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Abstract. A discrete time Susceptible - Asymptomatic - Infectious - Treated
- Recovered (SAITR) model is introduced in the context of influenza trans-

mission. We evaluate the potential effect of control measures such as social
distancing and antiviral treatment on the dynamics of a single outbreak. Op-
timal control theory is applied to identify the best way of reducing morbidity
and mortality at a minimal cost. The problem is solved by using a discrete
version of Pontryagin’s maximum principle. Numerical results show that dual
strategies have stronger impact in the reduction of the final epidemic size.

1. Introduction. In April of 2009, the World Health Organization (WHO) an-
nounced the emergence of a novel A(H1N1) influenza strain [11]. National and in-
ternational public health agencies quickly took (often drastic) emergency measures
and in June of 2009, the WHO and the US Centers for Disease Control (CDC)
declared the outbreak to be a pandemic.

For last few decades, mathematical epidemiological models have been developed
to understand the dynamics of infectious diseases [2, 5, 17]. In particular, continuous
time models have been used to study influenza outbreaks and their controls policies
[3, 12, 13, 16, 28, 30, 33]. Optimal control models have been provided to evaluate
the usefulness of the policies put in place in many applications [4, 21, 23, 29]. The
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identification of optimal control strategies involving antiviral treatment and the
isolation of infectious individuals have been studied using continuous time models
[22, 32]. Recently, more attention have been focused on discrete epidemiological
models [1, 6, 9, 10, 15, 34]. A discrete model is more convenient to compare data,
which are collected in discrete time, with the output of a discrete model.

In this note, we proceed to identify optimal control policies aimed at minimizing
the number of infected and dead individuals via the use of the most “cost-effective”
policies involving social distancing and antiviral treatment within a discrete time
epidemic framework that it is not just a discretization of a continuous-time model
[6]. Discrete optimal control theory is the main approach used in our analysis [8, 14,
18, 19, 20, 24, 31]. The model’s basic reproductive number is computed as well as
final epidemic size relations (with and without controls). Only the implementation
of intervention measures referred to as social distancing and antiviral treatment are
explored in this note. Numerical simulations highlight the differences that result
from the implementation of single versus dual intervention policies.

2. Discrete SAITR model. The total population under consideration is divided
into susceptible (S), asymptomatic (A), infectious (I), treated (T ), recovered (R),
and dead (D) (from influenza) classes of individuals. Births and deaths from natu-
ral causes are ignored since the focus is on single outbreaks. Treatment and social
distancing are the only control policies explored in this note. The fraction of sus-
ceptible individuals at time t that remain susceptible at time t + 1 is modeled by
the function

Gt = exp

(

−β(1− xt)
It +mAt + ρTt

Nt

)

,

where Nt denotes the total population, β is the transmission rate, and m and ρ

(0 < m, ρ ≤ 1) are the reductions in transmissibility for the asymptomatic and
treated classes, respectively. The social distancing control function, xt, models the
reduction in the number of contacts per unit of time (“generation”). It is assumed
that the social distancing control reduces “equally” the role of each infectious class
on the transmission process. The fraction of individuals who get the disease but
do not develop symptoms is given by q while δ denotes the proportion of disease-
induced deaths per generation; the fraction of infected individuals who get treat-
ment each generation is modeled by the antiviral treatment control function, τt.
It is assumed that asymptomatic and infectious individuals naturally recover with
probability σ1 (per generation) while treated individuals recover with probability
σ2 (per generation). The model (with two controls) is given by the following system
of nonlinear discrete equations:

St+1 = StGt

At+1 = qSt(1 −Gt) + (1− σ1)At

It+1 = (1− q)St (1−Gt) + (1− τt) (1− σ1) (1 − δ)It
Tt+1 = (1− σ2)Tt + τt (1− σ1) (1− δ)It
Rt+1 = Rt + σ1At + σ1 (1− δ) It + σ2Tt

Dt+1 = Dt + δIt.

(1)

In the absence of controls (xt ≡ 0 and τt ≡ 0, for all t), the final size relationship is
given by

ln

(

S0

S∞

)

= R0

(

1−
S∞

N

)

(2)
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following the approach in [6] (details are presented in Appendix A). The basic
reproductive number R0 in this case is

R0 = β

(

(1− q)

1− (1− σ1) (1− δ)
+m

q

σ1

)

. (3)

R0 is a dimensionless quantity that accounts for the number of (initial) secondary
cases generated by two classes: the infected (I) and the asymptomatic (A) in a
population of primary susceptible individuals. The addition of controls replaces the
expression in (2) by the inequality

ln

(

S0

S∞

)

≤ R0

(

1−
S∞

N

)

. (4)

The following result is easily established.
Result 2.1: If S∞ is a solution of (2) and Swc

∞ satisfy the inequality (4) then
Swc
∞ ≥ S∞, that is, the use of controls reduces the final epidemic size (an outline of

the proof is found in Appendix A).
We observe that the fraction of the population that becomes infected during the

course of a single epidemic outbreak in the absence of controls is 1− S∞

N
while the

corresponding fraction with controls is denoted as 1−
Swc
∞

N
. The final epidemic size

decreases as a result of the implementation of social distancing measures or the
application of antiviral treatment control measures. Numerical simulations that
compute the final epidemic sizes with and without controls are used to corroborate
Result 2.1.

3. Optimal control problem. Our goal is to minimize the number of infected
and dead individuals via the judicious (cost effective) use of social distancing and
antiviral treatment measures over a finite interval [0, Tf ]. The objective functional
F used to formulate the appropriate optimization problem is given by

F(x, τ ) =
1

2

Tf−1
∑

t=0

F (yt, xt, τt, t) (5)

where

F (yt, xt, τt, t) = B0I
2
t +B1D

2
t +B2x

2
t +B3τ

2
t ; (6)

with x = (x0, x1, ..., xTf−1) and τ = (τ0, τ1, ..., τTf−1), the control variables. Further

yt = (St, At, It, Tt, Rt, Dt)
T is the state variable with t = 0, 1, ..., Tf . The weight

constants Bi, (i = 0, 1, 2, 3) are a measure of the relative cost of interventions
over [0, Tf ]. In particular, B2 and B3, are the relative costs associated with the
implementation of social distancing and antiviral treatment, respectively. The use
of these definitions and notations lead to the problem of finding control functions
x and τ such that

F(x∗, τ ∗) = min
U

F(x, τ ), (7)

where U = {(xt, τt) : 0 ≤ xt ≤ xmax, 0 ≤ τt ≤ τmax, t = 0, 1, ..Tf − 1}, subject to
the state equations in Model (1) and appropriate initial conditions. Three different
strategies are compared:

• Strategy 1: Social distancing (xt ≥ 0, τt ≡ 0),
• Strategy 2: Antiviral treatment (τt ≥ 0, xt ≡ 0),
• Strategy 3: Social distancing and antiviral treatment.
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The relative impact of these strategies is “evaluated” from their effect on the final
size relations under single or dual policies. It is worth observing again that, since
there is no data on real costs, the model and the optimization process are based on
“perceived” relative costs. Therefore, all simulation results are compared in terms
of relative costs. The optimization problem is solved by using a discrete version of
Pontryagin’s maximum principle [18, 19, 23, 31] (details are provided in Appendix
B). The Hamiltonian associated with the problem is given by

Ht = F (yt, xt, τt, t) + λ
T
t+1yt+1, for t = 0, 1, 2, .., Tf − 1, (8)

where xt, τt are the control variables, and yt and λt ∈ R
6 are the state and adjoint

variables, respectively. The adjoint equations are

λi
t =

∂Ht

∂yit
, for t = 0, 1, 2, .., Tf − 1, i = 1, 2, ..., 6, (9)

where λi
t and yit are the i-th component of λt and yt, respectively. Finally, the

optimality conditions are solved (∂Ht

∂xt
= 0 and ∂Ht

∂τt
= 0). The procedure to find

optimal solutions is summarized in the following algorithm:

Algorithm 1 Forward-Backward Algorithm

1: Initial guess for x0, τ 0 and condition y0 are selected.
2: Solve State Equation (1) forward in time.
3: Solve Adjoint Equation (9) backward in time subject to the transversality con-

ditions λTf
= 0.

4: Solve the optimality conditions ∂Ht

∂xt
= 0, ∂Ht

∂τt
= 0.

5: Check convergence. That is, if ‖u−uold‖
‖u‖ < 0.001 for u ∈ {x, τ} stop. If

‖u−uold‖
‖u‖ ≥ 0.001 go to Step 2.

4. Numerical results. The results of selected simulations generated by the nu-
merical implementation of the strategies described in Section 3 are discussed in this
section. The numbers of infected individuals generated under two scenarios (low to
moderate R0 values (1.3 - 1.8) or high R0 values (2.4 - 3.2) in the absence of controls
or in the presence of single or dual optimal controls) are compared. A sensitivity
analysis is carried out on the robustness of these simulations in relation to the val-
ues of a priori selected constraints on the ranges of the bounds on the controls xt

and τt (xt ∈ [0, 0.2], τt ∈ [0, 0.05]). The control upper bounds are interpreted as the
maximum daily rates and we assume a smaller rate for the treatment control (per
day) due to limitation of resources than the one for the social distancing control.
The weight constants, B2 and B3, are the relative costs associated with the im-
plementation of social distancing and antiviral treatment, respectively. The weight
constants are selected in part to facilitate computational issues. We notice that the
numerical approach used to solve this discrete optimal control problem is sensitive
to the weight constants on the controls. The sensitivity arises in part from the fact
that all parameters in our discrete model represent daily rates, i.e. the time step is
one day. Hence, we use small ranges for the weight constants in order to guarantee
convergence to the optimal solutions (B2 ∈ [0.002, 0.2] and B3 ∈ [0.004, 0.4]). For
most our simulations, we choose B3 = 0.004 (treatment as the base line value) and
B2 (social distancing) which is assumed to be approximately ten times larger than
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B3 (B2
∼= 10B3). We carried out simulations under the assumption that the costs

associated with social distancing are higher than those associated with treatment.
As part of our sensitivity analysis, we found that the model results under two cases
(B2 > B3 or B2 < B3) are perhaps robust to changes in the ordering of two weight
constants (B2, B3). The final time, 200 days, is chosen for all simulations. The
baseline parameter values are given in Table 1.

4.1. Implication of social distancing and antiviral treatment. We compare
the reduction in the final size and the proportion of daily infected cases that result
from the implementation of Strategies 1 - 3. In these simulations, the weight con-
stants on two controls are B3 = 0.004 and B2

∼= 10B3. Results under two different
values for R0, a low value (R0 = 1.3) and a high value (R0 = 2.4) are displayed in
Figures 1 and 2, respectively. Figures 1A and 2A show the optimal control solution
as a function of time for each strategy. Figures 1 (B-C) and 2 (B-C) compare the
impact of each strategy on the cumulative proportion of infected individuals and
the proportion of daily infected cases.

In Figures 1A and 2A, when R0 is low (R0 = 1.3), the treatment control must
be implemented at the maximum rate while the moderate use of social distancing
control is applied. However, when R0 is high (R0 = 2.4), the role of social distancing
control becomes more important (the maximum use of the social distancing control
must be implemented). In Figure 1B, dual policies generate strong reductions of
almost 57% in the final epidemic size as well as 17% reduction under Strategy
1, and 50% under Strategy 2. The epidemic peak is reduced by more than 50%
when dual policies are applied (Figure 1C). Figure 2 plots optimal controls and
the resulting cumulative proportions of infected cases when R0 = 2.4. The optimal
control solution requires the application of the maximum effort during the first 50
and 75 days for Strategies 1 and 2. In the case of Strategy 3, the maximum effort for
social distancing and treatment should be applied during the first 50 and 100 days
respectively. The curves in Figure 2B show that the epidemic ends within 100 days
of the start of the outbreak. Strategy 3 yields the largest reduction of 22% in the
final epidemic size, but there is only a 9% and a 13% reductions under Strategies 1
and 2, respectively.

The impact of optimal strategies in terms of the final size as a function of R0 is
presented in Figure 3. Under a single policy, for small R0 (up to ∼ 1.45), Strategy
2 is more effective in reducing the final epidemic size when compared to Strategy
1. However, the effect is reversed when R0 ≥ 1.45. A dual policy has the strongest
impact in the reduction of the final epidemic size for all values of R0 (R0 ∈ [1.3, 3.2]
[12, 13, 25]). Under higher values of R0 (R0 ≥ 3), no policy seems significantly
effective whenever the goal is to reduce the final epidemic size.

4.2. Effects of weight constants. The role of weight constants is explored by
assessing their quantitative impact in terms of the number of infected cases. The
weight constants correspond to the relative costs of the effort carried out in the
implementation of the optimal strategies. We study the impact of three different
values for B2 and B3 on Strategies 1 (social distancing) and 2 (antiviral treatment),
respectively. We set R0 = 1.8, xmax = 0.2, and τmax = 0.05. Figures 4 and 5
show the optimal control solutions computed under Strategies 1 and 2 as well as
their impact on the cumulative proportion of infected individuals and daily infected
cases.
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Figure 4A shows that the optimal control solution requires the maximum value
allowed for social distancing within the first 50 days of the epidemic when the
weight constant is the smallest (B2 = 0.002, relatively cheap). This high value for
the social distancing control yields the highest reduction of 20% in the final epidemic
size (Figure 4B). However, as the weight constant B2 is increased to 0.2 (relatively
expensive), the reduction in the final epidemic size decreases to 7.5%. Figure 4C
shows the possibility of a longer delay in the peak of the epidemic as the value of the
weight constant B2 decreases. In the case when Strategy 2 is applied, similar results
are obtained. As the weight constant increases, reductions in the final epidemic size
are observed. For example, when B3 = 0.004, the reduction in the final epidemic
size is 25% but when B3 = 0.4 the reduction is only 10% (Figure 5B).

The cumulative proportion of infected cases without controls together with those
generated under Strategies 1 and 2, respectively, are plotted in Figures 6A and
6B. Figure 6A plots the results under Strategy 1 for three different values of the
weight constant B2. Small values of B2 = 0.002 result in a higher reduction in the
final epidemic size for all ranges of R0. Figure 6B shows that for large values of
R0 (R0 ≥ 2.5), reductions in the final epidemic size are not significantly different
(B3 = .004 and B3 = .04), as a consequence of the a priori limitations placed on
the control upper bounds.

4.3. The effect of upper bounds on the optimal control. We study the im-
plementation of Strategies 1 and 2 under limited resources as a result of changes in
the values of the controls upper bounds: xmax ∈ [0.07, 0.2] and τmax ∈ [0.007, 0.05],
respectively. We fix a moderate value of R0 = 1.8 and set the values of the weight
constants at B3 = 0.004 and B2 = 10B3. Figures 7A and 8A show the optimal
control solution under Strategy 1 and 2, respectively. Figures 7(B-C) and 8(B-C)
illustrates the effect of controls on the reduction of the final epidemic size and pro-
portion of daily infected cases. Figure 7B shows that when the upper bound is
relatively small (xmax = 0.07), the reduction in the final epidemic size is less than
7% but when the upper bound is large (xmax = 0.20) a reduction of 17% in the final
epidemic size can be achieved.

Figure 7C demonstrates that a reduction of 50% or more in the epidemic peak
can be achieved when the upper bound increases to the maximum value xmax = 0.2.
A similar behavior is observed when the a priori upper bound in the control linked
to Strategy 2 is varied. Figure 8 shows that a maximum upper bound of τmax = 0.05
gives 22% reduction in the final epidemic size. In fact, when the upper bound is
relatively small (τmax = 0.07), the final epidemic size is reduced but only by 4%.

5. Conclusions. A discrete model is introduced in order to study single epidemic
outbreaks in the context of influenza. The use of single and dual strategies (social
distancing and antiviral treatment) results in reductions in the cumulative number
of infected individuals. We have seen that dual strategies are more efficient at
reducing the final epidemic size than single policies.

Our results show that under the implementation of a single policy, the social dis-
tancing strategy (Strategy 1) is more effective than the antiviral treatment strategy
(Strategy 2) when R0 > 1.5. Dual policies are always most effective and in this re-
spect, our findings are consistent with those obtained recently using continuous time
models [22]. The simulation of the model with two controls (dual policy) showed
that reduction in the prevalence of the diseases were more sensitive to changes in
social distancing than in antiviral treatment. In the application of every policy, we
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find that the level of the control effort is higher at the beginning of the epidemic.
Furthermore, for extremely high values of R0, R0 ≥ 2.4, even under the implemen-
tation of maximum effort, it is observed that the selected policies do not make a
significant difference.

Recent studies show that the 2009 influenza pandemic had stronger economical
impact in Mexico [7, 26]. Unfortunately estimating the real costs associated with the
selected policies (interventions measures) is difficult even in the context of the simple
model in this note. Therefore, we have focused on the use of relative costs. However,
even after we have chosen the interventions strategies (policies) ranking the relative
costs is often a matter of debate. In addition we did not include the impact of
time delays which arise from a multitude of factors including those tied in to the
development or implementation of intervention (resource-limited policies). The 2009
influenza pandemic demonstrated that such delays could be critically important.
Fortunately, the expected negative impact of these delays never materialized due to
the relatively low severity associated with this novel influenza A(H1N1) strain.

Appendix A: Final epidemic size. Let us consider the model without control,

then τt = 0, xt = 0, and Gt = e−β
It+mAt

N hence Model (1) becomes to be

St+1 = StGt

At+1 = qSt(1−Gt) + (1− σ1)At

It+1 = (1− q)St (1−Gt) + (1− σ1) (1− δ)It
Rt+1 = Rt + σ1At + σ1 (1− δ) It
Dt+1 = Dt + δIt.

(10)

Then from the first equation in (10) we get

Sk+1 = S0G0G1 . . . Gk

where

ln

(

Sk+1

S0

)

= (lnG0 + lnG1 + . . .+ lnGk) .

However, since

lnGi = ln
(

e−β
Ii+mAi

N

)

= −
β

N
(Ii +mAi)

the previous equation becomes

N

β
ln

(

S0

Sk+1

)

=

k
∑

i=0

Ii +m

k
∑

i=0

Ai

taking the limit as k → ∞ we get

N

β
ln

(

S0

S∞

)

=

∞
∑

i=0

Ii +m

∞
∑

i=0

Ai. (11)

From the second equation in Model (1) we have

Ak+1 = qSk(1−Gk) + (1− σ1)Ak,

and after some rearrangement of terms, we obtain

Ak+1 − (1− σ1)Ak = qSk − qSkGk

= qSk − qSk+1.
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Summing over k and let k → ∞ we get that

σ1

∞
∑

k=0

Ak −A0 = q (S0 − S∞) .

But A0 = 0 and S0 ≈ N , therefore
∞
∑

k=0

Ak =
q

σ1
(N − S∞) . (12)

By adding equations S, A and I in Model (1) we obtain

Sk+1 +Ak+1 + Ik+1 = Sk + (1− σ1)Ak + (1− σ1) (1− δ) Ik.

Rearrange the terms of the above equation to get

(Sk+1 − Sk) + (Ak+1 − (1− σ1)Ak) + (Ik+1 − (1− σ1) (1− δ) Ik) = 0,

and summing over k and let k → ∞ we have

S∞ − S0 + σ1

∞
∑

k=0

Ak −A0 + (1− (1− σ1) (1− δ))

∞
∑

k=0

Ik − I0 = 0,

hence
∞
∑

k=0

Ik =
1

1− (1− σ1) (1− δ)

[

N − S∞ − σ1

∞
∑

k=0

Ak

]

. (13)

Substituting (12) into (13) yields
∞
∑

k=0

Ik =
1

1− (1− σ1) (1− δ)
[N − S∞ − q (N − S∞)] .

Therefore,
∞
∑

k=0

Ik =
1

1− (1− σ1) (1− δ)
[(1− q) (N − S∞)] . (14)

Substituting (12) and (14) into (11) gives

N

β
ln

(

S0

S∞

)

=

[

1

1− (1− σ1) (1− δ)
(1− q) +m

q

σ1

]

(N − S∞) .

hence we get the final size relation,

ln

(

S0

S∞

)

= β

[

1

1− (1− σ1) (1− δ)
(1− q) +m

q

σ1

](

1−
S∞

N

)

,

which can be written as

ln

(

S0

S∞

)

= R0

(

1−
S∞

N

)

,

where the basic reproductive number is given by

R0 = β

(

(1− q)

1− (1− σ1) (1− δ)
+m

q

σ1

)

.

The proof of Result 2.1:

f (x) = ln

(

S0

x

)

−R0

(

1−
x

N

)

for 0 < x ≤ N. (15)

The result can be verified easily for R0 < 1. Let us consider R0 > 1; f is a decreasing
function when x < N

R0
and moreover, N

R0
is the unique critical point of f . Since
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f(N) = 0, we have S∞ < N
R0

< N and f ′(S∞) < 0. Hence, f < 0 if and only if

S∞ < x < N . By hypothesis f (Swc
∞ ) < 0, then we obtain S∞ < Swc

∞ .

Appendix B. We focus on Strategy 3, that is, when both social distancing and
antiviral treatment controls are implemented (dual policy). Pontryagin’s Maximum
Principle can be extended to discrete systems and the necessary conditions are
obtained in a similar manner as the continuous models [19, 23, 29, 31]. The existence
of optimal solutions are guaranteed because of the convexity of control functions in
the objective functional and the regularity in the discrete system. The Hamiltonian
is defined as

Ht =
1

2

(

B0I
2
t +B2x

2
t +B3τ

2
t +B4D

2
t

)

+ λ1
t+1StGt (16)

+ λ2
t+1(qSt(1−Gt) + (1− σ0)At)

+ λ3
t+1((1− q)St (1−Gt) + (1− τ) (1− σ1) (1− δ)It)

+ λ4
t+1 ((1− σ2)Tt + τ (1− σ1) (1− δ)It)

+ λ5
t+1 (Rt + σ0At + σ1 (1− δ) It + σ2Tt) + λ6

t+1(Dt + δIt),

where

Gt = exp

(

−β(1− xt)
It +mAt + ρTt

N

)

. (17)

The corresponding adjoint equations are (λi
t =

∂Ht

∂yi
t

)

λ1
t = Gtλ

1
t+1 +

(

qλ2
t+1 + (1− q)λ3

t+1

)

(1 −Gt)

λ2
t = StGt

βm
N

(1− xt)Lt+1 + (1− σ1)λ
2
t+1 + σ1λ

5
t+1

λ3
t = B0It + StGt

β
N
(1− xt)Lt+1+

(1− δ)
[

(1− σ1)
(

(1− τ)λ3
t+1 + τλ4

t+1

)

+ σ1λ
5
t+1

]

+ δλ6
t+1

λ4
t = StGt

βρ
N
(1− xt)Lt+1 + (1− σ2)λ

4
t+1 + σ2λ

5
t+1

λ5
t = λ5

t+1

λ6
t = B1Dt + λ6

t+1,

(18)

where Lt+1 = −λ1
t+1 + qλ2

t+1 + (1− q)λ3
t+1 with transversality conditions

λi(Tf ) = 0, for i = 1, 2, ...6.

The optimality conditions are given by ∂Ht

∂xt
= 0, and ∂Ht

∂τt
= 0:

∂Ht

∂τt
= (1− σ1) (1− δ) It

(

λ4
t+1 − λ5

t+1

)

+B3τt = 0 (19)

and
∂Ht

∂xt

= B2xt + StGtat
(

λ1
t+1 − qλ2

t+1 − (1− q)λ3
t+1

)

= 0 (20)

where Gt is given by (17) and

at =
β

N
(It +m At + ρ Tt) .

We find a solution of the nonlinear equation (20) by using Newton method [18, 27].
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Figure 1. For a low value of R0 = 1.3, the social distancing optimal con-
trol solution does not require the application of the allowable maximum
values. For treatment, the optimal solution requires the implementation
of the highest allowable values under each strategy. Dual policy (Strat-
egy 3) has a significant reduction of almost 57% in the final epidemic
size.

Figure 2. For R0 = 2.4, the optimal solution requires the implementa-
tion of the highest permitted values for each control strategy. Strategy
3 causes a reduction of less than 22%. Even when there is a maximum
control implementation, the effort is not enough and the reduction in the
final epidemic size is less significant compared to the results obtained for
low values of R0.
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Figure 3. The comparison of final epidemic size vs. R0 under three
strategies. The results show that Strategy 3 yields the highest reduction
of the final epidemic size. However, for single policies Strategy 1 has
more impact in the reduction of the final epidemic size than Strategy 2.

Figure 4. Strategy 1: The value of the weight constant B2, which cor-
responds to the cost on social distancing is varied. For a small value
of B2, the optimal solution allows the implementation of high values of
social distancing that provides a high reduction in the final epidemic size
(20%). For a large value of B2 = 0.2, smaller values of social distancing
control must be implemented resulting in a non-significant reduction in
the final epidemic size (7.5%).
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Figure 5. Strategy 2: By increasing the cost on antiviral treatment,
B3, the optimal solution permits the application of smaller value for
treatment. We obtain an increase in the cumulative proportion and the
proportion of daily infected cases. In contrast, when the cost is mod-
erate, the optimal solution allows the implementation of the maximum
permitted value of treatment with a strong impact in the reduction of
the final epidemic size (22%).

Figure 6. The final epidemic size vs. R0 for Strategies 1 and 2 by
changing the weight constants for social distancing and antiviral treat-
ment. When the cost of social distancing is low, there is a significant
reduction in the final epidemic size for every value of R0. However, when
the cost is high (B2 = .2), there is a very small reduction in the final
epidemic size (A). For treatment, under two values of B3, (B3 = .004
and B3 = .04), there is not a considerable difference in the final epidemic
size when R0 > 2.5 (B).
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Figure 7. The reduction of the final epidemic size is small (7%) with a
small upper bound (xmax = 0.07) while we observe a stronger impact in
the reduction of the final epidemic size (17%) with a larger upper bound
(xmax = 0.2).

Figure 8. The impact of the control in Strategy 2 is reduced with a
small upper bound, τmax = 0.007 (4% reduction of the final epidemic
size). In the case of a lager upper bound τmax = 0.05, the final epidemic
size is reduced by 22%.
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Table 1. Definition of parameters and baseline values.

Parameter Value Definition

σ1
1
7 Recovering probability without treatment

σ2
1
5 Recovering probability with treatment

ρ 0.05 Transmissibility reduction of the treated class
m 0.03 Transmissibility reduction of the asymptomatic class
q 0.75 Fraction of asymptomatic infected
δ 0.01 Mortality rate
β 0.719− 1.94 Transmission rate
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