This paper aims to derive the NE transform of fractional integrals in the pathway that incorporates the $ S $-function in the kernel, considering various parameters. Furthermore, by applying these mathematical operators, we have explored and clarified several key findings and corollaries. Our current study highlights the results of the NE transform, combined with the fractional integral formula of the pathway that includes the $ S $-function within the kernel.
Citation: Shristi Mishra, Harish Nagar, Naveen Mani, Rahul Shukla. NE transform of pathway fractional integrals involving $ S $-function[J]. AIMS Mathematics, 2025, 10(2): 3013-3024. doi: 10.3934/math.2025140
This paper aims to derive the NE transform of fractional integrals in the pathway that incorporates the $ S $-function in the kernel, considering various parameters. Furthermore, by applying these mathematical operators, we have explored and clarified several key findings and corollaries. Our current study highlights the results of the NE transform, combined with the fractional integral formula of the pathway that includes the $ S $-function within the kernel.
[1] | P. Agarwal, On a new unified integral involving hypergeometric functions, Adv. Comput. Math. Appl., 2 (2012), 239–242. |
[2] |
D. Baleanu, P. Agarwal, On generalized fractional integral operators and the generalized gauss hypergeometric functions, Abstr. Appl. Anal., 2014 (2014), 630840. https://doi.org/10.1155/2014/630840 doi: 10.1155/2014/630840
![]() |
[3] |
J. Choi, P. Agarwal, Certain class of generating functions for the incomplete hypergeometric functions, Abstr. Appl. Anal., 2014 (2014), 714560. https://doi.org/10.1155/2014/714560 doi: 10.1155/2014/714560
![]() |
[4] |
M. J. Luo, G. V. Milovanovic, P. Agarwal, Some results on the extended beta and extended hypergeometric functions, Appl. Math. Comput., 248 (2014), 631–651. https://doi.org/10.1016/j.amc.2014.09.110 doi: 10.1016/j.amc.2014.09.110
![]() |
[5] | P. Agarwal, S. Jain, I. Kiymaz, M. Chand, A. O. Skq, Certain sequence of functions involving generalized hypergeometric functions, Math. Sci. Appl. E-Notes, 3 (2015), 45–53. |
[6] |
P. Agarwal, J. Choi, S. Jain, Extended hypergeometric functions of two and three variables, Commun. Korean Math. Soc., 30 (2015), 403–414. https://doi.org/10.4134/CKMS.2015.30.4.403 doi: 10.4134/CKMS.2015.30.4.403
![]() |
[7] |
M. A. Chaudhry, S. M. Zubair, Generalized incomplete gamma functions with applications, J. Comput. Appl. Math., 55 (1994), 99–124. https://doi.org/10.1016/0377-0427(94)90187-2 doi: 10.1016/0377-0427(94)90187-2
![]() |
[8] |
R. Goyal, S. Momani, P. Agarwal, M. T. Rassias, An extension of beta function by using wiman's function, Axioms, 10 (2021), 187. https://doi.org/10.3390/axioms10030187 doi: 10.3390/axioms10030187
![]() |
[9] | P. Agarwal, D. Baleanu, Y. Chen, S. Momani, J. T. Machado, Fractional calculus, ICFDA 2018, Amman, Jordan, July 16–18, Springer, 2019. https://doi.org/10.1007/978-981-15-0430-3 |
[10] |
F. Wang, I. Ahmad, H. Ahmad, M. D. Alsulami, K. S. Alimgeer, C. Cesarano, et al., Meeshless method based on RBFs for solvin three dimensional multi-term time fractional PDEs arising in engineering phenomenons, J. King Saud Univ.-Sci., 33 (2021), 101604. https://doi.org/10.1016/j.jksus.2021.101604 doi: 10.1016/j.jksus.2021.101604
![]() |
[11] |
H. Ahmed, M. Tariq, S. K. Sahu, J. Baili, C. Caesarano, New estimations on Hermite-Hadmard type integral inequalities for special functions, Fractal Fract., 5 (2021), 144. https://doi.org/10.3390/fractalfract5040144 doi: 10.3390/fractalfract5040144
![]() |
[12] | V. S. Kiryakova, Generalized fractional calculus and applications, CRC press, 1993. |
[13] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[14] |
J. Daiya, R. K. Saxena, Integral transforms of the $S$-functions, Le Mat., 70 (2015), 147–159. https://doi.org/10.4418/2015.70.2.10 doi: 10.4418/2015.70.2.10
![]() |
[15] | R. Askey, Orthogonal polynomials and special functions, SIAM, 1975. |
[16] | R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer $k$-symbol, Divulg. Mat., 15 (2007), 179–192. |
[17] |
R. K. Saxena, J. Daiya, A. Singh, Integral transforms of the $k$-generalized Mittag-Leffler function $E_{k, \alpha, \beta}^{\gamma, \tau}(z)$, Le Mat., 69 (2014), 7–16. https://doi.org/10.4418/2014.69.2.2 doi: 10.4418/2014.69.2.2
![]() |
[18] |
H. Amsalu, D. Suthar, Generalized fractional integral operators involving Mittag-Leffler function, Abstr. Appl. Anal., 2018 (2018), 7034124. https://doi.org/10.1155/2018/7034124 doi: 10.1155/2018/7034124
![]() |
[19] | S. D. Purohit, S. L. Kalla, D. L. Suthar, Fractional integral operators and the multiindex Mittag-Leffler functions, J. Comput. Appl. Math., 118 (2000), 241–259. |
[20] | K. Sharma, Application of fractional calculus operators to related areas, Gen. Math. Notes, 7 (2011), 33–40. |
[21] |
D. L. Suthar, H. Habenom, Marichev-saigo integral operators involving the product of $k$-function and multivariable polynomials, Commun. Numer. Anal., 2017 (2017), 101–108. https://doi.org/10.5899/2017/cna-00314 doi: 10.5899/2017/cna-00314
![]() |
[22] | M. Sharma, R. Jain, A note on a generalized $M$-series as a special function of fractional calculus, Fract. Calc. Appl. Anal., 12 (2009), 449–452. |
[23] | S. S. Nair, Pathway fractional integration operator, Fract. Calc. Appl. Anal., 12 (2009), 237–252. |
[24] |
A. M. Mathai, A pathway to matrix-variate gamma and normal densities, Linear Algebra Appl., 396 (2005), 317–328. https://doi.org/10.1016/j.laa.2004.09.022 doi: 10.1016/j.laa.2004.09.022
![]() |
[25] |
A. M. Mathai, H. J. Haubold, Pathway model, superstatistics, Tsallis statistics, and a generalized measure of entropy, Phys. A, 375 (2007), 110–122. https://doi.org/10.1016/j.physa.2006.09.002 doi: 10.1016/j.physa.2006.09.002
![]() |
[26] |
A. M. Mathai, H. J. Haubold, On generalized distributions and pathways, Phys. Lett., 372 (2008), 2109–2113. https://doi.org/10.1016/j.physleta.2007.10.084 doi: 10.1016/j.physleta.2007.10.084
![]() |
[27] |
P. Agarwal, J. Choi, Certain fractional integral inequalities associated with pathway fractional integral operators, Bull. Korean Math. Soc., 53 (2016), 181–193. https://doi.org/10.4134/BKMS.2016.53.1.181 doi: 10.4134/BKMS.2016.53.1.181
![]() |
[28] | P. Agarwal, S. D. Purohit, The unified pathway fractional integral formulae, J. Fract. Calc. Appl., 4 (2013), 105–112. |
[29] | D. Baleanu, P. Agarwal, A composition formula of the pathway integral transform operator, Note Mat., 34 (2015), 145–156. |
[30] |
J. Choi, P. Agarwal, Certain inequalities involving pathway fractional integral operators, Kyungpook Math. J., 56 (2016), 1161–1168. https://doi.org/10.5666/KMJ.2016.56.4.1161 doi: 10.5666/KMJ.2016.56.4.1161
![]() |
[31] |
S. Jain, P. Agarwal, A. Kilicman, Pathway fractional integral operator associated with 3m-parametric Mittag-Leffler functions, Int. J. Appl. Comput. Math., 4 (2018), 115. https://doi.org/10.1007/s40819-018-0549-z doi: 10.1007/s40819-018-0549-z
![]() |
[32] |
D. Kumar, R. K. Saxena, J. Daiya, Pathway fractional integral operators of generalized $k$-wright function and $k4$-function, Bol. Soc. Paran. Mat., 35 (2017), 235–246. https://doi.org/10.5269/bspm.v35i2.29180 doi: 10.5269/bspm.v35i2.29180
![]() |
[33] |
H. Amsalu, B. Shimelis, D. L. Suthar, Pathway fractional integral formulas involving $s$-function in the kernel, Math. Probl. Eng., 2020 (2020), 1–6. https://doi.org/10.1155/2020/4236823 doi: 10.1155/2020/4236823
![]() |
[34] | E. M. Xhaferraj, The new integral transform: "NE transform" and its applications, Eur. J. Formal Sci. Eng., 6 (2023), 22–34. |
[35] | P. Sebah, X. Gourdon, Introduction to the gamma function, Amer. J. Sci. Res., 2002, 2–18. |
[36] | E. Artin, The gamma function, Courier Dover Publications, 2015. |
[37] | N. Batir, Inequalities for the gamma function, Arch. Math., 91 (2008), 554–563. |