Loading [Contrib]/a11y/accessibility-menu.js

Tumor cells proliferation and migration under the influence of their microenvironment

  • Received: 01 February 2010 Accepted: 29 June 2018 Published: 01 April 2011
  • MSC : Primary: 92C45, 92C50; Secondary: 92B05.

  • It is well known that tumor microenvironment affects tumor growth and metastasis: Tumor cells may proliferate at different rates and migrate in different patterns depending on the microenvironment in which they are embedded. There is a huge literature that deals with mathematical models of tumor growth and proliferation, in both the avascular and vascular phases. In particular, a review of the literature of avascular tumor growth (up to 2006) can be found in Lolas [8] (G. Lolas, Lecture Notes in Mathematics, Springer Berlin / Heidelberg, 1872, 77 (2006)). In this article we report on some of our recent work. We consider two aspects, proliferation and of migration, and describe mathematical models based on in vitro experiments. Simulations of the models are in agreement with experimental results. The models can be used to generate hypotheses regarding the development of drugs which will confine tumor growth.

    Citation: Avner Friedman, Yangjin Kim. Tumor cells proliferation and migration under the influence of their microenvironment[J]. Mathematical Biosciences and Engineering, 2011, 8(2): 371-383. doi: 10.3934/mbe.2011.8.371

    Related Papers:

    [1] Donggu Lee, Sunju Oh, Sean Lawler, Yangjin Kim . Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. Mathematical Biosciences and Engineering, 2025, 22(4): 744-809. doi: 10.3934/mbe.2025028
    [2] Youshan Tao, J. Ignacio Tello . Nonlinear stability of a heterogeneous state in a PDE-ODE model for acid-mediated tumor invasion. Mathematical Biosciences and Engineering, 2016, 13(1): 193-207. doi: 10.3934/mbe.2016.13.193
    [3] Peter Hinow, Philip Gerlee, Lisa J. McCawley, Vito Quaranta, Madalina Ciobanu, Shizhen Wang, Jason M. Graham, Bruce P. Ayati, Jonathan Claridge, Kristin R. Swanson, Mary Loveless, Alexander R. A. Anderson . A spatial model of tumor-host interaction: Application of chemotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 521-546. doi: 10.3934/mbe.2009.6.521
    [4] Xin Lin, Xingyuan Li, Binqiang Ma, Lihua Hang . Identification of novel immunomodulators in lung squamous cell carcinoma based on transcriptomic data. Mathematical Biosciences and Engineering, 2022, 19(2): 1843-1860. doi: 10.3934/mbe.2022086
    [5] Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar . The dynamics of tumor growth and cells pattern morphology. Mathematical Biosciences and Engineering, 2009, 6(3): 547-559. doi: 10.3934/mbe.2009.6.547
    [6] Yi Shi, Xiaoqian Huang, Zhaolan Du, Jianjun Tan . Analysis of single-cell RNA-sequencing data identifies a hypoxic tumor subpopulation associated with poor prognosis in triple-negative breast cancer. Mathematical Biosciences and Engineering, 2022, 19(6): 5793-5812. doi: 10.3934/mbe.2022271
    [7] Xiaowei Zhang, Jiayu Tan, Xinyu Zhang, Kritika Pandey, Yuqing Zhong, Guitao Wu, Kejun He . Aggrephagy-related gene signature correlates with survival and tumor-associated macrophages in glioma: Insights from single-cell and bulk RNA sequencing. Mathematical Biosciences and Engineering, 2024, 21(2): 2407-2431. doi: 10.3934/mbe.2024106
    [8] Yu Jiang, Lijuan Lin, Huiming Lv, He Zhang, Lili Jiang, Fenfen Ma, Qiuyue Wang, Xue Ma, Shengjin Yu . Immune cell infiltration and immunotherapy in hepatocellular carcinoma. Mathematical Biosciences and Engineering, 2022, 19(7): 7178-7200. doi: 10.3934/mbe.2022339
    [9] Hasitha N. Weerasinghe, Pamela M. Burrage, Dan V. Nicolau Jr., Kevin Burrage . Agent-based modeling for the tumor microenvironment (TME). Mathematical Biosciences and Engineering, 2024, 21(11): 7621-7647. doi: 10.3934/mbe.2024335
    [10] Ernesto A. B. F. Lima, Patrick N. Song, Kirsten Reeves, Benjamin Larimer, Anna G. Sorace, Thomas E. Yankeelov . Predicting response to combination evofosfamide and immunotherapy under hypoxic conditions in murine models of colon cancer. Mathematical Biosciences and Engineering, 2023, 20(10): 17625-17645. doi: 10.3934/mbe.2023783
  • It is well known that tumor microenvironment affects tumor growth and metastasis: Tumor cells may proliferate at different rates and migrate in different patterns depending on the microenvironment in which they are embedded. There is a huge literature that deals with mathematical models of tumor growth and proliferation, in both the avascular and vascular phases. In particular, a review of the literature of avascular tumor growth (up to 2006) can be found in Lolas [8] (G. Lolas, Lecture Notes in Mathematics, Springer Berlin / Heidelberg, 1872, 77 (2006)). In this article we report on some of our recent work. We consider two aspects, proliferation and of migration, and describe mathematical models based on in vitro experiments. Simulations of the models are in agreement with experimental results. The models can be used to generate hypotheses regarding the development of drugs which will confine tumor growth.


  • This article has been cited by:

    1. A. Friedman, Cancer as Multifaceted Disease, 2012, 7, 0973-5348, 3, 10.1051/mmnp/20127102
    2. Teruki Nii, Toshie Kuwahara, Kimiko Makino, Yasuhiko Tabata, A Co-Culture System of Three-Dimensional Tumor-Associated Macrophages and Three-Dimensional Cancer-Associated Fibroblasts Combined with Biomolecule Release for Cancer Cell Migration, 2020, 26, 1937-3341, 1272, 10.1089/ten.tea.2020.0095
    3. Alexei Tsygvintsev, Simeone Marino, Denise E. Kirschner, 2013, Chapter 13, 978-1-4614-4177-9, 367, 10.1007/978-1-4614-4178-6_13
    4. Chongming Jiang, Chunyan Cui, Weirong Zhong, Gang Li, Li Li, Yuanzhi Shao, Tumor proliferation and diffusion on percolation clusters, 2016, 42, 0092-0606, 637, 10.1007/s10867-016-9427-2
    5. Man‐Lan Guo, Mi‐Xin Sun, Jin‐Zhi Lan, Li‐Sha Yan, Jing‐Juan Zhang, Xiao‐Xia Hu, Shu Xu, Da‐Hua Mao, Hai‐Song Yang, Ya‐Wei Liu, Teng‐Xiang Chen, Proteomic analysis of the effects of cell culture density on the metastasis of breast cancer cells, 2019, 37, 0263-6484, 72, 10.1002/cbf.3377
    6. F. Caraguel, N. Bessonov, J. Demongeot, D. Dhouailly, V. Volpert, Wound Healing and Scale Modelling in Zebrafish, 2016, 64, 0001-5342, 343, 10.1007/s10441-016-9298-8
    7. Yan Wang, Haiquan Jia, Huiyun Lin, Xiaogang Tan, Zhiyan Du, Huihua Chen, Yuanji Xu, Xiaoxi Han, Jiakai Zhang, Siyang Zhao, Xiaodan Yu, Yinglin Lu, Metastasis-associated gene,mag-1improves tumour microenvironmental adaptation and potentiates tumour metastasis, 2012, 16, 15821838, 3037, 10.1111/j.1582-4934.2012.01633.x
    8. 2013, Existence and uniqueness of weak solutions for a coupled mathematical model of tumor invasive process, 978-1-4673-2971-2, 688, 10.1109/ICCME.2013.6548338
    9. Janet Dyson, Stephen A. Gourley, Glenn F. Webb, A non-local evolution equation model of cell–cell adhesion in higher dimensional space, 2013, 7, 1751-3758, 68, 10.1080/17513758.2012.755572
    10. Tor Flå, Florian Rupp, Clemens Woywod, 2013, Chapter 11, 978-3-0348-0450-9, 221, 10.1007/978-3-0348-0451-6_11
    11. Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier, On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach, 2017, 14, 1551-0018, 217, 10.3934/mbe.2017014
    12. Urszula Ledzewicz, Heinz Schättler, Application of mathematical models to metronomic chemotherapy: What can be inferred from minimal parameterized models?, 2017, 401, 03043835, 74, 10.1016/j.canlet.2017.03.021
    13. Urszula Ledzewicz, Heinz Schaettler, 2016, Chapter 11, 978-3-319-42021-9, 209, 10.1007/978-3-319-42023-3_11
    14. Xiaofeng Dai, Zhifa Zhang, Jianying Zhang, Kostya (Ken) Ostrikov, Dosing: The key to precision plasma oncology, 2020, 17, 1612-8850, 1900178, 10.1002/ppap.201900178
    15. ABDELGHANI BELLOUQUID, ELENA DE ANGELIS, DAMIAN KNOPOFF, FROM THE MODELING OF THE IMMUNE HALLMARKS OF CANCER TO A BLACK SWAN IN BIOLOGY, 2013, 23, 0218-2025, 949, 10.1142/S0218202512500650
    16. Urszula Ledzewicz, Heinz Schättler, 2014, Chapter 7, 978-1-4939-1792-1, 157, 10.1007/978-1-4939-1793-8_7
    17. Tor Flå, Florian Rupp, Clemens Woywod, Bifurcation patterns in generalized models for the dynamics of normal and leukemic stem cells with signaling, 2015, 38, 01704214, 3392, 10.1002/mma.3345
    18. Sharad P. Paul, 2016, Chapter 9, 978-3-319-20936-4, 89, 10.1007/978-3-319-20937-1_9
    19. Heinz Schättler, Urszula Ledzewicz, Behrooz Amini, Dynamical properties of a minimally parameterized mathematical model for metronomic chemotherapy, 2016, 72, 0303-6812, 1255, 10.1007/s00285-015-0907-y
    20. Georgiana Eftimie, Raluca Eftimie, Quantitative predictive approaches for Dupuytren disease: a brief review and future perspectives, 2022, 19, 1551-0018, 2876, 10.3934/mbe.2022132
    21. S.N. Antontsev, A.A. Papin, M.A. Tokareva, E.I. Leonova, E.A. Gridushko, Modeling of Tumor Occurrence and Growth-III, 2021, 1561-9451, 71, 10.14258/izvasu(2021)4-11
    22. Kolade M. Owolabi, Albert Shikongo, Edson Pindza, 2023, Chapter 3, 978-981-99-5000-3, 53, 10.1007/978-981-99-5001-0_3
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3146) PDF downloads(556) Cited by(22)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog