An advection-diffusion-reaction size-structured fish population dynamics model combined with a statistical parameter estimation procedure: Application to the Indian Ocean skipjack tuna fishery

  • Received: 01 February 2005 Accepted: 29 June 2018 Published: 01 October 2005
  • MSC : 92D25, 92D40, 86A05, 35K15, 35K20, 35K57,65M06, 86A22, 65K10, 93B30.

  • We develop an advection-diffusion size-structured fish population dynamics model and apply it to simulate the skipjack tuna population in the Indian Ocean. The model is fully spatialized, and movements are parameterized with oceanographical and biological data; thus it naturally reacts to environment changes. We first formulate an initial-boundary value problem and prove existence of a unique positive solution. We then discuss the numerical scheme chosen for the integration of the simulation model. In a second step we address the parameter estimation problem for such a model. With the help of automatic differentiation, we derive the adjoint code which is used to compute the exact gradient of a Bayesian cost function measuring the distance between the outputs of the model and catch and length frequency data. A sensitivity analysis shows that not all parameters can be estimated from the data. Finally twin experiments in which pertubated parameters are recovered from simulated data are successfully conducted.

    Citation: Blaise Faugeras, Olivier Maury. An advection-diffusion-reaction size-structured fish population dynamics model combined with a statistical parameter estimation procedure: Application to the Indian Ocean skipjack tuna fishery[J]. Mathematical Biosciences and Engineering, 2005, 2(4): 719-741. doi: 10.3934/mbe.2005.2.719

    Related Papers:

    [1] Ali Moussaoui, Pierre Auger, Christophe Lett . Optimal number of sites in multi-site fisheries with fish stock dependent migrations. Mathematical Biosciences and Engineering, 2011, 8(3): 769-783. doi: 10.3934/mbe.2011.8.769
    [2] Azmy S. Ackleh, H.T. Banks, Keng Deng, Shuhua Hu . Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations. Mathematical Biosciences and Engineering, 2005, 2(2): 289-315. doi: 10.3934/mbe.2005.2.289
    [3] Diène Ngom, A. Iggidir, Aboudramane Guiro, Abderrahim Ouahbi . An observer for a nonlinear age-structured model of a harvested fish population. Mathematical Biosciences and Engineering, 2008, 5(2): 337-354. doi: 10.3934/mbe.2008.5.337
    [4] Karl Peter Hadeler . Structured populations with diffusion in state space. Mathematical Biosciences and Engineering, 2010, 7(1): 37-49. doi: 10.3934/mbe.2010.7.37
    [5] Hua Guo, Yuan Tian, Kaibiao Sun, Xinyu Song . Dynamic analysis of two fishery capture models with a variable search rate and fuzzy biological parameters. Mathematical Biosciences and Engineering, 2023, 20(12): 21049-21074. doi: 10.3934/mbe.2023931
    [6] Sophia R.-J. Jang . Discrete host-parasitoid models with Allee effects and age structure in the host. Mathematical Biosciences and Engineering, 2010, 7(1): 67-81. doi: 10.3934/mbe.2010.7.67
    [7] Yanfeng Liang, David Greenhalgh . Estimation of the expected number of cases of microcephaly in Brazil as a result of Zika. Mathematical Biosciences and Engineering, 2019, 16(6): 8217-8242. doi: 10.3934/mbe.2019416
    [8] Dong Liang, Jianhong Wu, Fan Zhang . Modelling Population Growth with Delayed Nonlocal Reaction in 2-Dimensions. Mathematical Biosciences and Engineering, 2005, 2(1): 111-132. doi: 10.3934/mbe.2005.2.111
    [9] Davide De Gaetano . Forecasting volatility using combination across estimation windows: An application to S&P500 stock market index. Mathematical Biosciences and Engineering, 2019, 16(6): 7195-7216. doi: 10.3934/mbe.2019361
    [10] Carlos Camilo-Garay, R. Israel Ortega-Gutiérrez, Hugo Cruz-Suárez . Optimal strategies for a fishery model applied to utility functions. Mathematical Biosciences and Engineering, 2021, 18(1): 518-529. doi: 10.3934/mbe.2021028
  • We develop an advection-diffusion size-structured fish population dynamics model and apply it to simulate the skipjack tuna population in the Indian Ocean. The model is fully spatialized, and movements are parameterized with oceanographical and biological data; thus it naturally reacts to environment changes. We first formulate an initial-boundary value problem and prove existence of a unique positive solution. We then discuss the numerical scheme chosen for the integration of the simulation model. In a second step we address the parameter estimation problem for such a model. With the help of automatic differentiation, we derive the adjoint code which is used to compute the exact gradient of a Bayesian cost function measuring the distance between the outputs of the model and catch and length frequency data. A sensitivity analysis shows that not all parameters can be estimated from the data. Finally twin experiments in which pertubated parameters are recovered from simulated data are successfully conducted.


  • This article has been cited by:

    1. Inna Senina, John Sibert, Patrick Lehodey, Parameter estimation for basin-scale ecosystem-linked population models of large pelagic predators: Application to skipjack tuna, 2008, 78, 00796611, 319, 10.1016/j.pocean.2008.06.003
    2. Daniel R. Goethel, Terrance J. Quinn, Steven X. Cadrin, Incorporating Spatial Structure in Stock Assessment: Movement Modeling in Marine Fish Population Dynamics, 2011, 19, 1064-1262, 119, 10.1080/10641262.2011.557451
    3. Sibylle Dueri, Blaise Faugeras, Olivier Maury, Modelling the skipjack tuna dynamics in the Indian Ocean with APECOSM-E – Part 2: Parameter estimation and sensitivity analysis, 2012, 245, 03043800, 55, 10.1016/j.ecolmodel.2012.02.008
    4. Lisa A. Kerr, Daniel R. Goethel, 2014, 9780123970039, 501, 10.1016/B978-0-12-397003-9.00021-7
    5. Jeerawan Suksamran, Yongwimon Lenbury, Stability analysis and traveling wave solution of a reaction–diffusion model for fish population incorporating time-dependent recruitment intensity, 2019, 2019, 1687-1847, 10.1186/s13662-019-2140-2
    6. Alistair J. Hobday, Jock W. Young, Osamu Abe, Daniel P. Costa, Robert K. Cowen, Karen Evans, Maria A. Gasalla, Rudy Kloser, Olivier Maury, Kevin C. Weng, Climate impacts and oceanic top predators: moving from impacts to adaptation in oceanic systems, 2013, 23, 0960-3166, 537, 10.1007/s11160-013-9311-0
    7. Qiang-Jun Xie, Ze-Rong He, Chun-Guo Zhang, Harvesting Renewable Resources of Population with Size Structure and Diffusion, 2014, 2014, 1085-3375, 1, 10.1155/2014/396420
    8. Inna Senina, Patrick Lehodey, John Sibert, John Hampton, Integrating tagging and fisheries data into a spatial population dynamics model to improve its predictive skills, 2020, 77, 0706-652X, 576, 10.1139/cjfas-2018-0470
    9. Inna N. Senina, Patrick Lehodey, John Hampton, John Sibert, Quantitative modelling of the spatial dynamics of South Pacific and Atlantic albacore tuna populations, 2020, 175, 09670645, 104667, 10.1016/j.dsr2.2019.104667
    10. Blaise Faugeras, Olivier Maury, Modeling fish population movements: From an individual-based representation to an advection–diffusion equation, 2007, 247, 00225193, 837, 10.1016/j.jtbi.2007.04.012
    11. Chontita Rattanakul, Yongwimon Lenbury, Jeerawan Suksamran, Analysis of advection-diffusion-reaction model for fish population movement with impulsive tagging: stability and traveling wave solution, 2019, 2019, 1687-1847, 10.1186/s13662-019-2153-x
    12. James T Thorson, Albert J Hermann, Kevin Siwicke, Mark Zimmermann, Sam Subbey, Grand challenge for habitat science: stage-structured responses, nonlocal drivers, and mechanistic associations among habitat variables affecting fishery productivity, 2021, 78, 1054-3139, 1956, 10.1093/icesjms/fsaa236
    13. Nicolas Barrier, Matthieu Lengaigne, Jonathan Rault, Renaud Person, Christian Ethé, Olivier Aumont, Olivier Maury, Mechanisms underlying the epipelagic ecosystem response to ENSO in the equatorial Pacific ocean, 2023, 00796611, 103002, 10.1016/j.pocean.2023.103002
    14. RBC Lundgreen, A Nielsen, M Krüger-Johnsen, D Righton, M Mion, K Radtke, M Plikshs, AJ Leskelä, J Raitaniemi, CA Griffiths, M Casini, U Krumme, K Hüssy, Examining fish movement in terms of advection or diffusion: a case study of northeastern Atlantic cod, 2022, 691, 0171-8630, 115, 10.3354/meps14065
    15. Nicolas Barrier, Olivier Maury, Roland Seferian, Yeray Santana‐Falcón, Alex Tidd, Matthieu Lengaigne, Assessing the Time of Emergence of Marine Ecosystems From Global to Local Scales Using IPSL‐CM6A‐LR/APECOSM Climate‐To‐Fish Ensemble Simulations, 2025, 13, 2328-4277, 10.1029/2024EF004736
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2616) PDF downloads(559) Cited by(15)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog