Loading [Contrib]/a11y/accessibility-menu.js

The Role Of Time Delays, Slow Processes And Chaos In Modulating The Cell-Cycle Clock

  • Received: 01 January 2005 Accepted: 29 June 2018 Published: 01 August 2005
  • MSC : 92D30.

  • The regulation of the cell cycle clock is examined using a theoretical model for the embryonic cell cycle, where the clock is described as a single-limit cycle [1]. By taking the coefficient of the autocatalytic reaction as proportional to the deviation of the system from its equilibrium state, we show how such clocks can be adjusted to function on several time scales. This feedback control, causing a periodic change in the sign of the autocatalytic reaction, may be interpreted as a periodic change in the ratio of cdc25/wee1 activity. Its introduction results in the appearance of a double limit cycle, signifying the acquisition of the G1 phase and the G2 phase, during embryonic development. Following the loss of stability of the double cycle, through a period-doubling bifurcation, another limit set—a strange attractor—is born. The complicated geometry of this strange attractor can be viewed as an unlimited reservoir of periods in the phase space.

    We hypothesize that the existence of such a reservoir is advantageous in morphogenetic tissues, such as the bone marrow, as it enables time- and site-specific selection of the optimal cell-cycle period for any specific micro- environment. This can be obtained by the addition of a time delay in the autocatalytic reaction, reflecting, for example, the influence of external molecular signals on cell-cycle progression.

    Citation: E.V. Presnov, Z. Agur. The Role Of Time Delays, Slow Processes And Chaos In Modulating The Cell-Cycle Clock[J]. Mathematical Biosciences and Engineering, 2005, 2(3): 625-642. doi: 10.3934/mbe.2005.2.625

    Related Papers:

    [1] LanJiang Luo, Haihong Liu, Fang Yan . Dynamic behavior of P53-Mdm2-Wip1 gene regulatory network under the influence of time delay and noise. Mathematical Biosciences and Engineering, 2023, 20(2): 2321-2347. doi: 10.3934/mbe.2023109
    [2] Orit Lavi, Doron Ginsberg, Yoram Louzoun . Regulation of modular Cyclin and CDK feedback loops by an E2F transcription oscillator in the mammalian cell cycle. Mathematical Biosciences and Engineering, 2011, 8(2): 445-461. doi: 10.3934/mbe.2011.8.445
    [3] Zhenliang Zhu, Yuming Chen, Zhong Li, Fengde Chen . Dynamic behaviors of a Leslie-Gower model with strong Allee effect and fear effect in prey. Mathematical Biosciences and Engineering, 2023, 20(6): 10977-10999. doi: 10.3934/mbe.2023486
    [4] Xinyou Meng, Jie Li . Stability and Hopf bifurcation analysis of a delayed phytoplankton-zooplankton model with Allee effect and linear harvesting. Mathematical Biosciences and Engineering, 2020, 17(3): 1973-2002. doi: 10.3934/mbe.2020105
    [5] Fabien Crauste . Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences and Engineering, 2006, 3(2): 325-346. doi: 10.3934/mbe.2006.3.325
    [6] Kalyan Manna, Malay Banerjee . Stability of Hopf-bifurcating limit cycles in a diffusion-driven prey-predator system with Allee effect and time delay. Mathematical Biosciences and Engineering, 2019, 16(4): 2411-2446. doi: 10.3934/mbe.2019121
    [7] Dan Liu, Shigui Ruan, Deming Zhu . Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions. Mathematical Biosciences and Engineering, 2012, 9(2): 347-368. doi: 10.3934/mbe.2012.9.347
    [8] Mohammad Sajid, Sahabuddin Sarwardi, Ahmed S. Almohaimeed, Sajjad Hossain . Complex dynamics and Bogdanov-Takens bifurcations in a retarded van der Pol-Duffing oscillator with positional delayed feedback. Mathematical Biosciences and Engineering, 2023, 20(2): 2874-2889. doi: 10.3934/mbe.2023135
    [9] Juenu Yang, Fang Yan, Haihong Liu . Dynamic behavior of the p53-Mdm2 core module under the action of drug Nutlin and dual delays. Mathematical Biosciences and Engineering, 2021, 18(4): 3448-3468. doi: 10.3934/mbe.2021173
    [10] Maoan Han, Tonghua Zhang . Some bifurcation methods of finding limit cycles. Mathematical Biosciences and Engineering, 2006, 3(1): 67-77. doi: 10.3934/mbe.2006.3.67
  • The regulation of the cell cycle clock is examined using a theoretical model for the embryonic cell cycle, where the clock is described as a single-limit cycle [1]. By taking the coefficient of the autocatalytic reaction as proportional to the deviation of the system from its equilibrium state, we show how such clocks can be adjusted to function on several time scales. This feedback control, causing a periodic change in the sign of the autocatalytic reaction, may be interpreted as a periodic change in the ratio of cdc25/wee1 activity. Its introduction results in the appearance of a double limit cycle, signifying the acquisition of the G1 phase and the G2 phase, during embryonic development. Following the loss of stability of the double cycle, through a period-doubling bifurcation, another limit set—a strange attractor—is born. The complicated geometry of this strange attractor can be viewed as an unlimited reservoir of periods in the phase space.

    We hypothesize that the existence of such a reservoir is advantageous in morphogenetic tissues, such as the bone marrow, as it enables time- and site-specific selection of the optimal cell-cycle period for any specific micro- environment. This can be obtained by the addition of a time delay in the autocatalytic reaction, reflecting, for example, the influence of external molecular signals on cell-cycle progression.


  • This article has been cited by:

    1. 2007, Application of Local Activity Theory of CNN to the Coupled Cell Cycle Clock Model, 978-1-4244-0817-7, 2038, 10.1109/ICCA.2007.4376719
    2. Jerry J. Batzel, Franz Kappel, Time delay in physiological systems: Analyzing and modeling its impact, 2011, 234, 00255564, 61, 10.1016/j.mbs.2011.08.006
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2701) PDF downloads(467) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog