In this paper, we present an efficient and energy-stable scheme based on the Crank–Nicolson formula for the modified phase-field crystal equation with a strong nonlinear vacancy potential. In the scheme, the nonlinear terms (the first derivatives of the double-well and vacancy potentials) are treated explicitly, which makes the scheme efficient, and the energy stability is guaranteed by assuming that the second derivatives of the double-well and vacancy potentials are each bounded and by adding two second-order stabilization terms. In particular, by bounding the second derivatives of the double-well and vacancy potentials, respectively, we can choose the stabilization parameters independently of the vacancy parameter. As a result, the convergence constant and energy decay trend are not affected by the vacancy parameter.
Citation: Hyun Geun Lee. An efficient and energy-stable scheme for the modified phase-field crystal equation with a strong nonlinear vacancy potential[J]. AIMS Mathematics, 2025, 10(3): 5568-5582. doi: 10.3934/math.2025257
In this paper, we present an efficient and energy-stable scheme based on the Crank–Nicolson formula for the modified phase-field crystal equation with a strong nonlinear vacancy potential. In the scheme, the nonlinear terms (the first derivatives of the double-well and vacancy potentials) are treated explicitly, which makes the scheme efficient, and the energy stability is guaranteed by assuming that the second derivatives of the double-well and vacancy potentials are each bounded and by adding two second-order stabilization terms. In particular, by bounding the second derivatives of the double-well and vacancy potentials, respectively, we can choose the stabilization parameters independently of the vacancy parameter. As a result, the convergence constant and energy decay trend are not affected by the vacancy parameter.
[1] |
L. Q. Chen, Phase-field models for microstructure evolution, Annu. Rev. Mater. Res., 32 (2002), 113–140. https://doi.org/10.1146/annurev.matsci.32.112001.132041 doi: 10.1146/annurev.matsci.32.112001.132041
![]() |
[2] |
B. Xia, X. Xi, R. Yu, P. Zhang, Unconditional energy-stable method for the Swift–Hohenberg equation over arbitrarily curved surfaces with second-order accuracy, Appl. Numer. Math., 198 (2024), 192–201. https://doi.org/10.1016/j.apnum.2024.01.005 doi: 10.1016/j.apnum.2024.01.005
![]() |
[3] |
X. Hu, Q. Xia, B. Xia, Y. Li, A second-order accurate numerical method with unconditional energy stability for the Lifshitz–Petrich equation on curved surfaces, Appl. Math. Lett., 163 (2025), 109439. https://doi.org/10.1016/j.aml.2024.109439 doi: 10.1016/j.aml.2024.109439
![]() |
[4] |
W. Xie, Z. Wang, J. Kim, X. Sun, Y. Li, A novel ensemble Kalman filter based data assimilation method with an adaptive strategy for dendritic crystal growth, J. Comput. Phys., 524 (2025), 113711. https://doi.org/10.1016/j.jcp.2024.113711 doi: 10.1016/j.jcp.2024.113711
![]() |
[5] |
Q. Xia, J. Yang, J. Kim, Y. Li, On the phase field based model for the crystalline transition and nucleation within the Lagrange multiplier framework, J. Comput. Phys., 513 (2024), 113158. https://doi.org/10.1016/j.jcp.2024.113158 doi: 10.1016/j.jcp.2024.113158
![]() |
[6] |
P. Stefanovic, M. Haataja, N. Provatas, Phase-field crystals with elastic interactions, Phys. Rev. Lett., 96 (2006), 225504. https://doi.org/10.1103/PhysRevLett.96.225504 doi: 10.1103/PhysRevLett.96.225504
![]() |
[7] |
P. Stefanovic, M. Haataja, N. Provatas, Phase field crystal study of deformation and plasticity in nanocrystalline materials, Phys. Rev. E, 80 (2009), 046107. https://doi.org/10.1103/PhysRevE.80.046107 doi: 10.1103/PhysRevE.80.046107
![]() |
[8] |
A. Baskaran, Z. Hu, J. S. Lowengrub, C. Wang, S. M. Wise, P. Zhou, Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation, J. Comput. Phys., 250 (2013), 270–292. https://doi.org/10.1016/j.jcp.2013.04.024 doi: 10.1016/j.jcp.2013.04.024
![]() |
[9] |
H. G. Lee, J. Shin, J. Y. Lee, First- and second-order energy stable methods for the modified phase field crystal equation, Comput. Methods Appl. Mech. Engrg., 321 (2017), 1–17. https://doi.org/10.1016/j.cma.2017.03.033 doi: 10.1016/j.cma.2017.03.033
![]() |
[10] |
Q. Li, L. Mei, X. Yang, Y. Li, Efficient numerical schemes with unconditional energy stabilities for the modified phase field crystal equation, Adv. Comput. Math., 45 (2019), 1551–1580. https://doi.org/10.1007/s10444-019-09678-w doi: 10.1007/s10444-019-09678-w
![]() |
[11] |
X. Li, J. Shen, Efficient linear and unconditionally energy stable schemes for the modified phase field crystal equation, Sci. China Math., 65 (2022), 2201–2218. https://doi.org/10.1007/s11425-020-1867-8 doi: 10.1007/s11425-020-1867-8
![]() |
[12] |
P. Y. Chan, N. Goldenfeld, J. Dantzig, Molecular dynamics on diffusive time scales from the phase-field-crystal equation, Phys. Rev. E, 79 (2009), 035701. https://doi.org/10.1103/PhysRevE.79.035701 doi: 10.1103/PhysRevE.79.035701
![]() |
[13] |
J. Zhang, X. Yang, Efficient second order unconditionally stable time marching numerical scheme for a modified phase-field crystal model with a strong nonlinear vacancy potential, Comput. Phys. Commun., 245 (2019), 106860. https://doi.org/10.1016/j.cpc.2019.106860 doi: 10.1016/j.cpc.2019.106860
![]() |
[14] |
Q. Li, X. Yang, L. Mei, Efficient numerical scheme for the anisotropic modified phase-field crystal model with a strong nonlinear vacancy potential, Commun. Math. Sci., 19 (2021), 355–381. https://dx.doi.org/10.4310/CMS.2021.v19.n2.a3 doi: 10.4310/CMS.2021.v19.n2.a3
![]() |
[15] |
N. Cui, P. Wang, Q. Li, A second-order BDF scheme for the Swift–Hohenberg gradient flows with quadratic–cubic nonlinearity and vacancy potential, Comp. Appl. Math., 41 (2022), 85. https://doi.org/10.1007/s40314-022-01801-w doi: 10.1007/s40314-022-01801-w
![]() |
[16] |
S. Pei, Y. Hou, W. Yan, Efficient unconditionally stable numerical schemes for a modified phase field crystal model with a strong nonlinear vacancy potential, Numer. Meth. Part Differ. Equ., 38 (2022), 65–101. https://doi.org/10.1002/num.22828 doi: 10.1002/num.22828
![]() |
[17] |
X. Zhang, J. Wu, Z. Tan, Highly efficient, decoupled and unconditionally stable numerical schemes for a modified phase-field crystal model with a strong nonlinear vacancy potential, Comput. Math. Appl., 132 (2023), 119–134. https://doi.org/10.1016/j.camwa.2022.12.011 doi: 10.1016/j.camwa.2022.12.011
![]() |
[18] |
H. G. Lee, A linear second-order convex splitting scheme for the modified phase-field crystal equation with a strong nonlinear vacancy potential, Appl. Math. Lett., 156 (2024), 109145. https://doi.org/10.1016/j.aml.2024.109145 doi: 10.1016/j.aml.2024.109145
![]() |
[19] |
Q. Li, L. Mei, B. You, A second-order, uniquely solvable, energy stable BDF numerical scheme for the phase field crystal model, Appl. Numer. Math., 134 (2018), 46–65. https://doi.org/10.1016/j.apnum.2018.07.003 doi: 10.1016/j.apnum.2018.07.003
![]() |
[20] |
D. D. Dai, W. Zhang, Y. L. Wang, Numerical simulation of the space fractional $(3+1)$-dimensional Gray–Scott models with the Riesz fractional derivative, AIMS Math., 7 (2022), 10234–10244. https://doi.org/10.3934/math.2022569 doi: 10.3934/math.2022569
![]() |
[21] |
X. Y. Li, Y. L. Wang, Z. Y. Li, Numerical simulation for the fractional-in-space Ginzburg–Landau equation using Fourier spectral method, AIMS Math., 8 (2023), 2407–2418. https://doi.org/10.3934/math.2023124 doi: 10.3934/math.2023124
![]() |
[22] |
S. F. Alrzqi, F. A. Alrawajeh, H. N. Hassan, An efficient numerical technique for investigating the generalized Rosenau–KDV–RLW equation by using the Fourier spectral method, AIMS Math., 9 (2024), 8661–8688. https://doi.org/10.3934/math.2024420 doi: 10.3934/math.2024420
![]() |