Research article Special Issues

Separable algebras in multitensor C$ ^* $-categories are unitarizable

  • Received: 20 December 2023 Revised: 11 March 2024 Accepted: 13 March 2024 Published: 22 March 2024
  • MSC : 18M20, 46L08, 46L89

  • S. Carpi et al. (Comm. Math. Phys., 402 (2023), 169–212) proved that every connected (i.e., haploid) Frobenius algebra in a tensor C$ ^* $-category is unitarizable (i.e., isomorphic to a special C$ ^* $-Frobenius algebra). Building on this result, we extend it to the non-connected case by showing that an algebra in a multitensor C$ ^* $-category is unitarizable if and only if it is separable.

    Citation: Luca Giorgetti, Wei Yuan, XuRui Zhao. Separable algebras in multitensor C$ ^* $-categories are unitarizable[J]. AIMS Mathematics, 2024, 9(5): 11320-11334. doi: 10.3934/math.2024555

    Related Papers:

  • S. Carpi et al. (Comm. Math. Phys., 402 (2023), 169–212) proved that every connected (i.e., haploid) Frobenius algebra in a tensor C$ ^* $-category is unitarizable (i.e., isomorphic to a special C$ ^* $-Frobenius algebra). Building on this result, we extend it to the non-connected case by showing that an algebra in a multitensor C$ ^* $-category is unitarizable if and only if it is separable.



