Loading [Contrib]/a11y/accessibility-menu.js

A note on the use of optimal control on a discrete time model of influenza dynamics

  • Received: 01 June 2010 Accepted: 29 June 2018 Published: 01 January 2011
  • MSC : Primary: 92B05, 49K21, 93C55; Secondary: 92D40.

  • A discrete time Susceptible - Asymptomatic - Infectious - Treated - Recovered (SAITR) model is introduced in the context of influenza transmission. We evaluate the potential effect of control measures such as social distancing and antiviral treatment on the dynamics of a single outbreak. Optimal control theory is applied to identify the best way of reducing morbidity and mortality at a minimal cost. The problem is solved by using a discrete version of Pontryagin's maximum principle. Numerical results show that dual strategies have stronger impact in the reduction of the final epidemic size.

    Citation: Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics[J]. Mathematical Biosciences and Engineering, 2011, 8(1): 183-197. doi: 10.3934/mbe.2011.8.183

    Related Papers:

    [1] Olivia Prosper, Omar Saucedo, Doria Thompson, Griselle Torres-Garcia, Xiaohong Wang, Carlos Castillo-Chavez . Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza. Mathematical Biosciences and Engineering, 2011, 8(1): 141-170. doi: 10.3934/mbe.2011.8.141
    [2] Eunha Shim . Optimal strategies of social distancing and vaccination against seasonal influenza. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1615-1634. doi: 10.3934/mbe.2013.10.1615
    [3] Sherry Towers, Katia Vogt Geisse, Chia-Chun Tsai, Qing Han, Zhilan Feng . The impact of school closures on pandemic influenza: Assessing potential repercussions using a seasonal SIR model. Mathematical Biosciences and Engineering, 2012, 9(2): 413-430. doi: 10.3934/mbe.2012.9.413
    [4] Keguo Ren, Xining Li, Qimin Zhang . Near-optimal control and threshold behavior of an avian influenza model with spatial diffusion on complex networks. Mathematical Biosciences and Engineering, 2021, 18(5): 6452-6483. doi: 10.3934/mbe.2021321
    [5] Majid Jaberi-Douraki, Seyed M. Moghadas . Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences and Engineering, 2014, 11(5): 1045-1063. doi: 10.3934/mbe.2014.11.1045
    [6] Xiaomeng Wang, Xue Wang, Xinzhu Guan, Yun Xu, Kangwei Xu, Qiang Gao, Rong Cai, Yongli Cai . The impact of ambient air pollution on an influenza model with partial immunity and vaccination. Mathematical Biosciences and Engineering, 2023, 20(6): 10284-10303. doi: 10.3934/mbe.2023451
    [7] Tom Reichert . Pandemic mitigation: Bringing it home. Mathematical Biosciences and Engineering, 2011, 8(1): 65-76. doi: 10.3934/mbe.2011.8.65
    [8] B. M. Adams, H. T. Banks, Hee-Dae Kwon, Hien T. Tran . Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches. Mathematical Biosciences and Engineering, 2004, 1(2): 223-241. doi: 10.3934/mbe.2004.1.223
    [9] Junyoung Jang, Kihoon Jang, Hee-Dae Kwon, Jeehyun Lee . Feedback control of an HBV model based on ensemble kalman filter and differential evolution. Mathematical Biosciences and Engineering, 2018, 15(3): 667-691. doi: 10.3934/mbe.2018030
    [10] Guodong Li, Wenjie Li, Ying Zhang, Yajuan Guan . Sliding dynamics and bifurcations of a human influenza system under logistic source and broken line control strategy. Mathematical Biosciences and Engineering, 2023, 20(4): 6800-6837. doi: 10.3934/mbe.2023293
  • A discrete time Susceptible - Asymptomatic - Infectious - Treated - Recovered (SAITR) model is introduced in the context of influenza transmission. We evaluate the potential effect of control measures such as social distancing and antiviral treatment on the dynamics of a single outbreak. Optimal control theory is applied to identify the best way of reducing morbidity and mortality at a minimal cost. The problem is solved by using a discrete version of Pontryagin's maximum principle. Numerical results show that dual strategies have stronger impact in the reduction of the final epidemic size.


  • This article has been cited by:

    1. Naveed Chehrazi, Lauren E Cipriano, Eva E. Enns, Dynamics of Drug Resistance: Optimal Control of an Infectious Disease, 2017, 1556-5068, 10.2139/ssrn.2927549
    2. Anuj Kumar, Prashant K. Srivastava, Yueping Dong, Yasuhiro Takeuchi, Optimal control of infectious disease: Information-induced vaccination and limited treatment, 2020, 542, 03784371, 123196, 10.1016/j.physa.2019.123196
    3. Eunha Shim, Optimal strategies of social distancing and vaccination against seasonal influenza, 2013, 10, 1551-0018, 1615, 10.3934/mbe.2013.10.1615
    4. Anuj Kumar, Prashant K Srivastava, Anuradha Yadav, Delayed information induces oscillations in a dynamical model for infectious disease, 2019, 12, 1793-5245, 1950020, 10.1142/S1793524519500207
    5. Paula Andrea Gonzalez Parra, Martine Ceberio, Sunmi Lee, Carlos Castillo-Chavez, 2014, Chapter 33, 978-3-319-01567-5, 231, 10.1007/978-3-319-01568-2_33
    6. Juan Jose Fallas-Monge, Jeffry Chavarria-Molina, Geisel Alpizar-Brenes, 2016, Combinatorial metaheuristics applied to infectious disease models, 978-1-4673-9578-6, 1, 10.1109/CONCAPAN.2016.7942337
    7. Seoyun Choe, Sunmi Lee, Modeling optimal treatment strategies in a heterogeneous mixing model, 2015, 12, 1742-4682, 10.1186/s12976-015-0026-x
    8. Naveed Chehrazi, Lauren E. Cipriano, Eva A. Enns, Dynamics of Drug Resistance: Optimal Control of an Infectious Disease, 2019, 67, 0030-364X, 619, 10.1287/opre.2018.1817
    9. Thao Dang, Tommaso Dreossi, Carla Piazza, 2015, Chapter 4, 978-3-319-27655-7, 67, 10.1007/978-3-319-27656-4_4
    10. Geisel Alpízar, Luis F. Gordillo, Disease Spread in Coupled Populations: Minimizing Response Strategies Costs in Discrete Time Models, 2013, 2013, 1026-0226, 1, 10.1155/2013/681689
    11. Baojun Song, Zhilan Feng, Gerardo Chowell, From the guest editors, 2013, 10, 1551-0018, 10.3934/mbe.2013.10.5i
    12. Josephine Mauskopf, Leslie Blake, Amanda Eiden, Craig Roberts, Tianyan Hu, Mawuli Nyaku, Economic Evaluation of Vaccination Programs: A Guide for Selecting Modeling Approaches, 2022, 25, 10983015, 810, 10.1016/j.jval.2021.10.017
    13. Vijay Pal Bajiya, Sarita Bugalia, Jai Prakash Tripathi, Maia Martcheva, Deciphering the transmission dynamics of COVID-19 in India: optimal control and cost effective analysis, 2022, 16, 1751-3758, 665, 10.1080/17513758.2022.2116493
    14. Carlos Castillo-Chavez, Sunmi Lee, 2015, Chapter 85, 978-3-540-70528-4, 427, 10.1007/978-3-540-70529-1_85
    15. Anuj Kumar, Yasuhiro Takeuchi, Prashant K Srivastava, Stability switches, periodic oscillations and global stability in an infectious disease model with multiple time delays, 2023, 20, 1551-0018, 11000, 10.3934/mbe.2023487
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3029) PDF downloads(516) Cited by(15)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog