In this article, we investigate the regularities of solutions to a class of nonlinear elliptic equations with measure data. These equations involve the $ N $-functions, and the solutions belong to the Sobolev-Orlicz spaces. Through the application of comparison arguments, Caccioppoli-type inequality, and maximal estimate, we derive pointwise Riesz potential estimates for both the gradient of the solutions and the solutions themselves. Furthermore, we establish Hölder continuity estimates for the solutions.
Citation: Zhaoyue Sui, Feng Zhou. Pointwise potential estimates for solutions to a class of nonlinear elliptic equations with measure data[J]. AIMS Mathematics, 2025, 10(4): 8066-8094. doi: 10.3934/math.2025370
In this article, we investigate the regularities of solutions to a class of nonlinear elliptic equations with measure data. These equations involve the $ N $-functions, and the solutions belong to the Sobolev-Orlicz spaces. Through the application of comparison arguments, Caccioppoli-type inequality, and maximal estimate, we derive pointwise Riesz potential estimates for both the gradient of the solutions and the solutions themselves. Furthermore, we establish Hölder continuity estimates for the solutions.
| [1] |
T. Kilpeläinen, J. Malý, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sci., 19 (1992), 591–613. https://doi.org/10.1016/0022-1236(89)90005-0 doi: 10.1016/0022-1236(89)90005-0
|
| [2] |
T. Kilpeläinen, J. Malý, The wiener test and potential estimates for quasilinear elliptic equations, Acta Math., 172 (1994), 137–161. https://doi.org/10.1007/BF02392793 doi: 10.1007/BF02392793
|
| [3] |
N. Trudinger, X. Wang, On the week continuity of elliptic operators and applications to potential theory, Am. J. Math., 124 (2002), 369–410. https://doi.org/10.1353/AJM.2002.0012 doi: 10.1353/AJM.2002.0012
|
| [4] |
F. Duzaar, G. Mingione, Gradient estimates in non-linear potential theory, Rend. Lincei. Mat. Appl., 20 (2009), 179–190. https://doi.org/10.4171/RLM/540 doi: 10.4171/RLM/540
|
| [5] |
L. Hedberg, T. Wolff, Thin sets in nonlinear potential theory, Ann. I. Fourier, 33 (1983), 161–187. https://doi.org/10.5802/aif.944 doi: 10.5802/aif.944
|
| [6] |
T. Kuusi, G. Mingione, Linear potentials in nonlinear potential theory, Arch. Ration. Mech. Anal., 207 (2013), 215–246. https://doi.org/10.1007/s00205-012-0562-z doi: 10.1007/s00205-012-0562-z
|
| [7] |
G. Mingione, Gradient potential estimates, J. Eur. Math. Soc., 13 (2011), 459–486. https://doi.org/10.4171/JEMS/258 doi: 10.4171/JEMS/258
|
| [8] |
P. Baroni, Riesz potential estimates for a general class of quasilinear equations, Calc. Var., 53 (2015), 803–846. https://doi.org/10.1007/s00526-014-0768-z doi: 10.1007/s00526-014-0768-z
|
| [9] |
T. Kuusi, G. Mingione, Riesz potentials and nonlinear parabolic equations, Arch. Ration. Mech. Anal., 212 (2014), 727–780. https://doi.org/10.1007/s00205-013-0695-8 doi: 10.1007/s00205-013-0695-8
|
| [10] |
T. Kuusi, G. Mingione, Universal potential estimates, J. Funct. Anal., 262 (2021), 4205–4269. https://doi.org/10.1016/j.jfa.2012.02.018 doi: 10.1016/j.jfa.2012.02.018
|
| [11] |
F. Yao, M. Zheng, Gradient estimates via the Wolff potentials for a class of quasilinear elliptic equations, J. Math. Anal. Appl., 452 (2017), 926–940. https://doi.org/10.1016/j.jmaa.2017.03.037 doi: 10.1016/j.jmaa.2017.03.037
|
| [12] |
A. Benyaiche, I. Khlifi, Wolff potential estimates for supersolutions of equations with generalized Orlicz growth, Potential Anal., 58 (2023), 761–783. https://doi.org/10.1007/s11118-021-09958-5 doi: 10.1007/s11118-021-09958-5
|
| [13] |
V. Bögelein, J. Habermann, Gradient estimates via non-standard potentials and continuity, Ann. Fenn. Mathematici, 35 (2010), 741–678. https://doi.org/10.5186/aasfm.2010.3541 doi: 10.5186/aasfm.2010.3541
|
| [14] |
I. Chlebicka, F. Giannetti, A. Zatorska-Goldstein, Wolff potentials and local behavior of solutions to elliptic problems with Orlicz growth and measure data, Adv. Calc. Var., 17 (2024), 1293–1321. https://doi.org/10.1515/acv-2023-0005 doi: 10.1515/acv-2023-0005
|
| [15] |
I. Chlebicka, Y. Youn, A. Zatorska-Goldstein, Wolff potentials and measure data vectorial problems with Orlicz growth, Calc. Var., 62 (2023), 64. https://doi.org/10.1007/s00526-022-02402-5 doi: 10.1007/s00526-022-02402-5
|
| [16] |
I. Chlebicka, Y. Youn, A. Zatorska-Goldstein, Measure data systems with Orlicz growth, Ann. Mat., 204 (2025), 407–426. https://doi.org/10.1007/s10231-024-01489-1 doi: 10.1007/s10231-024-01489-1
|
| [17] |
T. Gkikas, Quasilinear elliptic equations involving measure valued absorption terms and measure data, J. Anal. Math., 153 (2024), 555–594. https://doi.org/10.1007/s11854-023-0321-0 doi: 10.1007/s11854-023-0321-0
|
| [18] |
P. Tran, N. Nguyen, A global fractional Caccioppoli-Type estimate for solutions to nonlinear elliptic problems with measure data, Stud. Math., 263 (2022), 323–338. https://doi.org/10.4064/sm201121-12-3 doi: 10.4064/sm201121-12-3
|
| [19] |
H. Cheng, F. Zhou, Besov estimates for sub-elliptic equations in the Heisenberg group, Adv. Pure Math., 14 (2024), 744–758. https://doi.org/10.4236/apm.2024.149039 doi: 10.4236/apm.2024.149039
|
| [20] |
T. Gkikas, Nonlinear nonlocal equations involving subcritical or power nonlinearities and measure data, Math. Eng., 6 (2024), 45–80. https://doi.org/10.3934/mine.2024003 doi: 10.3934/mine.2024003
|
| [21] |
F. Duzaar, G. Mingione, Gradient continuity estimates, Calc. Var. Partial Differ. Equ., 39 (2010), 379–418. https://doi.org/10.1007/s00526-010-0314-6 doi: 10.1007/s00526-010-0314-6
|
| [22] | J. Musielak, Orlicz spaces and modular spaces, Berlin, Heidelberg: Springer, 1983. https://doi.org/10.1007/BFb0072210 |
| [23] |
L. Diening, F. Ettwein, Fractional estimates for non-differentiable elliptic systems with general growth, Forum Math., 20 (2008), 523–556. https://doi.org/10.1515/FORUM.2008.027 doi: 10.1515/FORUM.2008.027
|
| [24] |
G. Barletta, Existence and regularity results for nonlinear elliptic equations in Orlicz spaces, Nonlinear Differ. Equ. Appl., 31 (2024), 29. https://doi.org/10.1007/s00030-024-00922-x doi: 10.1007/s00030-024-00922-x
|
| [25] |
A. Cianchi, A sharp embedding theorem for Orlicz-Sobolev spaces, Indiana Univ. Math. J., 45 (1996), 39–66. https://doi.org/10.1512/IUMJ.1996.45.1958 doi: 10.1512/IUMJ.1996.45.1958
|
| [26] |
L. Diening, P. Kaplicky, S. Schwarzacher, Campanato estimates for the generalized Stokes system, Ann. Mat. Pura Appl., 193 (2014), 1779–1794. https://doi.org/10.1007/s10231-013-0355-5 doi: 10.1007/s10231-013-0355-5
|
| [27] |
L. Diening, P. Kaplicky, S. Schwarzacher, BMO estimates for the $p$-Laplacian, Nonlinear Anal. Theor., 75 (2012), 637–650. https://doi.org/10.1016/j.na.2011.08.065 doi: 10.1016/j.na.2011.08.065
|
| [28] | R. A. Adams, J. J. F. Fournier, Sobolev spaces, 2 Eds., New York: Academic Press, 2003. |
| [29] | E. Giusti, Direct methods in the calculus of variations, World Scientific, 2003. https://doi.org/10.1142/5002 |
| [30] | B. Simon, Harmonic analysis: A comprehensive course in analysis, Part 3, American Mathematical Society, 2015. |
| [31] | J. Kinnunen, Sobolev spaces, Aalto University, 2025. |
| [32] |
F. Duzaar, G. Mingione, Gradient estimates via non-linear potentials, Am. J. Math., 133 (2009), 1093–1149. https://doi.org/10.1353/AJM.2011.0023 doi: 10.1353/AJM.2011.0023
|