://www.ebi.ac.uk/biomodels-main/
http://www.ebi.ac.uk/biomodels-main/
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the velocity of the [A-B] formation reaction is:

k1[A][B] - k−1[A-B];

where each [X] indicates the concentration of a given reactant, k1 and k−1 are for-
ward (association) and backward (dissociation) rates, respectively, of the reversible
reaction. At equilibrium

• k1·[A][B] = k−1·[A-B]
• ([A][B])/[A-B] = k−1/k1 = Kd (equilibrium constant K).

We can also have an irreversible catalytic reaction of the type:

[XP-Phosphatase] → [X] + [Phosphatase] + P (P goes into the phosphates pool)

v = kcat[XP-Phosphatase]

where kcat is a catalytic rate (a turnover number). Knowledge of the kinetic laws

of the reactions has allowed us to describe the rate of change of each complex
concentration by means of an ordinary differential equation in which the velocities
of the reactions that produce or consume the reactant are algebraically summed.
The collection of this type of differential equations for all 242 complexes plus 39 basic
species included in the signaling-network fully describes the dynamic behavior of
our biologic system. Unfortunately, the non linear nature of the above differential
equations has prevented us from determining the analytical expressions for the
system evolution over time. We could only obtain numerical solutions for a quasi-
stationary equilibrium stage.

The simulation of the entire signaling network represented in the MIM is per-
formed by SimBiology. Within this toolbox, we explicitly write all the reactions
occurring in the signaling network of interest. SimBiology takes care of associat-
ing the ODEs to their corresponding reaction. For the simulations presented in
this paper, we infer the rates from current literature and additional interpolations
in agreement with numerous preclinical and clinical experimental papers [31]. We
keep them constant throughout in silico experiments.

In order to explore sensitiveness/robustness toward perturbations of the intro-
duced parameters, in this report we varied the concentrations, using (an arbitrary
but reasonable choice): 10x and 10/ perturbations. The problem of exploring all
possible combinations of parameters is computationally unfeasible; therefore we
adopted a random strategy to explore the parameter space. We considered 10,000
(randomly sorted) 5-tuples combinations of perturbing species applying both 10x or
10/ perturbation factors (changes of the concentrations). The numerical simulation
provides as output the final concentration at quasi-steady state of all the species be-
longing to the signaling network. Perturbed species were always not coincident with
the perturbing species. Only perturbations on 34 basic species are reported herein
(we excluded the constant not-consumable basic species). Perturbation effects on
modified species and complexes are not reported.

2.5. Exploration of random and non-random perturbations. An aim of this
paper was to explore the preliminary hypothesis that the effect of perturbing species
that are far from the perturbed species could be negligible in a large majority of
cases. We ignored however how far the effects of random perturbations could be
propagated in our graph. We discovered that there are dramatically important
exceptions along pathways that convey a signaling message of biological signifi-
cance. These biologically significant exceptions (preferential paths) are unidirec-
tional in our MIM. As mentioned before, a biochemical signaling-network can be
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represented as a graph where edges represent the interaction between two adja-
cent species (nodes). The considered MIMs were first associated to a matrix of
distances between nodes reporting the total number of edges between node pairs.
We implemented perturbations of the concentrations concerning 34 consumable ba-
sic molecular species. EGF, GDP, GTP, PIP3 and cytoskeleton-protein were not
considered. All PLCγP can convert to a [cytoskeleton-protein:PLCγP] complex
(cytoskeleton-protein was implicitly considered in large excess). We introduced
combinations of 10x and 10/ perturbations in one, or two, or three or four or five
of the n = 34 consumable total molecular concentrations. Perturbed species were
always not coincident with the perturbing species. Only perturbations on basic
species are reported herein, while perturbation effects on modified species and com-
plexes are not reported. For the time being we have not reported perturbations of
rates either. Being n the number of perturbing species, we examined concentration
levels of the 34-n perturbed basic molecular species, individually, always in the pres-
ence of the physiologic .1 nM EGF concentration. In our computational approach
each of the 34 simulations (for just one perturbing species) gives information about
all the remaining 33 perturbed species. The corresponding computing time on our
desktop PC (Dell Optiplex 960, Intel Core 2 Duo processors @3.00 GHz, 4.00GB
RAM) was 3x34 seconds (1.7 min approximately). In the case of five perturbing
species and two perturbing factors (10x or 10/ concentration changes, see also the
Methods section), the number of perturbing combinations is: The computing time
on our PC would have been 3x8.9x106 seconds. This computing time is obviously
too long for just one PC and we resorted to a random sampling strategy, sorting out
randomly 10,000 combinations. This implies a computer time of about 3x10,000 sec-
onds, approximately equivalent to 8.3 hours, a still acceptable length of computing
time. Notice that sorting randomly 10,000 (perturbing) combinations we generate
a subset of 10,000x29 (perturbing x perturbed) species. 29 = (all the 34 species
considered) - (5 perturbing species). Note that each simulation is characterized by
the following actors:

perturbing species: {Si} s.t. i=1:5
perturbed species: {Sj} s.t. ∀j6=i
perturbing factors: {vi} s.t. {vi}∈{10X; 10/}
dij s.t. i=1:5

Distance was measured as a summation of edges for each of the n perturbing
species, toward the perturbed species.

3. Results. Following our hypothesis that adjacent or close nodes are in general
stronger perturbing species (or perturbators) than distant nodes, toward a per-
turbed species, we investigated a system of five perturbing species (randomly se-
lected) toward a perturbed species, in a randomly sampled set of 10,000 cases.

In Figure 4 we measured the ratio between a given perturbed value (10x or 10/)
and its corresponding unperturbed value (values expressed in a semi-log scale). We
compared the original sampling defined above with subsets in which the (up to 3)
closest nodes (edges) had been excluded. The perturbation became progressively
weaker.

Figure 5 reports the results in terms of “relative variation” , measured according
to the following formula:
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Figure 4. Attenuation of perturbation, excluding progressively a
larger number of closer edges.

Relative V ariation =
∆Ratio

Ratio(F )[A,B,C,D,E]
=

=
abs(Ratio(F )[A,C,E] −Ratio(F )[A,B,C,D,E])

Ratio(F )[A,B,C,D,E]

where the term Ratio stands for a ratio between [F ]perturbed and [F ]physiological.
The previous formula will be generalized as:

Relative V ariation =
∆Ratio

Ratio(F )[An]
=
abs(Ratio(F )[An−x] −Ratio(F )[An])

Ratio(F )[An]

where n are all the perturbing species and x are the most distant perturbing species
in terms of nodes/edges.

In Figure 5 we moved to progressively closer edges: out of five randomly sorted
perturbing species, we chose the four closest ones to the perturbed species, the three
closest one, the two closest ones, the closest of all perturbing species. Figure 5 (arith-
metic scale), shows that average perturbations become stronger as we restrict our
analysis to closer and closer perturbing species, toward the perturbed one. Going
from histogram A to histogram D, the relative proportion of more perturbed species
increases progressively. The extreme left column of each histogram (unperturbed
species) decreases from about 90% (histogram A) to about 60% (histogram D).

Figure 4 and Figure 5 tend to confirm our hypothesis. When we select five ran-
dom perturbator molecules (perturbing species), the largest part of the untargeted
(outside of biologically significant pathways) effects induced on the concentration of
the perturbed molecules depends prevalently on edge distance (the closest pertur-
bator molecules). We could say that our network has a low level of random noise. In
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Figure 5. Perturbation effects including only progressively closer
perturbing species.

other words, a non-specific propagation of the information in the graph of our MIM
is quasi-inexistent. This makes sense: biochemical-interactions networks acquired
specific-non-random functions during hundreds of millions of years of evolution.

3.1. Our pathways are directed graphs. The peculiar feature of the graph
represented by our MIM is to be not isomorphic: there are privileged directions of
propagation of the information. These privileged directions are recognized at the
biological level as pathways. The entire MIM is essentially a limited network-region
composed of few pathways and fragments of pathways. Along a pathway the prop-
agation of the information is mostly unidirectional, with the exception of cases in
which a downstream molecule sends a feedback signal of regulation to a molecule
upstream in the pathway. This is another example of biologically-specific behav-
ior. We come from the experience of mathematical modeling on our MIM, with
the purpose of studying normal and altered pathways, and the role of virtual drugs
inhibitors of signaling-proteins affected by excess of function [31]. We had already
noticed that the transmission of information is directed and preferential along path-
ways which acquire biological relevance and significance for a molecular oncologist
studying networks of biochemical interactions. Along these relevant pathways we
notice the presence of very frequent and important mutations for the process of BC
neoplastic transformation.

We present in the four tables (see Figure 6, 7, 8, 9) listing some of the major
asymmetries in the propagation of the information present in our MIM. Notice that
the general rule is that the propagation of information along a given pathway is
unidirectional, except for the specific presence of backward feedbacks.
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Figure 6. Along the pathway from KRAS to ERK (see MIM),
this is one of the most dramatic known examples of specific and
amplified propagation of signal. The activations of both MEK and
ERK (ERK is immediately below MEK in the pathway) require
a double parallel phosphorylation. Concentration dependence is
therefore quadratic for two consecutive times, rather than linear.

Figure 7. SOS would be apparently 5 edges upstream of MKP3,
but it is directly connected through the negative feedback ERKPP -
SOS. MEKPP is more weakly perturbed because it is 3 edges down-
stream of an inactivated SOSP (negative feedback SOSP-KRAS-
BRAF-MEK).

Figure 8. Along the pathway from PI3K to GSK3β the propaga-
tion of signal is attenuated. Some experimental reports [42, 43]
have suggested a weak or controversial connection between the
PI3K-AKT pathway and GSK3β(engaged in canonical Wnt sig-
naling). In our MIM signal propagation is relatively weak but not
negligible in the downstream direction; it is practically absent in
the reverse biologically non-significant direction.

4. Conclusions. For the time being, we have looked only at the free molecules as
perturbing and perturbed objects of our observations, concentrations of complexes
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Figure 9. The physiological direction of signaling is from EGFR
to β-catenin, the propagation of signal is evident. In the reverse
direction there is practically no signal propagation.

and alterations of rates will be introduced in subsequent studies. The investigations
reported in this work suggest that, as an average behavior, a 10x or a 10/ change in
concentration in a given molecular species, tends to display rapidly decaying per-
turbing effects on the neighboring species, according to their distance measured in
edges, when we deal with a-specific directions. We have however very important
exceptions. These exceptions can be associated to asymmetries of the biochemical
network and have a crucial biological significance. A perturbation significant at
longer distances makes more relevant a corresponding mutation during malignant
transformation. Notice that, from the perspective of signal transmission, mutations
tend to be “all or none” changes. Among the asymmetries we have observed in
our network (because of the existence of positive and negative feedbacks and local
peculiar network architectures) we have noticed that downstream effects along bi-
ologically significant pathways tend to be amplified, or at least not attenuated, at
variable degrees; attenuation of signaling suggests a weak connection between path-
ways (Figure 8). In conclusion, these biochemical interactions networks are basically
non isomorphic, functional developments during evolution. Without performing a
systematic analysis, we noticed that rare significant perturbations observed with
the random perturbation approach tended to correspond to biologically significant
directions of signal propagation. Signaling-proteins displaying high-frequency muta-
tions/alterations, present in an altered network and involved in a specific malignant
transformation, could perhaps represent biological hubs, linked not to the crude
number of connecting edges, but rather to specific asymmetries of the networks,
important in terms of signal propagation and its relative function.
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