Research article Special Issues

Discussion on exact null boundary controllability of nonlinear fractional stochastic evolution equations in Hilbert spaces

  • Received: 26 November 2024 Revised: 21 January 2025 Accepted: 19 February 2025 Published: 12 March 2025
  • MSC : 34K37, 60J65, 93B05, 93C10

  • Null boundary controllability refers to the ability to drive the state of a dynamical system to zero by applying suitable control inputs on the boundary of the domain. This research investigates the sufficient conditions for the null boundary controllability of Atangana-Baleanu (A-B) fractional stochastic differential equations involving fractional Brownian motion (fBm) within Hilbert space. We employ various tools, including fractional analysis, compact semigroup theory, fixed point theorems, and stochastic analysis, to derive the desired results. An example is included to illustrate the application of our findings.

    Citation: Noorah Mshary, Hamdy M. Ahmed. Discussion on exact null boundary controllability of nonlinear fractional stochastic evolution equations in Hilbert spaces[J]. AIMS Mathematics, 2025, 10(3): 5552-5567. doi: 10.3934/math.2025256

    Related Papers:

  • Null boundary controllability refers to the ability to drive the state of a dynamical system to zero by applying suitable control inputs on the boundary of the domain. This research investigates the sufficient conditions for the null boundary controllability of Atangana-Baleanu (A-B) fractional stochastic differential equations involving fractional Brownian motion (fBm) within Hilbert space. We employ various tools, including fractional analysis, compact semigroup theory, fixed point theorems, and stochastic analysis, to derive the desired results. An example is included to illustrate the application of our findings.



    加载中


    [1] J. C. Pedjeu, G. S. Ladde, Stochastic fractional differential equations: modeling, method and analysis, Chaos Solitons Fract., 45 (2012), 279–293. https://doi.org/10.1016/j.chaos.2011.12.009 doi: 10.1016/j.chaos.2011.12.009
    [2] S. Saravanakumar, P. Balasubramaniam, Non-instantaneous impulsive Hilfer fractional stochastic differential equations driven by fractional Brownian motion, Stoch. Anal. Appl., 39 (2021), 549–566. https://doi.org/10.1080/07362994.2020.1815545 doi: 10.1080/07362994.2020.1815545
    [3] Y. C. Guo, M. Q. Chen, X. B. Shu, F. Xu, The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm, Stoch. Anal. Appl., 39 (2021), 643–666. https://doi.org/10.1080/07362994.2020.1824677 doi: 10.1080/07362994.2020.1824677
    [4] H. M. Ahmed, Sobolev-type fractional stochastic integrodifferential equations with nonlocal conditions in Hilbert space, J. Theor. Probab., 30 (2017), 771–783. https://doi.org/10.1007/s10959-016-0665-9 doi: 10.1007/s10959-016-0665-9
    [5] A. B. Makhlouf, L. Mchiri, Some results on the study of Caputo-Hadamard fractional stochastic differential equations, Chaos Solitons Fract., 155 (2022), 111757. https://doi.org/10.1016/j.chaos.2021.111757 doi: 10.1016/j.chaos.2021.111757
    [6] W. J. Xu, J. Q. Duan, W. Xu, An averaging principle for fractional stochastic differential equations with Lévy noise, Chaos, 30 (2020), 083126. https://doi.org/10.1063/5.0010551 doi: 10.1063/5.0010551
    [7] M. M. Li, J. R. Wang, The existence and averaging principle for Caputo fractional stochastic delay differential systems, Fract. Calc. Appl. Anal., 26 (2023), 893–912. https://doi.org/10.1007/s13540-023-00146-3 doi: 10.1007/s13540-023-00146-3
    [8] J. J. Huo, M. Yang, Averaging principle for Hilfer-Katugampola fractional stochastic differential equations, Math. Methods Appl. Sci., 47 (2024), 14037–14053. https://doi.org/10.1002/mma.10254 doi: 10.1002/mma.10254
    [9] B. P. Moghaddam, L. Zhang, A. M. Lopes, J. A. T. Machado, Z. S. Mostaghim, Sufficient conditions for existence and uniqueness of fractional stochastic delay differential equations, Stochastics, 92 (2020), 379–396. https://doi.org/10.1080/17442508.2019.1625903 doi: 10.1080/17442508.2019.1625903
    [10] M. Q. Tian, D. F. Luo, Existence and finite-time stability results for impulsive Caputo-type fractional stochastic differential equations with time delays, Math. Slovaca, 73 (2023), 387–406. https://doi.org/10.1515/ms-2023-0030 doi: 10.1515/ms-2023-0030
    [11] M. I. Liaqat, F. U. Din, W. Albalawi, K. S. Nisar, A. H. Abdel-Aty, Analysis of stochastic delay differential equations in the framework of conformable fractional derivatives, AIMS Math., 9 (2024), 11194–11211. https://doi.org/10.3934/math.2024549 doi: 10.3934/math.2024549
    [12] T. Li, X. Lu, B. P. Rao, Exact boundary controllability and exact boundary synchronization for a coupled system of wave equations with coupled Robin boundary controls, ESAIM Control Optim. Calc. Var., 27 (2021), 1–29. https://doi.org/10.1051/cocv/2020047 doi: 10.1051/cocv/2020047
    [13] H. M. Ahmed, Boundary controllability of nonlinear fractional integrodifferential systems, Adv. Differ. Equ., 2010 (2010), 1–9.
    [14] H. M. Ahmed, Boundary controllability of impulsive nonlinear fractional delay integro-differential system, Cogent Eng., 3 (2016), 1215766. https://doi.org/10.1080/23311916.2016.1215766 doi: 10.1080/23311916.2016.1215766
    [15] E. S. Baranovskii, Optimal boundary control of the Boussinesq approximation for polymeric fluids, J. Optim. Theory Appl., 189 (2021), 623–645. https://doi.org/10.1007/s10957-021-01849-4 doi: 10.1007/s10957-021-01849-4
    [16] R. Katz, E. Fridman, Sampled-data finite-dimensional boundary control of 1D parabolic PDEs under point measurement via a novel ISS Halanay's inequality, Automatica, 135 (2022), 109966. https://doi.org/10.1016/j.automatica.2021.109966 doi: 10.1016/j.automatica.2021.109966
    [17] A. Tajani, F. Z. El Alaoui, Boundary controllability of Riemann-Liouville fractional semilinear evolution systems, J. Optim. Theory Appl., 198 (2023), 767–780. https://doi.org/10.1007/s10957-023-02248-7 doi: 10.1007/s10957-023-02248-7
    [18] H. M. Ahmed, M. M. El-Borai, W. G. El-Sayed, A. Y. Elbadrawi, Fractional stochastic evolution inclusions with control on the boundary, Symmetry, 15 (2023), 1–12. https://doi.org/10.3390/sym15040928 doi: 10.3390/sym15040928
    [19] H. M. Ahmed, M. M. El-Borai, M. E. Ramadan, Boundary controllability of nonlocal Hilfer fractional stochastic differential systems with fractional Brownian motion and Poisson jumps, Adv. Differ. Equ., 2019 (2019), 1–23. https://doi.org/10.1186/s13662-019-2028-1 doi: 10.1186/s13662-019-2028-1
    [20] J. R. Wang, H. M. Ahmed, Null controllability of nonlocal Hilfer fractional stochastic differential equations, Miskolc Math. Notes, 18 (2017), 1073–1083. https://doi.org/10.18514/MMN.2017.2396 doi: 10.18514/MMN.2017.2396
    [21] H. Parada, Null controllability of KdV equation in a star-shaped network, Evol. Equ. Control Theory, 13 (2024), 719–750. https://doi.org/10.3934/eect.2024003 doi: 10.3934/eect.2024003
    [22] T. Sathiyaraj, M. Fečkan, J. R. Wang, Null controllability results for stochastic delay systems with delayed perturbation of matrices, Chaos Solitons Fract., 138 (2020), 109927. https://doi.org/10.1016/j.chaos.2020.109927 doi: 10.1016/j.chaos.2020.109927
    [23] Q. Lü, Y. Wang, Null controllability for fourth order stochastic parabolic equations, SIAM J. Control Optim., 60 (2022), 1563–1590. https://doi.org/10.1137/22M1472620 doi: 10.1137/22M1472620
    [24] H. M. Ahmed, J. R. Wang, Exact null controllability of Sobolev-type Hilfer fractional stochastic differential equations with fractional Brownian motion and Poisson jumps, Bull. Iranian Math. Soc., 44 (2018), 673–690. https://doi.org/10.1007/s41980-018-0043-8 doi: 10.1007/s41980-018-0043-8
    [25] V. Yadav, R. K. Vats, A. Kumar, New exploration on the existence and null controllability of fractional Hilfer stochastic systems driven by Poisson jumps and fractional Brownian motion with non-instantaneous impulse, Int. J. Dyn. Control, 12 (2024), 3791–3804. https://doi.org/10.1007/s40435-024-01451-2 doi: 10.1007/s40435-024-01451-2
    [26] E. Bas, R. Ozarslan, Real world applications of fractional models by Atangana-Baleanu fractional derivative, Chaos Solitons Fract., 116 (2018), 121–125. https://doi.org/10.1016/j.chaos.2018.09.019 doi: 10.1016/j.chaos.2018.09.019
    [27] M. I. Syam, M. Al-Refai, Fractional differential equations with Atangana-Baleanu fractional derivative: analysis and applications, Chaos Solitons Fract. X, 2 (2019), 100013. https://doi.org/10.1016/j.csfx.2019.100013 doi: 10.1016/j.csfx.2019.100013
    [28] B. Ghanbari, H. Günerhan, H. M. Srivastava, An application of the Atangana-Baleanu fractional derivative in mathematical biology: a three-species predator-prey model, Chaos Solitons Fract., 138 (2020), 109910. https://doi.org/10.1016/j.chaos.2020.109910 doi: 10.1016/j.chaos.2020.109910
    [29] R. Dhayal, Y. X. Zhao, Q. X. Zhu, Z. Y. Wang, M. Karimi, Approximate controllability of Atangana-Baleanu fractional stochastic differential systems with non-Gaussian process and impulses, Discrete Contin. Dyn. Syst. S, 17 (2024), 2706–2731. https://doi.org/10.3934/dcdss.2024043 doi: 10.3934/dcdss.2024043
    [30] K. Kaliraj, E. Thilakraj, C. Ravichandran, K. S. Nisar, Controllability analysis for impulsive integro‐differential equation via Atangana-Baleanu fractional derivative, Math. Methods Appl. Sci., 2021. https://doi.org/10.1002/mma.7693
    [31] A. M. S. Ahmed, H. M. Ahmed, N. S. E. Abdalla, A. Abd-Elmonem, E. M. Mohamed, Approximate controllability of Sobolev-type Atangana-Baleanu fractional differential inclusions with noise effect and Poisson jumps, AIMS Math., 8 (2023), 25288–25310. https://doi.org/10.3934/math.20231290 doi: 10.3934/math.20231290
    [32] G. M. Bahaa, Optimal control problem for variable-order fractional differential systems with time delay involving Atangana-Baleanu derivatives, Chaos Solitons Fract., 122 (2019), 129–142. https://doi.org/10.1016/j.chaos.2019.03.001 doi: 10.1016/j.chaos.2019.03.001
    [33] C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, K. S. Nisar, A. Shukla, A. H. Abdel-Aty, et al., A note on existence and approximate controllability outcomes of Atangana-Baleanu neutral fractional stochastic hemivariational inequality, Results Phys., 38 (2022), 105647. https://doi.org/10.1016/j.rinp.2022.105647 doi: 10.1016/j.rinp.2022.105647
    [34] P. Bedi, A. Kumar, A. Khan, Controllability of neutral impulsive fractional differential equations with Atangana-Baleanu-Caputo derivatives, Chaos Solitons Fract., 150 (2021), 111153. https://doi.org/10.1016/j.chaos.2021.111153 doi: 10.1016/j.chaos.2021.111153
    [35] D. Aimene, D. Baleanu, D. Seba, Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay, Chaos Solitons Fract., 128 (2019), 51–57. https://doi.org/10.1016/j.chaos.2019.07.027 doi: 10.1016/j.chaos.2019.07.027
    [36] K. Logeswari, C. Ravichandran, A new exploration on existence of fractional neutral integro-differential equations in the concept of Atangana-Baleanu derivative, Phys. A, 544 (2020), 123454. https://doi.org/10.1016/j.physa.2019.123454 doi: 10.1016/j.physa.2019.123454
    [37] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Thermal Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [38] B. Boufoussi, S. Hajji, Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space, Statist. Probab. Lett., 82 (2012), 1549–1558. https://doi.org/10.1016/j.spl.2012.04.013 doi: 10.1016/j.spl.2012.04.013
    [39] A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer, 2012.
    [40] X. L. Fu, Y. Zhang, Exact null controllability of non-autonomous functional evolution systems with nonlocal conditions, Acta Math. Sci., 33 (2013), 747–757. https://doi.org/10.1016/S0252-9602(13)60035-1 doi: 10.1016/S0252-9602(13)60035-1
    [41] J. Y. Park, P. Balasubramaniam, Exact null controllability of abstract semilinear functional integrodifferential stochastic evolution equations in Hilbert spaces, Taiwanese J. Math., 13 (2009), 2093–2103. https://doi.org/10.11650/twjm/1500405659 doi: 10.11650/twjm/1500405659
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(33) PDF downloads(9) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog