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Abstract. The regulation of the cell cycle clock is examined using a theo-
retical model for the embryonic cell cycle, where the clock is described as a
single-limit cycle [1]. By taking the coefficient of the autocatalytic reaction
as proportional to the deviation of the system from its equilibrium state, we
show how such clocks can be adjusted to function on several time scales. This
feedback control, causing a periodic change in the sign of the autocatalytic
reaction, may be interpreted as a periodic change in the ratio of cdc25/wee1
activity. Its introduction results in the appearance of a double limit cycle,
signifying the acquisition of the G1 phase and the G2 phase, during embryonic
development. Following the loss of stability of the double cycle, through a
period-doubling bifurcation, another limit set—a strange attractor—is born.
The complicated geometry of this strange attractor can be viewed as an un-
limited reservoir of periods in the phase space.

We hypothesize that the existence of such a reservoir is advantageous in
morphogenetic tissues, such as the bone marrow, as it enables time- and
site-specific selection of the optimal cell-cycle period for any specific micro-
environment. This can be obtained by the addition of a time delay in the
autocatalytic reaction, reflecting, for example, the influence of external molec-
ular signals on cell-cycle progression.

Dedicated to the memory of Lee A. Segel (1932–2005), a pioneer in mathemat-
ical biology.

1. Introduction. “Human cancer is a collection of phenomena with one common
denominator: in all the different manifestation of human cancer the cell-cycle clock
is deranged” [2]. What is this clock, which activities does it regulate and where
is its master modulator situated? Two general approaches exist with respect to
modelling the cell-cycle clock. The more common approach refers to its mechanism,
to the specific activity of molecules that are involved in the biochemical cascade
underlying the cell cycle (e.g., [3]—[6]). In contrast, our own interest lies in the
control of the cell-cycle clock. For this reason, we have focused our analysis on
the general dynamic properties of the cell cycle and the laws that govern these
dynamics, rather than on the details of the biochemistry. In the present work,
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the dynamic behavior of this biochemical system is visualized by a limit cycle, a
double limit cycle, or a strange attractor, traced out by its trajectory in phase space
[7, 8]. Within this overall framework, the simple clock, representing the embryonic
cell cycle, is described as a limit cycle. A doubling of the limit-cycle period takes
place during embryonic development. Subsequently, a breakdown of the double
cycle occurs, and a strange attractor is born. Below we discussed the significance
of these patterns for the cell-cycle clock in developmental processes.

2. The simple clock–a single time scale. Evidence that, at least in certain
kinds of eggs, the cell cycle is regulated by an autonomous oscillator can be provided
by a series of self-perpetuating chemical reactions in the cytoplasm. Initiation and
completion of mitosis in cells involve several gene products. The key element is a
CDK called p34cdc2, which is encoded by the gene cdc2. The amount of the cdc2
gene product does not vary during cell division, but its kinase activity is positively
regulated by other gene products that appear and disappear during specific stages
of the cell cycle.

It has been shown that p34cdc2 and cyclin combine to form a heterodimer, a
maturation promotion factor (MPF), which when activated, triggers all the major
events of mitosis and cell division. A striking feature of MPF is its ability to
autoactivate so that injection of a small portion of an egg with high MPF activity
into another egg with low activity stimulates an increase in MPF activity in the
latter [9].

For describing this simple clock, we have employed the model for the embryonic
cell cycle introduced by Norel and Agur [1]. In [1], C and M denote cyclin and
active MPF concentrations at any given moment, respectively, whereas Ċ and Ṁ
denote the rates of change in these concentrations. For formally describing MPF
activation, they use the assumptions that (i) in the early embryos, cyclin synthesis
is sufficient for the activation of MPF and for the induction of mitosis [10] and
that (ii) MPF activity is autocatalytic [9, 12]. These assumptions are taken into
account in the first two terms in Equation 1. The third term in this equation
describes the Michaelis-Menten deactivation of MPF [9, 10]. In Equation 2, the
rate of change in cyclin concentration, Ċ is given by the difference between its
constant rate of accumulation [13] and its rate of degradation. Because cyclin is
known to be an essential component of active MPF [14], and its rapid degradation
occurs immediately after the maximum in MPF activity, it is assumed that the
rate of cyclin degradation depends on the cellular concentration of active MPF. For
simplicity, it is also assumed that no constraints exist with respect to space and
nutrients. Using the above assumptions, the following dimensionless equations are
obtained [1]:

Ṁ = eC + fCM2 − g
M

M + 1
, (1)

Ċ = i− CM, (2)

where e, f , g, and i are coefficients standing for the respective reaction rates.
To simplify the analysis, let us introduce a new scale for the variables M and C,

so that the system of differential equations (1) and (2) is replaced by the following
system:

{
ẋ = ay + bx2y − d x

x+1 ,

ẏ = 1− xy,
(3)
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where x = M , y = C/i, a = ei, b = fi, and d = g. There are no analytic methods
that permit us to investigate the integral behavior of the solution of such nonlinear
differential equations. Therefore, we need some arguments to choose the parameter
values for which periodic solutions of these equations (3) exist (appendix 1); this we
check by computer simulation. In our case, the condition for the stability of the limit
cycle can be satisfied: the system (3) is similar to (1) and (2) in yielding a limit-cycle
behavior, that is, an oscillatory change in MPF and cyclin concentrations.

3. Increasing the complexity of the clock–multiple time scales. Primitive
clocks can be characterized by a single, unmodulable time scale. For example, the
common hourglass operates on a scale of minutes. More sophisticated clocks use a
basic ticking mechanism for measuring time on several scales, for example, seconds,
minutes, or hours. By a similar reasoning it is conceivable that in multicellular
organisms the ticking of the basic cell-cycle clock may be employed for measuring
different biological processes on different time scales, ranging from the scale of a
single cell cycle to that of the entire organism’s lifetime. Note that the more evolved
the multicellular organism, the richer its time-hierarchical clock is expected to be.

How can such a control be effectuated? In fission yeast, the changes in active
MPF and cyclin concentrations are accelerated by the activity of the gene cdc25
(positive regulation - activation) and retarded by that of the gene wee1 (negative
regulation - inhibition). These genes control the entry into mitosis, and it seems
likely that the ratio of cdc2 and wee1 activity is altered by signals that influence the
entry into mitosis [10]. To allow for this control, Norel and Agur used a function
that reflects the change in the activity ratio cdc25/wee1 [1]. This function replaces
the parameter of the autocatalytic MPF reaction, and, by assuming that in aging
tissues its value decreases by a constant fraction in each cell cycle, one can study
the sensitivity of the period and amplitude of the oscillations in these tissues to
the cdc25/wee1 ratio control. Thus, it is shown that such a simple modulation can
account for the progressive increase in cell-cycle length and for the finite, roughly
constant, number of cell divisions, characterizing senescent cell lineage.

However, a constant slow decline in one of the reaction rates requires that a
larger time-scale clock (yet to be accounted for) is part of the system. In the
present work, we show how the latter clock may be embedded by using relatively
simple biochemical controls in the simple cell-cycle clock.

The dynamical system (3) has three basic components: synthesis, autocataly-
sis, and deactivation. We attempt to check the mathematical description for them
by extending the basic system (3). If the parameters a, b, and d in system (3)
represent biochemical controls, whose values may vary by many orders of magni-
tude, the system will possess a time hierarchy. For simplicity, let us first consider
a system where the parameters a, d and b are constants and is the biochemical
control variable. Considering that any system tends to return to equilibrium with
a force that is proportional to its deviation from its equilibrium state, we take ḃ as
proportional to (in suitable units equal to) the deviation of system. (3) from its
equilibrium state1. More precisely, the ”coefficient” b depends on the deviation of
the autocatalytic term, x2y, from its equilibrium value in the system (3). Taking
the equilibrium solution of the fast system (3) as xeq = 1, yeq = 1 (see Appendix

1This assumption is our expression of Le Chatelier’s principle: parametric deviations away from
the equilibrium values induce spontaneous processes tending to restore the system to equilibrium;
in modern language we will say that the system must have a control.
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A1), we obtain the following time-hierarchical system:




ẋ = ay + bx2y − d x
x+1 ,

ẏ = 1− xy,

ḃ = ε(1− x2y, )
(4)

Here we suggest an autocatalytic “sway” of the system (3). The constant b becomes
a new phase variable like x and y and can become negative (see Section 5). The new
dynamical system (4) contains the fast subsystem (3), and if ε ¿ 1 it is a fast-slow
system. The fast-slow system (4) can have regular relaxation oscillations; that is,
the trajectories can form an attracting cycle (see Fig. 1). We speculate that it is
the appearance of the double cycle during the variation of initial conditions (see
Fig. 2(a)) that enables further specialization of the simple cell-cycle clock, or, in
biochemical terms, the separation of a single cyclin-CDK pair into different S-phase
and M-phase cyclin-CDK pairs. If we assume that in (4) ε = 1–so that (4) is no
longer a fast-slow system–a new attractor in the system (4) is born (Fig. 2). This
attractor is a strange attractor, has a complicated geometry, and can be viewed as
virtually an unlimited reservoir of periods . Note, that the strange attractor has
an ”away” shape of double cycle in the three-dimensional-phase space (see Figs. 2
and 3).
REMARK 1. The transition to a system with strange attractor (deterministic
chaos) means that complicated nonperiodic oscillations, whose details are very sen-
sitive to small changes in the initial conditions, can be observed. In other words,
phase trajectories on the strange attractor are unstable. Note, however, that the
average characteristics of this behavior are stable and do not depend on the initial
conditions (they vary within a given domain) [15]. From a general point of view,
and using computer simulations, one can see that the system of a single or a double
limit cycle, as well as that of a strange attractor are structurally stable (robust)
systems. The property of structural stability is absent only for the bifurcation
values of the system’s parameters.

A more complex model assumes that the biochemical control of the system also
includes the coefficients a and d. In formalizing this model too we can rely on
Le Chatelier’s principle. However, other meaningful changes to system (3) can
be considered. Applying similar considerations (see system (4)) for synthesis and
deactivation, and we get another dynamical system (5). Now ȧ, ḃ, ḋ are proportional
to (in suitable units equal to) the deviation of system (3) from its equilibrium state
(see above), and we obtain the following time hierarchical system with the :





ẋ = ay + bx2y − d x
x+1 ,

ẏ = 1− xy,
ȧ = ε(1− y),
ḃ = ε(1− x2y),
ḋ = ε

(
0.5− x

x+1

)
.

(5)

Here x, y are the fast variables and a, b, d are the slow variables, if ε is small
(ε ¿ 1). The slower response of the equations for ȧ, ḃ, ḋ is said to give the feed-
backs. Some typical behaviors of the system (5) are shown in Figs. 4 - 6, where we
checked many different values of ε on the interval [10−5, 1]. One can note in these
figures that the stability of the oscillations is very sensitive to the rate of reactions
of the control variables a, b, d. This sensitivity implies that, in general, the system



MODULATING THE CELL-CYCLE CLOCK 629

−3

−1

1

3

0

20

40

0

1

2

3

b

Relaxation oscillations

x

y

a 

0 50 100 150 200 250 300
0

10

20

30

40

Time Series x

b 

Figure 1. The relaxation oscillations of the fast-slow system,
with initial conditions x0 = 1.2, y0 = 1, b0 = 3, a = 1, d = 8, and
ε = 0.1: (a) depicts phase trajectory in the phase space (x, y, b)
– limit cycle; (b) shows time plots for the x, y and b – bursting.
Note that the variable b can become negative.

(5) is unstable. For this reason the possibility that a and d vary during the cell
cycle is not very likely, and system (4) seems to be more relevant.

The results presented above suggest that a reservoir of periods can be created
naturally by a relatively simple, single control of the major cell-cycle reactions. Next
we show that only some initial conditions in this phase space can be accessed when
an appropriate time-delay argument is applied to one of the system parameters.

4. Controlling the multiscale clock by introducing time-delay arguments.
Deterministic chaos is characterized by long-term unpredictability arising from an
extreme sensitivity to initial conditions. Therefore, a priori it may be assumed that
such a behavior is undesirable, particularly for processes that are dependent on
temporal regulation, such as the one discussed here. However, we show that the
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Figure 2. Time plots of the variable x for the autonomous sys-
tem (3) depicting breakdown of the double-cycle symmetry for ini-
tial conditions, x0 = 1.5, y0 = 1.5, a = 1, d = 8, ε = 1: (a) shows
the double cycle for b0 = 3; (b) depicts the strange attractor for
b0 = 2.4 (see Fig. 3). The amplitudes and periods of oscillations
for x have disordered behavior.

chaotic system can be stabilized, and the desired specific initial conditions can be
selected, when an appropriate delay argument is applied to one of the variables.

Let us assume the following delay in the system (4):




ẋ = ay(t− τ) + bx2y − d x
x+1 ,

ẏ = 1− xy,

ḃ = ε(1− x2y).
(6)

System (6) can have a double cycle if ε ∼= 1 (Fig. 7a-c). When ε ¿ 1, (6) is a
fast-slow system that can have bursting like that of the initial nondelayed fast-slow
system (4) (Fig. 7d)). This bursting is reminiscent of the theoretical time plot of
abrupt activation in the cell cycle [16]. Here, too, the slow variable b can become
negative (see Section 5 for discussion).
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Figure 3. A strange attractor. The behavior of the autonomous
system (4) for x0 = 1.5, y0 = 1.5, b0 = 2.4, a = 1, d = 8, and
ε = 1 in the phase space (x, y, b). Although this strange attractor
appears to have the shape of Möbius band, a more detailed ex-
amination shows that this band is not a manifold, however, but is
instead, folded like a baker transformation [31]. This transforma-
tion allows the mixing of trajectories; only one trajectory is shown.

A similar pattern is observed when the delay argument is in the autocatalytic
term: 




ẋ = ay + bx2y(t− τ)− d x
x+1 ,

ẏ = 1− xy,

ḃ = ε(1− x2y).
(7)

Here, too, a double cycle is observed for ε = 1 (Fig. 8a), bursting under initial
conditions the same as those for the fast-slow system (6) if ε ¿ 1.

The delay system




ẋ = ay(t− τ) + bx2y(t− τ)− d x
x+1 ,

ẏ = 1− xy,

ḃ = ε(1− x2y)
(8)

has a single cycle if ε = 1 (Fig. 8b), and bursting if ε ¿ 1, with initial conditions
as for the system (6) (Fig. 3).

In appendix B1 we checked the isolated effect of time-delay arguments in cyclin
activation of p34cdc2, where the coefficient b is constant. We did so by introducing
time-delay arguments in various terms of (3), and by analyzing their effects on the
oscillatory behavior of the system. Our results show that only a weak time-delayed
effect of cyclin on the activation of p34cdc2 does not destabilize the oscillations of
the system; a strong time-delay effect destabilizes the otherwise stable cell-cycle,
as long as the coefficient of the autocatalytic reaction is constant in time.
REMARK 2. Delay Differential Equations (DDEs) and their respective Ordinary
Differential Equations (ODEs) differ in mathematical structure. For example, for
ODE there is a smooth vector field in the phase space, but for DDEs this object
is absent. For this reason, our knowledge about ODEs cannot aid in the analysis
of the respective DDEs, and vice versa. In particular, the ”delay” for DDEs is
not a parameter for the strange attractor, as the strange attractor is an object of
ODE and not an object of DDEs. In the context of the present analysis, it means
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Figure 4. The behavior of trajectories of the fast-slow system (5)
in the space (x, y, t), x0 = 1.2, y0 = 1, b0 = 1.006, a0 = 1, and
d0 = 4: (a) shows limit cycle, ε = 0.00001; (b) shows delayed
bifurcation, ε = 0.1. This structure is brought out even more
spectacularly in Figure 6.

that our ODE results about the strange attractor and the bifurcation delay become
irrelevant after replacing the ODE with the DDE.

5. Discussion. In this work, we investigated different controls in the cyclin-p34cdc2

double oscillator system, and their effect on the function of the cell-cycle clock.
The single stable cycle, generated by the simple uncontrolled model (Eqs. (3))

may represent a ”virtual” beginning of the embryonic cell cycle, where there exist
only two functionally different levels of cyclin-CDK complex activity: high and
low: mitosis and interphase [10]. The addition of the slow feedback control in
the production of this active complex (Eqs. (4)) results in the transition of the
system from a single stable cycle to a chaotic regime, through an intermediate
period-doubling stage. We assumed that this feedback control is achieved through
sensitivity of the autocatalytic reaction to the deviation of the system from its
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Figure 5. Dynamics of the control variables: (a) depicts a weak
feedback control, with time plots of the variables a, b, and d for the
fast-slow system (5), ε = 0.04. (see Fig. 7a); (b) depicts a strong
feedback control with a time plot of the variable b for the system
(4), ε = 1 (see Fig. 4). In (b) the amplitudes and the periods of
oscillations for b show disordered behaviors; note that the variable
b can be negative.

equilibrium. This feedback, changing the sign of the autocatalysis, may be related
to a periodic change in the ratio of cdc25/wee1 activity during the cell cycle.

The double cycle, defining cell-cycle oscillations for system (4), is the math-
ematical reflection of the natural transition from the embryonic (simple) to the
somatic (complex) cell cycle. It has been shown in Drosophila and Xenopus that
maternally provided regulators are removed at defined developmental stages during
embryogenesis, resulting in the acquisition of a G1 phase and a G2 phase [17]. Such
specialization of the somatic cell cycle enables further subdivision of interphase into
two sequential states by the restriction point (”start”) that allows the coordination
of the stepwise events of the cell cycle with cell growth and external signals. Three
characteristic states can be defined for the somatic cell cycle: metaphase, prestart
interphase (the part of the G1 phase before commitment to cell replication), and
postreplication interphase (G2 phase) [10]. In Fig. 2a we can see a model situation
for the above suggestions. Namely, we have for x two sequential characteristic posi-
tions (local minima - states with minimum values of the variable) that are prestart
and postreplication states. From Fig. 2b we can see that the beginning of the time
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Figure 6. Bifurcation delay: (a) shows the behavior of the one
trajectory in the space-time (x, y, t) for b0 = 1.006, ε = 0.004.
(b) shows time plot of x for b0 = 1, ε = 0.001. System (5) with
complex slow and fast dynamics for x0 = 1.2, y0 = 1, a0 = 1, and
d0 = 4. Here we can see the rapid onset of oscillatory behavior, first
decreasing in amplitude but then increasing. The oscillatory be-
havior diminishes to almost zero amplitude before increasing again
(see also [32] – [37]). A pair of conjugate eigenvalues of operator L
leaves the half-plane without passing through 0 (b = 1): λ1,2 = ±i.
The solution of the fast-slow system (5) rapidly approaches the
focus at the distance of order ε. Phase points remain near the un-
stable equilibrium position during a time period of length of order
1/ε.

plots for the strange attractor looks more or less like the right double cycle (see Fig.
2a). And only later do we observe a disorder in the double oscillations pattern–a
birth of a strange attractor (Fig. 2b).

That period-doubling bifurcation represents early developmental and evolution-
ary cell-cycle state transitions may be manifested in the following observations: in
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Figure 7. Computer simulations of the delay system (6) with
a = 1, d = 8, and the delay condition: τ = 1, y(t) = 1, and
t ∈ [−1, 0]. For b(0) = 1, ε = 1, and x(0) = 1, the system has
irregular behavior with a double cycle on the phase plane (a), with
a time plot of x (b) and a time plot of b (c). For: b(0) = 3, ε = 0.1,
x(0) = 1.2, the system is bursting (d).

animal cells, S phase is induced by CDK2 complexed with S phase cyclins (types E
or A ) and M phase by CDK1 complexed with M phase cyclins (types A and B ),
whereas in both budding and fission yeast, S and M phases are induced by CDK1
associated with B-type cyclins, which are S phase- and M phase-specific . More-
over, M phase CDK’s can assume the function of S phase and trigger chromosome
duplication in G1 cells [18].

The feedback mechanism we described here generates a strange attractor, whose
attraction domain is sufficiently large enough to stabilize the process of cell divi-
sions. Note that in this model the variability of cell-cycle times is a consequence of
a chaotic trajectory with a purely deterministic basis. A cell-cycle oscillator with
a strange attractor has previously been considered
(cite7), cite(18)– (20), but here we obtained it by a simple control of the coefficients.
In the fast-slow system (5), the slow variables a, b, and d are almost constant, but
in the system (4) with the strange attractor (ε = 1) and with the burst (ε ¿ 1), the
variable b can become negative (Figs. 5, and 7). We showed how the fast control
of the autocatalytic reaction creates a reservoir of cell-cycle periods in the phase
space.
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Figure 8. The examples of stable oscillations in the delay sys-
tems (7) and (8) observed by computer simulation for: a = 1,
d = 8, b(0) = 1, ε = 1, and x(0) = 1 and the delay condition:
τ = 1, y(t) = 1, and t ∈ [−1, 0]: (a) shows the double cycle for (7);
(b) shows the single cycle for (8).

The existence of a strange attractor with an unlimited reservoir of periods may
be an important property of multicellular organisms, where the proper structure
and function of the adult organism is depends strongly on intricate developmental
processes as well as on sophisticated homeostatic mechanisms. A striking exam-
ple of the need for such a spatio-temporal regulation in a multicellular organism
is the ongoing, highly homeostatic, developmental process of blood production in
the bone marrow (BM). Human blood contains a remarkable variety of cells, each
precisely tailored to its own vital functions. All these cells develop from a kind of
master cell, the totipotent stem cell, which resides in the BM; a few totipotent stem
cells can reconstitute the entire blood. The process of blood-cell production, initi-
ated by the totipotent stem cells, has a treelike developmental structure: different
cell progenitors are located at different branch nodes, according to their degree of
differentiation. Injury to blood, from chemotherapy, radiation, or disease, creates
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a cascade of feedback signals that are received at different nodes of the tree. Such
feedback loops may change the balance between the rates of self-renewal and mat-
uration of stem cells, and essentially may result in accelerated production of the
cells that are essential for repairing the specific damage [22]. Indeed, it has been
observed that stem cells under such hemopoietic stress are capable of exceedingly
rapid cell cycles [23].

Given the size of the hemopoietic tree and the very complex interactions between
its constituents, it seems reasonable to assume that optimal production of blood
cells crucially depends on optimal timing of replication and differentiation of cells
in many different microenvironments. This, in turn, may depend on local fine
tuning of cell-cycle time [24]. We hypothesize that such fine tuning is feasible by
an ad-hoc process, operating on the reservoir of periods by the adjustments of the
proportional feedback.

In the model presented here, each individual set of initial conditions can be
selected by the superposition of an additional control argument in the form of a time
delay in the involved reactions. We show that, generally, the introduction of discrete
time-delay arguments alone destabilizes the two oscillators in the cyclin-p34cdc2

reactions. It means that these oscillators are very sensitive to initial conditions.
However, by the coupling of these two relatively simple controls of the double
oscillator, the cell-cycle clock can be modulated so as to control cellular events
occurring on different time scales. The additional control, representing, for example,
the effect of local molecular signals, may reflect the increase in the complexity of
the cell cycle during development [10].

Our suggestion that the strange attractor guarantees homeostasis in a devel-
opmental system, such as the BM, is supported by another mathematical model,
specifically constructed for describing BM hemopoiesis. In this model, BM stem
cells, postmitotic cells, and empty space are represented as valued sites of a two-
dimensional lattice. Every cell is equipped with a type-specific internal counter,
representing its cell cycle, while proliferation or maturation of a cell is determined
according to its internal state and its immediate neighborhood. The model thus
constructed can be rigorously proven to possess the following property: apart from
a few inevitable pathological cases, starting from any initial state the system never
reaches a fixed state, and there are arbitrarily large times for which the resulting
state contains a sufficient number of postmitotic (mature) cells. It can be shown
that this inherent robustness is achieved by the, theoretically, unlimited reservoir
of cell cycles in the system and its resulting chaotic dynamics. In particular, under
the assumption of a fixed cell-cycle duration, the system either collapses or oscil-
lates rapidly with large amplitudes. The general conclusion of this work is that the
existence of multiple cell-cycle time scales in the BM is a necessary condition for
normal hemopoiesis [11].

It has been observed that unlike untransformed cells, SV-40 transformed tumor
cells do not respond with an intermitotic delay upon exposure to serum-free media
or low doses of protein synthesis inhibitor cyclohexamide [25]. Moreover, recently it
has been reported that the overexpression of cyclin-D mRNA (which is effectuated
in shortening the characteristic time delay in the cyclin D/CDK4 reaction) is an
early event of mammary carcinogenesis [26]. In general, unscheduled expressions
of cyclins can be detected in several tumor-transformed cell lines [27]. These ob-
servations, in conjunction with our results, allow us to conjecture that the main
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difference between normal and neoplastic cells may be crystallized in a loss of ca-
pacity to keep the appropriate time-delay arguments in the cyclin-CDK’s reactions
in cancer.
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Appendix A. Analyzing the existence of limit cycle and its stability (the
autonomous system).

A.1. The small perturbations. In contrast to the global Poincaré-Bendixson
theory a local bifurcation theory, applies locally, hence allowing us to investigate
the existence of limit cycles and their stability for small perturbations of the Hamil-
tonian systems [28].

The physically realistic system described in this paper has an equilibrium state
for positive values of variables {x, y}. So we consider a nondegenerate singular
point (an equilibrium solution) of system (3). We assume that this singular point
is at the point S1 = (1, 1). Therefore, we have the additional condition d = 2a+2b.
The operator of the linear part of the field (3) at the point S1 is

L =
(

2b− 1
4d a + b

−1 −1

)
, (9)

The conditions of bifurcation of the center at singularity S1 are expressed by the
following relations for the operator L at the point S1:

{
trL = 0,
dis(|L− λE| = 0) < 0.

(10)

The conditions in that a pair of conjugate eigenvalues of the operator at the point
S1 must be purely imaginary (10) mean2

The left part of the second condition in 10 means the discriminant of the char-
acteristic equation det(L − λE) < 0 . As a consequence, we have the following
conditions for the parameters: d = 2a + 2b; a = 3b − 2; b > 0.75 and d > 0 there-
after. We choose these conditions so that the system (3) can be transformed into
the following system:

{
u̇ = ωv + P (u, v),
v̇ = −ωu + Q(u, v), (11)

with a singular point S1=(0, 0) in new coordinates (u, v), where x = 1 + u − v
ω ;

y = 1 + v
ω and ω =

√
4b− 3. In this system, P and Q contain terms of degree 2

and greater.3 The linear part of system (11) is a harmonic oscillator (Hamiltonian
system) with the first integral H = 1

2 (u2 + v2). The phase trajectories of the
harmonic oscillator are concentric cycles around the point (0, 0).

2It is clear that if dis(|L−λE| = 0) = 0, then det L > 0. D.C. Thron [38] investigates a similar
system and defines a simple singular point of unstable focal or unstable nodal type, which satisfies
this condition. In this way, Thron successfully obtains limit cycles.

3P (u, v) = (2b− 1)(2 + u) + bu2 + (1− 2b− u + bu2) v
ω

+ (1− b− 2bu) v2

ω2 + b v3

ω3 +
4(2b−1)ω
ωu−v+2ω

and Q(u, v) = v2

ω
− uv.
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Let us consider the perturbated system{
u̇ = ωv + εP (u, v),
v̇ = −ωu + εQ(u, v), (12)

where ε ¿ 1 is a small parameter. In other words, we have a one-parameter family
of system (12). Obviously the singularity (0, 0) is a fixed, simple (nondegenerate),
singular point of perturbation equations too. We are interested in the metamor-
phosis of the configuration of phase curves in the neighborhood of the point (0, 0)
under a small change in these equations, so we use (below) the standard analysis
from Arnold’s textbook [29].

In contrast to the conservative case (ε = 0) for ε 6= 0, the phase curve of the
system (12) is not necessarily closed: it may have the form of a spiral in which
the distance between adjacent coils is small (of order ε). To determine whether the
phase curve approaches the origin or recedes from it, we consider the increment of in
the energy H over one revolution about the origin. Let δH be the increment of the
Hamiltonian H under one revolution along the closed phase curve H = constant.
Then

δH ≈
∮

Ḣ dt =
∮

u(ωv + εP ) + v(−ωu + εQ)dt = εG(r). (13)

If the increment δH is positive (for small positive ε), the phase curve is an
expanding spiral; the system undergoes increasing oscillations, but if δH is negative
the phase spiral contracts and the oscillations die out. If the function G(r) changes
sign, then for the small ε, the equation δH = 0, is satisfied by a closed curve on
the phase plane, which is close to a circle. This closed curve is a limit cycle of our
system. Consequently, to first approximation, the condition of the birth of a cycle
of radius r0 is G(r0) = 0. Following a detailed consideration (13), we obtain

G(r) = − b

2ω3
πr4 +

2b− 1
ω

πr2 + 4πω (14)

and r0 = 2ω. The condition for stability of the limit cycle of radius r0 is εG′(r0) < 0
and in our case (14) is true if ε > 0.

A.2. Hopf bifurcation. This is another way to find a limit behavior in our system
(3). The parameter values from conditions (10) allow us to locate the limit cycle
of system (3).

Let the point S1 = (1, 1) be again a simple singular point of the system (3).
There is a plane 2a + 2b − d = 0 in the parameter space Z = (a, b, d) , which
corresponds to the systems with a singularity at the point S1. This plane is not
a hypersurface of singular cases in the parameter space Z. However, this plane in
our parameter space may intersect some of these hypersurfaces, and therefore we
must consider a domain of generic cases on this plane:{

trL > 0,
det L > 0.

(15)

For a closer investigation of the behavior of the system (3), let us consider a one-
parameter family of the system, for example, a = b. In this case, the second singular
unstable point S2 = (k +

√
k2 + k,−1 +

√
1 + l), where k = 1/l = a/b (see (15)) is

fixed, too. Let us investigate a neighborhood of the bifurcation value of parameters
b = 1, that is, a case where a pair of conjugate eigenvalues of the operator (A1.0)
at the equilibrium S1 crosses the imaginary axis from the left to the right. As
the pair passes through 1, the focus at the point S1 loses stability. In this case,
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the corresponding pair of conjugate eigenvalues of operator (9) is equal to ±i. For
b = 1, at the point S1 the focus is also stable but not robust: the phase curves
approach S1 non-exponentially. For b = 1 + ε where ε > 0, moving from the focus
to a distance proportional to

√
ε, the phase curves wind onto a stable limit cycle.

Consequently the loss of stability in the passage of b through 1 takes place with the
birth of a stable cycle whose radius increases with

√
ε.

In other words, the stationary state S1 loses stability, and a stable periodic
regime arises whose amplitude is proportional to the square root of the deviation of
the parameter from the critical value. This form of loss of stability is called a mild
loss of stability, since the oscillating behavior for small criticality differs little from
the equilibrium state. It is a Hopf bifurcation, or a soft generation of self-sustained
oscillations (see [28]).

Appendix B. Analyzing the existence of limit cycle and its stability (The
delay system). A similar analytical investigation of the delay system gives a dif-
ferent result.

Let τ be a small delay (τ <<¿ 1). Consequently, y(t − τ) ≈ y(t) − τ ẏ(t) in
some neighborhood of the point t. This implies that the system (3) will have the
following form:

{
ẋ = ay + bx2y − d x

x+1 + τbx2(xy − 1),
ẏ = 1− xy.

(16)

The bifurcation conditions of the system (16), for τ = 0, are similar to the bifurca-
tion conditions for the system (3) and after the transformations of the system (16)
we get the following perturbated system:

{
u̇ = ωv + εP (u, v) + τR(u, v),
v̇ = −ωu + εQ(u, v), (17)

where ε, τ are two small independent parameters. Assuming now that ε = 0, we
obtain

V (r) =
∮

uRdt = − 3b2

4ω3
πr4 +

b

ω
πr2. (18)

For the limit cycle of radius r1 we have V ′(r1) < 0 and therefore if τ > 0, the cycle
of radius r1 is stable. However, this analysis of the delay equations is true only in
some neighborhood of the point t and not true elsewhere. Generally, for infinite t,
a limit cycle does not exist.

B.1. Introducing time delays. We introduced a time delay, τ , in the activation
terms in (3) as follows:

{
ẋ = ay(t− τ) + bx2y(t− τ)− d x

x+1 ,

ẏ = 1− xy.
(19)

Alternatively, we can assume that only the autocatalytic process is delayed
{

ẋ = ay + bx2y(t− τ)− d x
x+1 ,

ẏ = 1− xy,
. (20)

A weaker assumption about the delay can be made, as follows:
{

ẋ = ay(t− τ) + bx2y − d x
x+1 ,

ẏ = 1− xy.
(21)
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By methods of numerical integration we showed that of the three delay systems,
(19)-(21), only (19) can have stable periodic oscillations. However, even this delay
system has a certain sensitivity to variation in the coefficient b. A critical case is
b ≈ 0.6, where the limit cycle attractor of delay system (21) does not have an oval
shape but rather a beak-shape singularity.4

REMARK 3. The shape of the invariant attracting curve that was obtained in the
phase plane (y(t−1), y(t)) is formally analogous to that obtained for the time-delay
differential equation xn+1 = axn(1− xn−1)[30].
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