    加载中


    [1] L. Abrams, Modules, comodules, and cotensor products over Frobenius, J. Algebra, 219 (1999), 201–213. https://doi.org/10.1006/jabr.1999.7901 doi: 10.1006/jabr.1999.7901
    [2] Y. Arano, K. De Commer, Torsion-freeness for fusion rings and tensor $ \rm C ^*$-categories, J. Noncommut. Geom., 13 (2019), 35–58. https://doi.org/10.4171/JNCG/322 doi: 10.4171/JNCG/322
    [3] M. S. Adamo, L. Giorgetti, Y. Tanimoto, Wightman fields for two-dimensional conformal field theories with pointed representation category, Commun. Math. Phys., 404 (2023), 1231–1273. https://doi.org/10.1007/s00220-023-04835-1 doi: 10.1007/s00220-023-04835-1
    [4] N. Afzaly, S. Morrison, D. Penneys, The classification of subfactors with index at most $5\frac14$, Mem. Am. Math. Soc., 284 (2023), v+81. https://doi.org/10.1090/memo/1405 doi: 10.1090/memo/1405
    [5] M. Bischoff, Y. Kawahigashi, R. Longo, Characterization of 2D rational local conformal nets and its boundary conditions: The maximal case, Doc. Math., 20 (2015), 1137–1184. https://doi.org/10.4171/DM/515 doi: 10.4171/DM/515
    [6] M. Bischoff, Y. Kawahigashi, R. Longo, K. H. Rehren, Tensor categories and endomorphisms of von Neumann algebras: With applications to quantum field theory, Springer Briefs in Mathematical Physics, Springer, Cham, 3 (2015). http://dx.doi.org/10.1007/978-3-319-14301-9
    [7] M. Bischoff, Y. Kawahigashi, R. Longo, K. H. Rehren, Phase boundaries in algebraic conformal QFT, Commun. Math. Phys., 342 (2016), 1–45. http://dx.doi.org/10.1007/s00220-015-2560-0 doi: 10.1007/s00220-015-2560-0
    [8] S. Carpi, T. Gaudio, L. Giorgetti, R. Hillier, Haploid algebras in $C^*$-tensor categories and the Schellekens list, Commun. Math. Phys., 402 (2023), 169–212. https://doi.org/10.1007/s00220-023-04722-9 doi: 10.1007/s00220-023-04722-9
    [9] Q. Chen, G. Ferrer, B. Hungar, D. Penneys, S. Sanford, Manifestly unitary higher Hilbert spaces, In preparation.
    [10] Q. Chen, R. Hernández Palomares, C. Jones, K-theoretic classification of inductive limit actions of fusion categories on AF-algebras, Commun. Math. Phys., 405 (2024). https://doi.org/10.1007/s00220-024-04969-w doi: 10.1007/s00220-024-04969-w
    [11] Q. Chen, R. Hernández Palomares, C. Jones, D. Penneys, Q-system completion for $\rm C^*$ 2-categories, J. Funct. Anal., 283 (2022), 109524. https://doi.org/10.1016/j.jfa.2022.109524 doi: 10.1016/j.jfa.2022.109524
    [12] S. Carpi, Y. Kawahigashi, R. Longo, M. Weiner, From vertex operator algebras to conformal nets and back, Mem. Am. Math. Soc., 254 (2018), vi+85. https://doi.org/10.1090/memo/1213 doi: 10.1090/memo/1213
    [13] T. Creutzig, S. Kanade, R. McRae, Tensor categories for vertex operator superalgebra extensions, to appear in Mem. Am. Math. Soc., 2017. https://doi.org/10.48550/arXiv.1705.05017
    [14] Q. Chen, D. Penneys, Q-system completion is a 3-functor, Theor. Appl. Categ., 38 (2022), 101–134. Available from: http://www.tac.mta.ca/tac/volumes/38/4/38-04.pdf.
    [15] A. Davydov, M. Müger, D. Nikshych, V. Ostrik, The Witt group of non-degenerate braided fusion categories, J. Reine Angew. Math., 677 (2013), 135–177. https://doi.org/10.1515/crelle.2012.014 doi: 10.1515/crelle.2012.014
    [16] C. L. Douglas, D. J. Reutter, Fusion 2-categories and a state-sum invariant for 4-manifolds, arXiv preprint, 2018. https://doi.org/10.48550/arXiv.1812.11933
    [17] S. Doplicher, J. E. Roberts, A new duality theory for compact groups, Invent. Math., 98 (1989), 157–218. http://dx.doi.org/10.1007/BF01388849 doi: 10.1007/BF01388849
    [18] P. Etingof, D. Nikshych, V. Ostrik, On fusion categories, Ann. Math., 162 (2005), 581–642. http://dx.doi.org/10.4007/annals.2005.162.581 doi: 10.4007/annals.2005.162.581
    [19] P. Etingof, S. Gelaki, D. Nikshych, V. Ostrik, Tensor categories, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 205 (2015). https://doi.org/10.1090/surv/205
    [20] D. E. Evans, Y. Kawahigashi, Quantum symmetries on operator algebras, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, Oxford Science Publications, 1998.
    [21] S. Evington, S. G. Pacheco, Anomalous symmetries of classifiable $\rm C^*$-algebras, Stud. Math., 270 (2023), 73–101. https://doi.org/10.4064/sm220117-25-6 doi: 10.4064/sm220117-25-6
    [22] J. Fuchs, I. Runkel, C. Schweigert, TFT construction of RCFT correlators Ⅰ: Partition functions, Nuclear Phys. B, 646 (2002), 353–497. http://dx.doi.org/10.1016/S0550-3213(02)00744-7 doi: 10.1016/S0550-3213(02)00744-7
    [23] J. Fuchs, I. Runkel, C. Schweigert, TFT construction of RCFT correlators Ⅱ: Unoriented world sheets, Nuclear Phys. B, 678 (2004), 511–637. http://dx.doi.org/10.1016/j.nuclphysb.2003.11.026 doi: 10.1016/j.nuclphysb.2003.11.026
    [24] J. Fuchs, I. Runkel, C. Schweigert, TFT construction of RCFT correlators Ⅲ: Simple currents, Nuclear Phys. B, 694 (2004), 277–353. http://dx.doi.org/10.1016/j.nuclphysb.2004.05.014 doi: 10.1016/j.nuclphysb.2004.05.014
    [25] J. Fuchs, I. Runkel, C. Schweigert, TFT construction of RCFT correlators Ⅳ: Structure constants and correlation functions, Nuclear Phys. B, 715 (2005), 539–638. http://dx.doi.org/10.1016/j.nuclphysb.2005.03.018 doi: 10.1016/j.nuclphysb.2005.03.018
    [26] T. Gannon, Exotic quantum subgroups and extensions of affine Lie algebra VOAs–-part I, arXiv preprint, 2023. https://doi.org/10.48550/arXiv.2301.07287
    [27] L. Giorgetti, R. Longo, Minimal index and dimension for 2-$C^*$-categories with finite-dimensional centers, Commun. Math. Phys., 370 (2019), 719–757. https://doi.org/10.1007/s00220-018-3266-x doi: 10.1007/s00220-018-3266-x
    [28] P. Ghez, R. Lima, J. E. Roberts, $W^\ast$-categories, Pac. J. Math., 120 (1985), 79–109. Available from: http://projecteuclid.org/euclid.pjm/1102703884.
    [29] P. Grossman, N. Snyder, Quantum subgroups of the Haagerup fusion categories, Commun. Math. Phys., 311 (2012), 617–643. https://doi.org/10.1007/s00220-012-1427-x doi: 10.1007/s00220-012-1427-x
    [30] B. Gui, Q-systems and extensions of completely unitary vertex operator algebras, Int. Math. Res. Not., 10 (2022), 7550–7614. https://doi.org/10.1093/imrn/rnaa300 doi: 10.1093/imrn/rnaa300
    [31] L. Giorgetti, A planar algebraic description of conditional expectations, Int. J. Math., 33 (2022), 2250037. https://doi.org/10.1142/S0129167X22500379 doi: 10.1142/S0129167X22500379
    [32] L. Giorgetti, W. Yuan, Realization of rigid $\rm C^\ast$-bicategories as bimodules over type $\rm II_1$ von Neumann algebras, Adv. Math., 415 (2023), 108886. https://doi.org/10.1016/j.aim.2023.108886 doi: 10.1016/j.aim.2023.108886
    [33] R. Haag, Local quantum physics, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1996. https://doi.org/10.1007/978-3-642-61458-3
    [34] Y. Z. Huang, L. Kong, Full field algebras, Commun. Math. Phys., 272 (2007), 345–396. https://doi.org/10.1007/s00220-007-0224-4 doi: 10.1007/s00220-007-0224-4
    [35] Y. Z. Huang, A. Kirillov Jr., J. Lepowsky, Braided tensor categories and extensions of vertex operator algebras, Commun. Math. Phys., 337 (2015), 1143–1159. https://doi.org/10.1007/s00220-015-2292-1 doi: 10.1007/s00220-015-2292-1
    [36] A. Henriques, D. Penneys, J. Tener, Categorified trace for module tensor categories over braided tensor categories, Doc. Math., 21 (2016), 1089–1149. Available from: https://www.elibm.org/article/10000404.
    [37] V. F. R. Jones, Planar algebras, Ⅰ, New Zealand J. Math., 52 (2021), 1–107. https://doi.org/10.53733/172 doi: 10.53733/172
    [38] V. F. R. Jones, Index for subfactors, Invent. Math., 72 (1983), 1–25. http://dx.doi.org/10.1007/BF01389127 doi: 10.1007/BF01389127
    [39] V. Kac, Vertex algebras for beginners, University Lecture Series, American Mathematical Society, Providence, RI, 10 (1997). https://doi.org/10.1090/ulect/010
    [40] A. Kirillov Jr., V. Ostrik, On a $q$-analogue of the McKay correspondence and the ADE classification of $ \rm sl_2$ conformal field theories, Adv. Math., 171 (2002), 183–227. http://dx.doi.org/10.1006/aima.2002.2072 doi: 10.1006/aima.2002.2072
    [41] L. Kong, Full field algebras, operads and tensor categories, Adv. Math., 213 (2007), 271–340. https://doi.org/10.1016/j.aim.2006.12.007 doi: 10.1016/j.aim.2006.12.007
    [42] L. Kong, W. Yuan, H. Zheng, Pointed Drinfeld center functor, Commun. Math. Phys., 381 (2021), 1409–1443. https://doi.org/10.1007/s00220-020-03922-x doi: 10.1007/s00220-020-03922-x
    [43] L. Kong, H. Zheng, Semisimple and separable algebras in multi-fusion categories, arXiv preprint, 2017. https://doi.org/10.48550/arXiv.1706.06904
    [44] L. Kong, H. Zheng, The center functor is fully faithful, Adv. Math., 339 (2018), 749–779. https://doi.org/10.1016/j.aim.2018.09.031 doi: 10.1016/j.aim.2018.09.031
    [45] R. Longo, Index of subfactors and statistics of quantum fields. II. Correspondences, braid group statistics and Jones polynomial, Commun. Math. Phys., 130 (1990), 285–309. https://doi.org/10.1007/BF02473354 doi: 10.1007/BF02473354
    [46] R. Longo, A duality for Hopf algebras and for subfactors. Ⅰ, Commun. Math. Phys., 159 (1994), 133–150. https://doi.org/10.1007/BF02100488 doi: 10.1007/BF02100488
    [47] R. Longo, K. H. Rehren, Nets of subfactors, Rev. Math. Phys., 7 (1995), 567–597. https://doi.org/10.1142/S0129055X95000232 doi: 10.1142/S0129055X95000232
    [48] R. Longo, J. E. Roberts, A theory of dimension, $K$-Theory, 11 (1997), 103–159. http://dx.doi.org/10.1023/A:1007714415067 doi: 10.1023/A:1007714415067
    [49] S. Mac Lane, Categories for the working mathematician, Graduate Texts in Mathematics, Springer-Verlag, New York, 1998. https://doi.org/10.1007/978-1-4757-4721-8
    [50] M. Müger, From subfactors to categories and topology Ⅰ: Frobenius algebras in and Morita equivalence of tensor categories, J. Pure Appl. Algebra, 180 (2003), 81–157. http://dx.doi.org/10.1016/S0022-4049(02)00247-5 doi: 10.1016/S0022-4049(02)00247-5
    [51] M. Müger, Tensor categories: A selective guided tour, Rev. Union. Mat. Argent., 51 (2010), 95–163. Available from: https://inmabb.criba.edu.ar/revuma/pdf/v51n1/v51n1a07.pdf.
    [52] S. Neshveyev, L. Tuset, Compact quantum groups and their representation categories, Cours Spécialisés [Specialized Courses], Société Mathématique de France, Paris, 20 (2013). Available from: https://sciencesmaths-paris.fr/images/pdf/chaires-fsmp-laureat2008-livre%20Sergey%20Neyshveyev.pdf.
    [53] S. Neshveyev, M. Yamashita, Categorically Morita equivalent compact quantum groups, Doc. Math., 23 (2018), 2165–2216. http://dx.doi.org/10.4171/DM/672 doi: 10.4171/DM/672
    [54] A. Ocneanu, The classification of subgroups of quantum $ {\rm{SU}} (N)$, In: Contemp. Math., Quantum symmetries in theoretical physics and mathematics (Bariloche, 2000), Amer. Math. Soc., Providence, RI, 294 (2002), 133–159. https://doi.org/10.1090/conm/294/04972
    [55] A. Ocneanu, Quantized groups, string algebras and Galois theory for algebras, In: London Math. Soc. Lecture Note Ser., Operator algebras and applications, Cambridge Univ. Press, Cambridge, 136 (1988), 119–172. https://doi.org/10.1017/CBO9780511662287.008
    [56] V. Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups, 8 (2003), 177–206. http://dx.doi.org/10.1007/s00031-003-0515-6 doi: 10.1007/s00031-003-0515-6
    [57] S. Popa, Classification of subfactors: The reduction to commuting squares, Invent. Math., 101 (1990), 19–43. https://doi.org/10.1007/BF01231494 doi: 10.1007/BF01231494
    [58] S. Popa, An axiomatization of the lattice of higher relative commutants of a subfactor, Invent. Math., 120 (1995), 427–445. http://dx.doi.org/10.1007/BF01241137 doi: 10.1007/BF01241137
    [59] D. Reutter, Uniqueness of unitary structure for unitarizable fusion categories, Commun. Math. Phys., 397 (2023), 37–52. https://doi.org/10.1007/s00220-022-04425-7 doi: 10.1007/s00220-022-04425-7
    [60] I. Runkel, J. Fjelstad, F. Fuchs, C. Schweigert, Topological and conformal field theory as Frobenius algebras, In: Contemp. Math., Categories in algebra, geometry and mathematical physics, Amer. Math. Soc., Providence, RI, 431 (2007), 225–247. https://doi.org/10.1090/conm/431/08275
    [61] V. Turaev, A. Virelizier, Monoidal categories and topological field theory, Progress in Mathematics, Birkhäuser Cham, 322 (2017). https://doi.org/10.1007/978-3-319-49834-8
    [62] S. Yamagami, Frobenius algebras in tensor categories and bimodule extensions, In: Fields Inst. Commun., Galois theory, Hopf algebras, and semiabelian categories, Amer. Math. Soc., Providence, RI, 43 (2004), 551–570. https://doi.org/10.1090/fic/043
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(783) PDF downloads(51) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog