Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Preserving monotone or convex data using quintic trigonometric Bézier curves

  • Received: 26 November 2023 Revised: 22 January 2024 Accepted: 24 January 2024 Published: 01 February 2024
  • MSC : 65D05, 65D07, 65D17, 68U07

  • Bézier curves are essential for data interpolation. However, traditional Bézier curves often fail to detect special features that may exist in a data set, such as monotonicity or convexity, leading to invalid interpolations. This study aims to improve the deficiency of Bézier curves by imposing monotonicity or convexity-preserving conditions on the shape parameter and control points. For this purpose, the quintic trigonometric Bézier curves with two shape parameters are used. These techniques constrain only one of the shape parameters, leaving the other free to provide users with more freedom and flexibility in modifying the final curve. To guarantee smooth interpolation, the curvature profiles of the curves are analyzed, which aids in selecting the optimal shape parameter values. The effectiveness of the developed schemes was evaluated by implementing real-life data and data obtained from the existing schemes. Compared with the existing schemes, the developed schemes produce low-curvature interpolation curves with unnoticeable wiggles and turns. The proposed methods also work effectively for both nonuniformly spaced data and negative-valued convex data in real-life applications. When the shape parameter is correctly chosen, the developed interpolants exhibit continuous curvature plots, assuring C2 continuity.

    Citation: Salwa Syazwani Mahzir, Md Yushalify Misro, Kenjiro T. Miura. Preserving monotone or convex data using quintic trigonometric Bézier curves[J]. AIMS Mathematics, 2024, 9(3): 5971-5994. doi: 10.3934/math.2024292

    Related Papers:

    [1] Tahir Mahmood, Azam, Ubaid ur Rehman, Jabbar Ahmmad . Prioritization and selection of operating system by employing geometric aggregation operators based on Aczel-Alsina t-norm and t-conorm in the environment of bipolar complex fuzzy set. AIMS Mathematics, 2023, 8(10): 25220-25248. doi: 10.3934/math.20231286
    [2] Tahir Mahmood, Ubaid Ur Rehman, Muhammad Naeem . A novel approach towards Heronian mean operators in multiple attribute decision making under the environment of bipolar complex fuzzy information. AIMS Mathematics, 2023, 8(1): 1848-1870. doi: 10.3934/math.2023095
    [3] Remala Mounikalakshmi, Tamma Eswarlal, Chiranjibe Jana . Bipolar fuzzy INK-subalgebras of INK-algebras. AIMS Mathematics, 2024, 9(10): 27593-27606. doi: 10.3934/math.20241340
    [4] Dilshad Alghazzawi, Sajida Abbas, Hanan Alolaiyan, Hamiden Abd El-Wahed Khalifa, Alhanouf Alburaikan, Qin Xin, Abdul Razaq . Dynamic bipolar fuzzy aggregation operators: A novel approach for emerging technology selection in enterprise integration. AIMS Mathematics, 2024, 9(3): 5407-5430. doi: 10.3934/math.2024261
    [5] Tahir Mahmood, Ubaid ur Rehman, Zeeshan Ali, Muhammad Aslam . Bonferroni mean operators based on bipolar complex fuzzy setting and their applications in multi-attribute decision making. AIMS Mathematics, 2022, 7(9): 17166-17197. doi: 10.3934/math.2022945
    [6] Muhammad Qiyas, Muhammad Naeem, Neelam Khan, Lazim Abdullah . Bipolar complex fuzzy credibility aggregation operators and their application in decision making problem. AIMS Mathematics, 2023, 8(8): 19240-19263. doi: 10.3934/math.2023981
    [7] Anam Habib, Zareen A. Khan, Nimra Jamil, Muhammad Riaz . A decision-making strategy to combat CO2 emissions using sine trigonometric aggregation operators with cubic bipolar fuzzy input. AIMS Mathematics, 2023, 8(7): 15092-15128. doi: 10.3934/math.2023771
    [8] Rizwan Gul, Muhammad Shabir, Tareq M. Al-shami, M. Hosny . A Comprehensive study on (α,β)-multi-granulation bipolar fuzzy rough sets under bipolar fuzzy preference relation. AIMS Mathematics, 2023, 8(11): 25888-25921. doi: 10.3934/math.20231320
    [9] Rabia Mazhar, Shahida Bashir, Muhammad Shabir, Mohammed Al-Shamiri . A soft relation approach to approximate the spherical fuzzy ideals of semigroups. AIMS Mathematics, 2025, 10(2): 3734-3758. doi: 10.3934/math.2025173
    [10] Shahida Bashir, Ahmad N. Al-Kenani, Maria Arif, Rabia Mazhar . A new method to evaluate regular ternary semigroups in multi-polar fuzzy environment. AIMS Mathematics, 2022, 7(7): 12241-12263. doi: 10.3934/math.2022680
  • Bézier curves are essential for data interpolation. However, traditional Bézier curves often fail to detect special features that may exist in a data set, such as monotonicity or convexity, leading to invalid interpolations. This study aims to improve the deficiency of Bézier curves by imposing monotonicity or convexity-preserving conditions on the shape parameter and control points. For this purpose, the quintic trigonometric Bézier curves with two shape parameters are used. These techniques constrain only one of the shape parameters, leaving the other free to provide users with more freedom and flexibility in modifying the final curve. To guarantee smooth interpolation, the curvature profiles of the curves are analyzed, which aids in selecting the optimal shape parameter values. The effectiveness of the developed schemes was evaluated by implementing real-life data and data obtained from the existing schemes. Compared with the existing schemes, the developed schemes produce low-curvature interpolation curves with unnoticeable wiggles and turns. The proposed methods also work effectively for both nonuniformly spaced data and negative-valued convex data in real-life applications. When the shape parameter is correctly chosen, the developed interpolants exhibit continuous curvature plots, assuring C2 continuity.



    With the advancement of the world, the ambiguity and uncertainty in the life of human beings were increasing and an expert or decision-analyst couldn't handle such sort of ambiguities and uncertainties by employing the theory of crisp set. Thus, Zadeh [1] diagnosed the fuzzy set theory (FST) and its elementary results in 1965 to cope with such sort of ambiguities and uncertainties by changing the two-point set {0,1} to the unit interval [0,1]. The FST holds a supportive grade which contains in [0,1]. The FST attracted numerous scholars from almost every field of science and they did research and utilized the FST in their respective fields. Rosenfeld [2] firstly employed the FST in the environment of groups to structured fuzzy groups. Kuroki [3,4,5,6] interpreted fuzzy semigroups (FSG), bi-ideal in semigroups, and fuzzy ideal. The fuzzy ideals and bi-ideals in FSGs were also presented by Dib and Galhum [7]. The fuzzy identities with application to FSGs were established by Budimirovic et al. [8]. The generalized fuzzy interior ideals and fuzzy regular sub-semigroup were given in [9,10] respectively. The fuzzy bi-ideals, fuzzy radicals, and fuzzy prime ideals of ordered semigroups are presented in [11,12]. Kehayopulu and Tsingelis [13] and Xie and Tang [14] presented the concept of regular and intra-regular ordered semigroups. Khan et al. [15] explored certain characterizations of intra-regular semigroups. Jaradat and Al-Husban [16] investigated multi-fuzzy group spaces.

    The conception of bipolar fuzzy (BF) set is one of the generalizations of FST, as FST is unable to cover the negative opinion or negative supportive grade of human beings. Thus, Zhang [17] initiated the BF set theory (BFST) to cover both positive and negative opinions of human beings by enlarging the range of FST ([0,1]) to the BFST ([0,1],[1,0]). The BFST holds a positive supportive grade (PSG) which contains in [0,1] and negative supportive grade (NSG) which contains in [1,0]. Kim et al. [18] initiated BCFST in semigroups. Kang and Kang [19] explored BFST applied to sub-semigroups with the operations of semigroups. BFST in Γ-semigroups was interpreted by Majumder [20]. The certain properties of BF sub-semigroups of a semigroup are presented in [21,22]. Chinnadurai and Arulmozhi [23] described the characterization of BF ideals in ordered Γ-semigroups. BF abundant semigroups by Li et al. [24]. Ban et al. [25] initiated BF ideals with operation in semigroups. Gaketem and Khamrot [26] presented BF weakly interior ideals. The generalized BF interior ideals in ordered semigroups were interpreted by Ibrar et al. [27]. The BF graph was discussed in [28,29,30]. Mahmood [31] diagnosed a new approach to the bipolar soft set. Akram et al. [32] presented a characterization of BF soft Γ-semigroups. Deli and Karaaslan [33] defined bipolar FPSS theory. Various researchers expand the conception of BFS such as Deli et al. [34] investigated bipolar neutrosophic sets (BNS), Deli and Subas [35] introduced bipolar neutrosophic refined sets, Ali et al. [46] investigated bipolar neutrosophic soft sets.

    The FST and BFST merely cope with the ambiguities and uncertainties which are in one dimension but unable to cope with 2nd dimension which is the phase term. Thus, Ramot et al. [37] diagnosed the theory of complex FS (CFS) by transforming the range of FST ([0,1]) to the unit circle in a complex plane. In the CFS theory (CFST) Ramot et al. [37] added the phase term in the supportive grade. After that, Tamir et al. [38] diagnosed the CFST in the cartesian structure by transforming the range from the unit circle to the unit square of the complex plane. Al-Husban and Salleh [39] presented complex fuzzy (CF) groups that rely on CF space. Alolaiyan et al. [40] the conception of CF subgroups. The above-discussed theories have their drawbacks, for instance, FST can't cover the negative opinion, BFST can't cover the 2nd dimension and CFST can't cover the negative opinion. Thus to cover all these drawbacks Mahmood and Ur Rehman [41] introduced the theory of the BCF set. BCF set covers the PSG which contains in [0,1]+ι[0,1] (real part contains in [0,1] and unreal part contains in [0,1]) and NSG which contains in [1,0]+ι[1,0] (real part contains in [1,0] and unreal part contains in [1,0]). The theory of the BCF set has a great mathematical structure that generalizes the FST, BFST, and CFST, for example, a CEO of a company wants to install a new air conditioning system in a company's head office. For this he has to observe four aspects i.e., positive effect on the office's environment, the positive response of the employees, the extra burden on the company expenditures, and the negative response of the employees. No prevailing theories except the BCF set can model such kinds of information. A lot of researchers worked on the theory of BCF set for instance Al-Husban et al. [42] investigated the properties for BCFS. Mahmood et al. [43] diagnosed Hamacher aggregation operators (AOs), Mahmood and Ur Rehman [44] explored Dombi AOs, Mahmood et al. [45] AOs. The BCF soft set was diagnosed by Mahmood et al. [46].

    The conception of a semigroup is a prosperous area of modern algebra. It is obvious from the name that semigroup is the modification of the conception of the group, since a semigroup not requires to contain elements that have inverses. In the earlier stages, a lot of researchers work on semigroup from the perspective of ring and group. The conception of semigroup may be assumed as the effective offspring of ring theory because the ring theory provides some insight into how to create the notion of ideals in the semigroup. Moreover, the conception of a semigroup is an influential approach and has been utilized by numerous scholars and employed in various areas such as mathematical biology, control theory, nonlinear dynamical systems, stochastic processes, etc. Because of the importance of semigroup, various scholars modified this concept to introduce novel notions such as fuzzy semigroup [3,4,5,6], intuitionistic fuzzy semigroup [47], bipolar fuzzy semigroup [19], etc. The concept of fuzzy semigroup has various application such as fuzzy languages, theory fuzzy coding, etc., that shows the importance of fuzzy algebraic structure and their modifications. In recent years, numerous authors generalized the conception of fuzzy algebraic structures and employed genuine-life dilemmas in various areas of science. What would happen if someone working on automata theory and trying to solve a problem and for that he/she needs a BCF algebraic structure (i.e., BCF semigroup) but until now there is no such structure in the literature. Therefore inspired by this here in this analysis we employ the theory of the BCF set to the algebraic structures of semigroups:

    ● To describe BCF sub-semigroup, BCFLI, BCFRI, and BCFTSI.

    ● To introduce numerous classes of semigroups for instance, right regular, left regular, intra-regular, and semi-simple, by the features of the bipolar complex fuzzy ideals. In addition, these classes are interpreted in relation to BCFLIs, BCFRIs, and BCFTSIs.

    ● To show that, for a semigroup Ş and for each BCFLI М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and BCFRI М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2) over Ş, М1М2=М1М2 if and only if Ş is a regular semigroup.

    ● To interpret regular, intra-regular semigroups and show that М1М2М1М2 for each BCFLI М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and for each BCFRI М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2) over Ş if and only if a semigroup Ş is regular and intra-regular.

    The introduced conceptions are an advancement of the fuzzy set (FS), bipolar fuzzy set (BFS), and complex FS (CFS) in the environment of semigroups and from the introduced notions we can easily achieve these conceptions in the environment of FS, BFS, and CFS.

    The quick assessment of the composition of this analysis: In Section 2, we studied, the fundamental concepts such as FS, fuzzy sub-semigroup, BF set, BF set sub-semigroup, BCF set and its related concepts In Section 3, we introduced the BCF sub-semigroup, BCFLI, BCFRI, BCFTSI, bipolar complex characteristic function, positive (ω,η)-cut, negative (ϱ,σ)-cut, positive and ((ω,η),(ϱ,σ))-cut. Further, we also discuss their related theorems. In Section 4, we provided the characterizations of various categories of semigroups such as semi-simple, intra-regular, left, right ideals, and regular by the properties of BCF ideals (BCFIs). Additionally, we describe these in terms of BCFLIs, and BCFRIs. The conclusion is presented in Section 5.

    The fundamental concepts such as FS, fuzzy sub-semigroup, BF set, BF set sub-semigroup, BCF set, and its related concepts are reviewed in this section. we will take Ş as a semigroup in this analysis.

    Definition 1. [1] A mathematical shape

    М={(ҳ,λМ(ҳ))|ҳX}

    is known as FS on X. Seemingly, λМ(ҳ):X[0,1] called the supportive grade.

    Definition 2. [3] Suppose an FS М=λМ(ҳ) over Ş, then М is said to be a fuzzy sub-semigroup of Ş if ҳ,ɏŞ,

    λМ(ҳɏ)  min{λМ(ҳ),λМ(ɏ)}.

    Definition 3. [3] Suppose an FS М=λМ(ҳ) over Ş, then М is said to be fuzzy left (right) ideal of Ş if ҳ,ɏŞ,

    λМ(ҳɏ)λМ(ɏ)(λМ(ҳɏ)λМ(ҳ)).

    М is said to be a two-sided ideal if it is both fuzzy left ideal and fuzzy right ideal.

    Definition 4. [17] A mathematical shape

    М={(ҳ,λPМ(ҳ),λNМ(ҳ))|ҳX}

    is known as the BF set. Seemingly, λPМ(ҳ):X[0,1] and λNМ(ҳ):X[0,1], called the positive supportive grade and the negative supportive grade.

    Definition 5. [18] Suppose a BF set М=(λPМ,λNМ) over Ş, then М is said to be BF sub-semigroup of Ş if ҳ,ɏŞ,

    (1) λPМ(ҳɏ)  min{λPМ(ҳ),λPМ(ɏ)},

    (2) λNМ(ҳɏ)  max{λPМ(ҳ),λPМ(ɏ)}.

    Definition 6. [18] Suppose a BF set М=(λPМ,λNМ) over Ş, then М is said to be BF left (right) ideal of Ş if ҳ,ɏŞ,

    (1) λPМ(ҳɏ)λPМ(ɏ)(λPМ(ҳɏ)λPМ(ҳ)),

    (2) λNМ(ҳɏ)λNМ(ɏ)(λNМ(ҳɏ)λNМ(ҳ)).

    Definition 7. [41] A mathematical shape

    М={(ҳ,λPМ(ҳ),λNМ(ҳ))|ҳX}.

    BCF set on X is known as BCF set. Seemingly, λPМ(ҳ)=λRPМ(ҳ)+ιλIPМ(ҳ) and λNМ(ҳ)=λRNМ(ҳ)+ιλINМ(ҳ), called the positive supportive grade and negative supportive grade with λRPМ(ҳ),λIPМ(ҳ)[0,1] and λRNМ(ҳ),λINМ(ҳ)[1,0]. In this analysis, the structure of the BCF set will be considered as М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ).

    Definition 8. [41] For two BCF set М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2), we have

    (1) МC1=(1λRPМ1+ι(1λRPМ1),1λRNМ1+ι(1λINМ1)),

    (2) М1М2=(  max(λRPМ1,λRPМ2)+ι  max(λIPМ1,λIPМ2),  min(λRNМ1,λRNМ2)+ι  min(λINМ1,λINМ2)),

    (3) М1М2=(  min(λRPМ1,λRPМ2)+ι  min(λIPМ1,λIPМ2),  max(λRNМ1,λRNМ2)+ι  max(λINМ1,λINМ2)).

    In this section, we are going to introduce the BCF sub-semigroup, BCFLI, BCFRI, BCFTSI, bipolar complex characteristic function, positive (ω,η)-cut, negative (ϱ,σ)-cut, positive and ((ω,η),(ϱ,σ))-cut. Further, we also discuss their related theorems. Throughout this analysis, for two BCF set М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2), М1М2 if λPМ1λPМ2 and λNМ1λNМ2 that is, λRPМ1λRPМ2, λIPМ1λIPМ2 and λRNМ1λRNМ2, λINМ1λINМ2.

    Definition 8. Suppose a BCF set М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) over Ş, then М is known as BCF sub-semigroup of Ş if ҳ,ɏŞ,

    (1) λPМ(ҳɏ)  min{λPМ(ҳ),λPМ(ɏ)} λRPМ(ҳɏ)  min{λRPМ(ҳ),λRPМ(ɏ)} and λIPМ(ҳɏ)  min{λIPМ(ҳ),λIPМ(ɏ)},

    (2) λNМ(ҳɏ)  max{λPМ(ҳ),λPМ(ɏ)} λRNМ(ҳɏ)  max{λRNМ(ҳ),λRNМ(ɏ)} and λINМ(ҳɏ)  max{λINМ(ҳ),λINМ(ɏ)}.

    Example 1. Suppose a semigroup Ş={e,ҳ1,ҳ2,ҳ3,ҳ4} interpreted as Table 1:

    Table 1.  The Cayley table of Ş of Example 1.
    . e ҳ1 ҳ2 ҳ3 ҳ4
    e e e e e e
    ҳ1 e e e e e
    ҳ2 e e ҳ2 ҳ3 ҳ4
    ҳ3 e e ҳ2 ҳ3 ҳ4
    ҳ4 e e ҳ2 ҳ3 ҳ4

     | Show Table
    DownLoad: CSV

    Next, define a BCF subset М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) over Ş as

    М={(e,(0.9+ι0.87,0.23ι0.25)),(ҳ1,(0.7+ι0.75,0.33ι0.36)),(ҳ2,(0.5+ι0.62,0.6ι0.3)),(ҳ3,(0.5+ι0.62,0.6ι0.3)),(ҳ4,(0.5+ι0.62,0.6ι0.3)),}

    then, for e,ҳŞ we have

    (1) We have

    λRPМ(eҳ1)=λRPМ(e)=0.9 and   min{λRPМ(e),λRPМ(ҳ1)}=  min{0.9,0.7}=0.7 λRPМ(eҳ1)  min{λRPМ(e),λRPМ(ҳ1)},

    λIPМ(eҳ1)=λIPМ(e)=0.87 and   min{λIPМ(e),λIPМ(ҳ1)}=  min{0.87,0.75}=0.75 λIPМ(eҳ1)  min {λIPМ(e),λIPМ(ҳ1)} λPМ(eҳ1)  min{λPМ(e),λPМ(ҳ1)}.

    (2) Next,

    λRNМ(eҳ1)=λRNМ(e)=0.23 and   max{λRNМ(e),λRNМ(ҳ1)}=  max{0.23,0.33}=0.23

    λRNМ(eҳ1)  max{λRNМ(e),λRNМ(ҳ1)},

    λINМ(eҳ1)=λINМ(e)=0.25 and   max{λINМ(e),λINМ(ҳ1)}=  max{0.25,0.36}=0.25

    λINМ(eҳ1)  max{λINМ(e),λInМ(ҳ1)}λNМ(eҳ1)  max{λNМ(e),λNМ(ҳ1)}.

    The remaining elements of Ş can verify similarly. Thus М is a BCF sub-semigroup.

    Definition 9. Suppose two BCF sets М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2) over Ş, then the product of М1М2 is described as

    М1М2=(λPМ1λPМ2,λNМ1λNМ2)
    =(λRPМ1λRPМ2+ιλIPМ1λIPМ2,λRNМ1λRNМ2+ιλINМ1λINМ2)

    where,

    (λRPМ1λRPМ2)(ҳ)={supҳ=ɏȥ{  min(λRPМ1(ɏ),λRPМ2(ȥ))}if  ҳ=ɏʑ  for  some  ɏ,ʑŞ0otherwise,
    (λIPМ1λIPМ2)(ҳ)={supҳ=ɏȥ{  min(λIPМ1(ɏ),λIPМ2(ȥ))}if  ҳ=ɏʑ  for  some  ɏ,ʑŞ0otherwise,
    (λRNМ1λRNМ2)(ҳ)={infҳ=ɏȥ{  max(λRNМ1(ɏ),λRNМ2(ȥ))}if  ҳ=ɏʑ  for  some  ɏ,ʑŞ0otherwise,
    (λINМ1λINМ2)(ҳ)={infҳ=ɏȥ{  max(λINМ1(ɏ),λINМ2(ȥ))}if  ҳ=ɏʑ  for  some  ɏ,ʑŞ0otherwise.

    Remark 1. Clearly, the operation " " is associative.

    Theorem 1. Suppose that М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCF set over Ş, then М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is said to be BCF sub-semigroup of Ş if and only if МММ.

    Proof. Suppose that М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCF sub-semigroup over Ş and ҳŞ, if λRPМλRPМ=0,λIPМλIPМ=0,λRNМλRNМ=0, and λINМλINМ=0, then clearly, МММ. Otherwise there are elements ɏ,ʑŞ s.t ҳ=ɏʑ, then

    (λRPМλRPМ)(ҳ)=supҳ=ɏȥ{  min(λRPМ(ɏ),λRPМ(ȥ))}
    supҳ=ɏȥ{λRPМ(ɏʑ)}=λRPМ(ҳ)

    and

    (λIPМλIPМ)(ҳ)=supҳ=ɏȥ{  min(λIPМ(ɏ),λIPМ(ȥ))}
    supҳ=ɏȥ{λIPМ(ɏʑ)}=λIPМ(ҳ).

    Next,

    (λRNМλRNМ)(ҳ)=infҳ=ɏȥ{  max(λRNМ(ɏ),λRNМ(ȥ))}
    infҳ=ɏȥ{λRNМ(ɏʑ)}=λRNМ(ҳ)

    and

    (λINМλINМ)(ҳ)=infҳ=ɏȥ{  max(λINМ(ɏ),λINМ(ȥ))}
    infҳ=ɏȥ{λINМ(ɏʑ)}=λINМ(ҳ).

    Thus, (λRPМλRPМ)(ҳ)λRPМ(ҳ), (λIPМλIPМ)(ҳ)λIPМ(ҳ)(λPМλPМ)(ҳ)λPМ(ҳ) and (λRNМλRNМ)(ҳ)λRNМ(ҳ), (λINМλINМ)(ҳ)λINМ(ҳ)(λNМλNМ)(ҳ)λNМ(ҳ). Consequently, МММ.

    Conversely, let М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCF set over Ş such that МММ and ҳ,ɏ,ʑŞ such that ҳ=ɏʑ. Then

    λPМ(ɏʑ)=λPМ(ҳ)=λRPМ(ҳ)+ιλIPМ(ҳ).

    Now take

    λRPМ(ҳ)(λRPМλRPМ)(ҳ)=supҳ=ɏȥ{  min(λRPМ(ɏ),λRPМ(ȥ))}
      min(λRPМ(ɏ),λRPМ(ȥ))

    and

    λIPМ(ҳ)(λIPМλIPМ)(ҳ)=supҳ=ɏȥ{  min(λIPМ(ɏ),λPМ(ȥ))}
      min(λIPМ(ɏ),λIPМ(ȥ))
    λPМ(ɏʑ)  min(λPМ(ɏ),λPМ(ȥ)),

    similarly,

    λNМ(ɏʑ)=λNМ(ҳ)=λRNМ(ҳ)+ιλINМ(ҳ).

    Now take

    λRNМ(ҳ)(λRNМλRMМ)(ҳ)=infҳ=ɏȥ{  max(λRNМ(ɏ),λRNМ(ȥ))}
      max(λRNМ(ɏ),λRNМ(ȥ)),

    and

    λINМ(ҳ)(λINМλRMМ)(ҳ)=infҳ=ɏȥ{  max(λINМ(ɏ),λINМ(ȥ))}
      max(λINМ(ɏ),λINМ(ȥ))
    λNМ(ɏʑ)  max(λNМ(ɏ),λNМ(ȥ)).

    This implies that М is a BCF sub-semigroup over Ş.

    Following we are going to describe the BCF left (right) ideal.

    Definition 10. Suppose a BCF set М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) over Ş, then

    (1) М is known as BCF left ideal (BCFLI) of Ş if ҳ,ɏŞ

    1) λPМ(ҳɏ)λPМ(ɏ) λRPМ(ҳɏ)λRPМ(ɏ) and λIPМ(ҳɏ)λIPМ(ɏ);

    2) λNМ(ҳɏ)λNМ(ɏ) λRNМ(ҳɏ)λRNМ(ɏ) and λINМ(ҳɏ)λINМ(ɏ).

    (2) М is known as the BCF right ideal (BCFRI) of Ş if ҳ,ɏŞ

    1) λPМ(ҳɏ)λPМ(ҳ) λRPМ(ҳɏ)λRPМ(ҳ) and λIPМ(ҳɏ)λIPМ(ҳ);

    2) λNМ(ҳɏ)λNМ(ҳ) λRNМ(ҳɏ)λRNМ(ҳ) and λINМ(ҳɏ)λINМ(ҳ).

    (3) М is known as BCF two-sided ideal (BCFTSI) (BCF ideal) if it is both BCFLI and BCFRI.

    Remark 2. It is evident that each BCFLI, BCFRI, and BCFTSI over Ş is a BCF sub-semigroup. But the converse is not valid.

    Example 2.

    (1) The BCF sub-semigroup М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) over Ş in Example 1 is not a BCFLI, because

    λRNМ(eҳ1)=λRNМ(e)=0.23 and λRNМ(ҳ1)=0.33,

    thus,

    λRNМ(eҳ1)λRNМ(ҳ1)λNМ(eҳ1)λNМ(ҳ1),

    and not BCFRI because

    λRNМ(ҳ1e)=λRNМ(e)=0.23 and λRNМ(ҳ1)=0.33,

    thus,

    λRNМ(ҳ1e)λRNМ(ҳ1)λNМ(ҳ1e)λNМ(ҳ1).

    Hence, М is also not a BCFTSI.

    (2) Consider the semigroup Ş of Example 1 and a BCF subset М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) over Ş as

    М={(e,(0.9+ι0.87,0.6ι0.3)),(ҳ1,(0.7+ι0.75,0.33ι0.36)),(ҳ2,(0.5+ι0.62,0.23ι0.25)),(ҳ3,(0.5+ι0.62,0.23ι0.25)),(ҳ4,(0.5+ι0.62,0.23ι0.25))}

    then, М is BCFLI, BCFRI, and BCFTSI over Ş.

    The below-given theorem explains that the BCF set М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) of Ş is a BCFLI (BCFRI) over Ş if and only if ŞММ (МŞМ).

    Theorem 2. Suppose that М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCF set over Ş, then

    (1) М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCFLI over Ş if and only if ŞММ;

    (2) М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCFRI over Ş if and only if МŞМ;

    (3) М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCFTSI over Ş if and only if ŞММ and МŞМ,

    holds.

    Proof. 1. Suppose that М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCFLI over Ş and ҳŞ, if λRPŞλRPМ=0,λIPŞλIPМ=0,λRNŞλRNМ=0, and λINŞλINМ=0, then clearly, ŞММ. Otherwise there are elements ɏ,ʑŞ s.t ҳ=ɏʑ, then

    (λRPŞλRPМ)(ҳ)=supҳ=ɏȥ{  min(λRPŞ(ɏ),λRPМ(ȥ))}=supҳ=ɏȥ{  min(1,λRPМ(ȥ))}
    =supҳ=ɏȥ{λRPМ(ȥ)}supҳ=ɏȥ{λRPМ(ɏȥ)}=λRPМ(ҳ),

    and

    (λIPŞλIPМ)(ҳ)=supҳ=ɏȥ{  min(λIPŞ(ɏ),λIPМ(ȥ))}=supҳ=ɏȥ{  min(1,λIPМ(ȥ))}
    =supҳ=ɏȥ{λIPМ(ȥ)}supҳ=ɏȥ{λIPМ(ɏȥ)}=λIPМ(ҳ).

    Next,

    (λRNŞλRNМ)(ҳ)=infҳ=ɏȥ{  max(λRNŞ(ɏ),λRNМ(ȥ))}=infҳ=ɏȥ{  max(1,λRNМ(ȥ))}
    =infҳ=ɏȥ{λRNМ(ȥ)}infҳ=ɏȥ{λRNМ(ɏȥ)}=λRNМ(ҳ),

    and

    (λINŞλINМ)(ҳ)=infҳ=ɏȥ{  max(λINŞ(ɏ),λINМ(ȥ))}=infҳ=ɏȥ{  max(1,λINМ(ȥ))}
    =infҳ=ɏȥ{λINМ(ȥ)}infҳ=ɏȥ{λINМ(ɏȥ)}=λINМ(ҳ).

    Thus,

    (λRPŞλRPМ)(ҳ)λRPМ(ҳ), (λIPŞλIPМ)(ҳ) λIPМ(ҳ)

    (λPŞλPМ)(ҳ)λPМ(ҳ)  and (λRNŞλRNМ)(ҳ) λRNМ(ҳ),(λINŞλINМ) (ҳ)λINМ(ҳ) (λNŞλNМ)(ҳ)λNМ(ҳ).  Consequently,ŞММ.

    Conversely, let М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCF set over Ş such that ŞММ and ҳ,ɏ,ʑŞ such that ҳ=ɏʑ. Then

    λPМ(ɏʑ)=λPМ(ҳ)=λRPМ(ҳ)+ιλIPМ(ҳ).

    Now take

    λRPМ(ҳ)(λRPŞλRPМ)(ҳ)=supҳ=ɏȥ{  min(λRPŞ(ɏ),λRPМ(ȥ))}
    =supҳ=ɏȥ{  min(1,λRPМ(ȥ))}  min(1,λRPМ(ȥ))=λRPМ(ȥ)
    λRPМ(ɏʑ)λRPМ(ȥ)

    and

    λIPМ(ҳ)(λIPŞλIPМ)(ҳ)=supҳ=ɏȥ{  min(λIPŞ(ɏ),λIPМ(ȥ))}
    =supҳ=ɏȥ{  min(1,λIPМ(ȥ))}  min(1,λIPМ(ȥ))=λIPМ(ȥ)
    λIPМ(ɏʑ)λiPМ(ȥ),

    similarly,

    λNМ(ɏʑ)=λNМ(ҳ)=λRNМ(ҳ)+ιλINМ(ҳ).

    Now take

    λRNМ(ҳ)(λRNŞλRNМ)(ҳ)=infҳ=ɏȥ{  max(λRNŞ(ɏ),λRNМ(ȥ))}
    =infҳ=ɏȥ{  max(1,λRNМ(ȥ))}  max(1,λRNМ(ȥ))=λRNМ(ȥ)
    λRNМ(ɏʑ)λRNМ(ȥ)

    and

    λINМ(ҳ)(λINŞλINМ)(ҳ)=infҳ=ɏȥ{  max(λINŞ(ɏ),λINМ(ȥ))}
    =infҳ=ɏȥ{  max(1,λINМ(ȥ))}  max(1,λINМ(ȥ))=λINМ(ȥ)
    λINМ(ɏʑ)λINМ(ȥ).

    This implies that М is a BCFLI over Ş.

    The proof of 2 and 3 is likewise the proof of 1, so we are omitting the proof here.

    Definition 11. Suppose a BCF set М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) over Ş, then

    (1) For each ω,η[0,1] the set P(λPМ,(ω,η))={ҳŞ:λRPМω and λIPМη} is known as positive (ω,η)-cut of М.

    (2) For each ϱ,σ[1,0] the set N(λNМ,(ϱ,σ))={ҳŞ:λRNМϱ and λINМσ} is known as negative (ϱ,σ)-cut of М.

    (3) The set PN(М,((ω,η),(ϱ,σ)))=P(λPМ,(ω,η))N(λNМ,(ϱ,σ)) is known as the ((ω,η),(ϱ,σ))-cut of М.

    Theorem 3. Suppose a BCF set М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) over Ş, then

    (1) For each ω,η[0,1], ϱ,σ[1,0], the non-empty set PN(М,((ω,η),(ϱ,σ))) is a sub-semigroup of Ş if and only if М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCF sub-semigroup over Ş;

    (2) For each ω,η[0,1], ϱ,σ[1,0], the non-empty set PN(М,((ω,η),(ϱ,σ))) is a left ideal of Ş if and only if М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCFLI over Ş;

    (3) For each ω,η[0,1], ϱ,σ[1,0], the non-empty set PN(М,((ω,η),(ϱ,σ))) is a right ideal of Ş if and only if М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCFRI over Ş;

    (4) For each ω,η[0,1], ϱ,σ[1,0], the non-empty set PN(М,((ω,η),(ϱ,σ))) is a two-sided ideal of Ş if and only if М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCFTSI over Ş,

    holds.

    Proof. 1. Suppose that PN(М,((ω,η),(ϱ,σ))) is a sub-semigroup over Ş, ҳ,ɏŞ, and ω=  min(λRPМ(ҳ),λRPМ(ɏ)) and η=  min(λIPМ(ҳ),λIPМ(ɏ)). Evidently, λRPМ(ҳ)  min(λRPМ(ҳ),λRPМ(ɏ))=ω, λRPМ(ɏ)  min(λRPМ(ҳ),λRPМ(ɏ))=ω, λIPМ(ҳ)  min(λIPМ(ҳ),λIPМ(ɏ))=η and λIPМ(ɏ)  min(λIPМ(ҳ),λIPМ(ɏ))=η. Similarly, suppose ϱ=  max(λRNМ(ҳ),λRNМ(ɏ)) and σ=  max(λINМ(ҳ),λINМ(ɏ)). Evidently, λRNМ(ҳ)  max(λRNМ(ҳ),λRNМ(ɏ))=ϱ, λRNМ(ɏ)  max(λRNМ(ҳ),λRNМ(ɏ))=ϱ, λINМ(ҳ)  max(λINМ(ҳ),λINМ(ɏ))=σ and λINМ(ɏ)  max(λINМ(ҳ),λINМ(ɏ))=σ which implies that ҳ,ɏPN(М,((ω,η),(ϱ,σ))). As PN(М,((ω,η),(ϱ,σ))) is a sub-semigroup over Ş, so ҳɏPN(М,((ω,η),(ϱ,σ))). Thus, λRPМ(ҳɏ)ω=  min(λRPМ(ҳ),λRPМ(ɏ)), λIPМ(ҳɏ)η=  min(λIPМ(ҳ),λIPМ(ɏ)), λRNМ(ҳɏ)ϱ=  max(λRNМ(ҳ),λRNМ(ɏ)), λINМ(ҳɏ)σ=  max(λINМ(ҳ),λINМ(ɏ)). Consequently, М=(λPМ,λNМ) is a BCF sub-semigroup over Ş.

    Conversely, let М=(λPМ,λNМ) is a BCF sub-semigroup over Ş and ҳ,ɏŞ such that ҳ,ɏPN(М,((ω,η),(ϱ,σ)))ω,η[0,1], ϱ,σ[1,0]. Since λRPМ(ҳ)ω, λRPМ(ɏ)ω λIPМ(ҳ)η, λIPМ(ɏ)η, λRNМ(ҳ)ϱ, λRNМ(ɏ)ϱ, λINМ(ҳ)σ, and λINМ(ɏ)σ. Hence, λRPМ(ҳɏ)  min(λRPМ(ҳ),λRPМ(ɏ))ω, λIPМ(ҳɏ)  min(λIPМ(ҳ),λIPМ(ɏ))η, λRNМ(ҳɏ)  max(λRNМ(ҳ),λRNМ(ɏ))ϱ, and λINМ(ҳɏ)  max(λINМ(ҳ),λINМ(ɏ))σ. Thus, ҳɏPN(М,((ω,η),(ϱ,σ))) and PN(М,((ω,η),(ϱ,σ))) is a sub-semigroup of Ş.

    The rest are the same as 1.

    Definition 12. The bipolar complex characteristic function of a subset Q of Ş, is indicated by МQ=(λPМQ,λNМQ) and demonstrated as

    λPМQ(ҳ)={1+ι1if  ҳQ0+ι0,otherwise,
    λNМQ(ҳ)={1ι1if  ҳQ0+ι0,otherwise.

    Remark 3. We observe that Ş can be taken as a BCF set of itself and write λPМQ(ҳ)=λPŞ(ҳ) and λNМQ(ҳ)=λNŞ(ҳ).

    Theorem 4. Suppose that МQ=(λPМQ,λNМQ) is a bipolar complex characteristic function over Ş, then

    (1) МQ=(λPМQ,λNМQ) is a BCF sub-semigroup over Ş if and only if Q is a sub-semigroup of Ş;

    (2) МQ=(λPМQ,λNМQ) is a BCFLI over Ş if and only if Q is a left idea of Ş;

    (3) МQ=(λPМQ,λNМQ) is a BCFRI over Ş if and only if Q is a right ideal of Ş;

    (4) МQ=(λPМQ,λNМQ) is a BCFTSI over Ş if and only if Q is a two-sided ideal of Ş,

    holds.

    Proof. Suppose that Q is a sub-semigroup of Ş and let ҳ,ɏQ, then

    λPМQ(ҳ)=1+ι1=λPМQ(ɏ) and λNМQ(ҳ)=1ι1=λNМQ(ɏ)

    as ҳɏQ, thus,

    λPМQ(ҳɏ)=1+ι1=  min(1+ι1,1+ι1)=  min(λPМQ(ҳ),λPМQ(ɏ))

    and

    λNМQ(ҳɏ)=1ι1=  max(1ι1,1ι1)=  max(λNМQ(ҳ),λNМQ(ɏ)).

    Next if ҳQ or ɏQ then

    λPМQ(ҳ)=0+ι0 or λPМQ(ɏ)=0+ι0 and λNМQ(ҳ)=0+ι0 or λNМQ(ɏ)=0+ι0
    λPМQ(ҳɏ)0+ι0=  min(λPМQ(ҳ),λPМQ(ɏ))

    and

    λNМQ(ҳɏ)0+ι0=  max(λNМQ(ҳ),λNМQ(ɏ)).

    Thus, МQ=(λPМQ,λNМQ) is a BCF sub-semigroup over Ş.

    Conversely, let МQ=(λPМQ,λNМQ) is a BCF sub-semigroup over Ş and ҳŞ such that ҳQ. Thus we have

    λPМQ(ҳ)=1+ι1 and λNМQ(ҳ)=1ι1

    ҳPN(М,((1,1),(1,1))). Let ɏŞ such that ɏPN(М,((1,1),(1,1))). This shows that λRPМQ(ҳ)1, λIPМQ(ҳ)1 and λRNМQ(ҳ)1, λINМQ(ҳ)1, and so ɏQ. Hence Q=PN(М,((1,1),(1,1))). By Theorem 3 we obtained that Q is a sub-semigroup of Ş.

    Lemma 1. For two BCF set МQ=(λPМQ,λNМQ) and МP=(λPМP,λNМP) over Ş, then

    (1) МQМP=МQP;

    (2) МQМP=МQP,

    holds

    Proof. Omitted.

    Theorem 5. Suppose that М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2) are two BCF sets over Ş, then

    (1) Assume that М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2) are two BCF sub-semigroup over Ş, then М1М2 is a BCF sub-semigroup over Ş;

    (2) Assume that М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2) are two BCFLIs over Ş, then М1М2 is a BCFLI over Ş;

    (3) Assume that М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2) are two BCFRIs over Ş, then М1М2 is a BCFRI over Ş;

    (4) Assume that М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2) are two BCFTSIs over Ş, then М1М2 is a BCFTSI over Ş,

    holds.

    Proof. 1. For any ҳ,ɏŞ, we have

    (λPМ1λPМ2)(ҳɏ)=  min(λRPМ1(ҳɏ),λRPМ2(ҳɏ))+ι  min(λIPМ1(ҳɏ),λIPМ2(ҳɏ)).

    Now take

      min(λRPМ1(ҳɏ),λRPМ2(ҳɏ))  min(  min(λRPМ1(ҳ),λRPМ1(ɏ)),  min(λRPМ2(ҳ),λRPМ2(ɏ)))
    =  min(  min(λRPМ1(ҳ),λRPМ2(ҳ)),  min(λRPМ1(ɏ),λRPМ2(ɏ)))
    =  min((λRPМ1λRPМ2)(ҳ),(λRPМ1λRPМ2)(ɏ)),

    and

      min(λIPМ1(ҳɏ),λIPМ2(ҳɏ))  min(  min(λIPМ1(ҳ),λIPМ1(ɏ)),  min(λIPМ2(ҳ),λIPМ2(ɏ)))
    =  min(  min(λIPМ1(ҳ),λIPМ2(ҳ)),  min(λIPМ1(ɏ),λIPМ2(ɏ)))
    =  min((λIPМ1λIPМ2)(ҳ),(λIPМ1λIPМ2)(ɏ))
    (λPМ1λPМ2)(ҳɏ)  min((λPМ1λPМ2)(ҳ),(λPМ1λPМ2)(ɏ)).

    Similarly,

    (λNМ1λNМ2)(ҳɏ)=  max(λRNМ1(ҳɏ),λRNМ2(ҳɏ))+ι  max(λINМ1(ҳɏ),λINМ2(ҳɏ)).

    Now take

      max(λRNМ1(ҳɏ),λRNМ2(ҳɏ))  max(  max(λRNМ1(ҳ),λRNМ1(ɏ)),  max(λRNМ2(ҳ),λRNМ2(ɏ)))
    =  max(  max(λRNМ1(ҳ),λRNМ2(ҳ)),  max(λRNМ1(ɏ),λRNМ2(ɏ)))
    =  max((λRNМ1λRNМ2)(ҳ),(λRNМ1λRNМ2)(ɏ)),

    and

      max(λINМ1(ҳɏ),λINМ2(ҳɏ))  max(  max(λINМ1(ҳ),λINМ1(ɏ)),  max(λINМ2(ҳ),λINМ2(ɏ)))
    =  max(  max(λINМ1(ҳ),λINМ2(ҳ)),  max(λINМ1(ɏ),λINМ2(ɏ)))
    =  max((λINМ1λINМ2)(ҳ),(λINМ1λINМ2)(ɏ))
    (λNМ1λNМ2)(ҳɏ)  max((λNМ1λNМ2)(ҳ),(λNМ1λNМ2)(ɏ)).

    Thus, М1М2 is a BCF sub-semigroup over Ş.

    The proofs of parts 2–4 are likewise part 1.

    Theorem 6. Suppose a BCFRI М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) over Ş, then М(ŞМ) is a BCFTSI over Ş.

    Proof. As Ş is a BCFLI, so

    Ş(М((ŞМ)))=(ŞМ)(ŞŞМ)
    (ŞМ)(ŞМ)=ŞММ(ŞМ).

    This shows that М(ŞМ) is a BCFLI over Ş. Now

    (М((ŞМ)))Ş=(МŞ)(ŞМŞ)
    М(ŞМ).

    This shows that М(ŞМ) is a BCFRI over Ş. Thus М(ŞМ) is a BCFTSI over Ş.

    Corollary 1. Suppose a BCFLI М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) over Ş, then М(МŞ) is a BCFTSI over Ş.

    Here, we provide the characterizations of various categories of semigroups such as semi-simple, intra-regular, left, right ideals, and regular by the properties of BCF ideals (BCFIs). We also describe these in terms of BCFLIs, and BCFRIs. For better understanding, remember that an element ҳŞ is known as regular if an element ɏŞ s.t ҳ=ҳɏҳ. If each element of Ş is regular then Ş is known as regular semigroup. An element eŞ is known as idempotent if e.e=e.

    Theorem 7. Each BCFI over a regular semigroup Ş is idempotent.

    Proof. Assume that М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCFI over regular semigroup Ş, then by employing Theorem (2 part (3)), we get

    ММŞММ.

    Now let ҳŞ. Then as Ş is a regular semigroup, an element ɏŞ s.t ҳ=ҳɏҳ, hence

    (λRPМλRPМ)(ҳ)=supҳ=ab{  min(λRPМ(a),λRPМ(b))}
      min(λRPМ(ҳɏ),λRPМ(ҳ))
      min(λRPМ(ҳ),λRPМ(ҳ))=λRPМ(ҳ)

    and

    (λIPМλIPМ)(ҳ)=supҳ=ab{  min(λIPМ(a),λIPМ(b))}
      min(λIPМ(ҳɏ),λIPМ(ҳ))
      min(λIPМ(ҳ),λIPМ(ҳ))=λIPМ(ҳ).

    This means that (λPМλPМ)(ҳ)λPМ(ҳ). Next,

    (λRNМλRNМ)(ҳ)=infҳ=ab{  max(λRNМ(a),λRNМ(b))}
      max(λRNМ(ҳɏ),λRNМ(ҳ))
      max(λRNМ(ҳ),λRNМ(ҳ))=λRNМ(ҳ)

    and

    (λINМλINМ)(ҳ)=infҳ=ab{  max(λINМ(a),λINМ(b))}
      max(λINМ(ҳɏ),λINМ(ҳ))
      max(λINМ(ҳ),λINМ(ҳ))=λINМ(ҳ).

    This means that (λNМλNМ)(ҳ)λNМ(ҳ). Hence, ММ=М, thus М=(λPМ,λNМ) is idempotent.

    Theorem 8. For a semigroup Ş,

    (1) Ş is a regular semigroup;

    (2) For each BCFLI М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and BCFRI М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2) over Ş, М1М2=М1М2,

    are equivalent.

    Proof. 12. Suppose that М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2) are BCFLI and BCFRI over Ş respectively, then by employing Theorem (2 part (3)), we have that

    М1М2М2М2 and М1М2М1ŞМ1,

    so,

    М1М2М1М2.

    Next, assume that ҳŞ and as Ş is regular semigroup, ɏŞ s.t ҳ=ҳɏҳ. Therefore we have

    (λRPМλRPМ)(ҳ)=supҳ=ab{  min(λRPМ(a),λRPМ(b))}
      min(λRPМ(ҳɏ),λRPМ(ҳ))
      min(λRPМ(ҳ),λRPМ(ҳ))=λRPМ(ҳ)

    and

    (λIPМλIPМ)(ҳ)=supҳ=ab{  min(λIPМ(a),λIPМ(b))}
      min(λIPМ(ҳɏ),λIPМ(ҳ))
      min(λIPМ(ҳ),λIPМ(ҳ))=λIPМ(ҳ).

    This means that (λPМλPМ)(ҳ)λPМ(ҳ). Next,

    (λRNМλRNМ)(ҳ)=infҳ=ab{  max(λRNМ(a),λRNМ(b))}
      max(λRNМ(ҳɏ),λRNМ(ҳ))
      max(λRNМ(ҳ),λRNМ(ҳ))=λRNМ(ҳ)

    and

    (λINМλINМ)(ҳ)=infҳ=ab{  max(λINМ(a),λINМ(b))}
      max(λINМ(ҳɏ),λINМ(ҳ))
      max(λINМ(ҳ),λINМ(ҳ))=λINМ(ҳ).

    Thus, М1М2М1 and consequently, М1М2=М1М2.

    21. Suppose that U1 is any left ideal of Ş and U2 is any right ideal of Ş, then by employing Theorem 4, we get that МU1=(λPМU1,λNМU1) be a BCFRI and МU2=(λPМU2,λNМU2) be a BCFLI over Ş. Now by employing Lemma 1, we get

    (λPМU1U2)(ҳ)=(λPМU1λPМU2)(ҳ)
    =(λPМU1λPМU2)(ҳ)=(λPМU1U2)(ҳ)=1+ι1.

    Thus, ҳU1U2 and hence U1U2U1U2. Consequently, U1U2=U1U2.

    Before going to the next result, we recall that Ş is known as left (right) zero if ҳ,ɏŞ, ҳɏ=ҳ(ҳɏ = ɏ ).

    Theorem 9. Suppose that Ş is a regular semigroup, then

    (1) The family Ψ(Ş) of all idempotents of Ş makes a left (right) zero sub-semigroup of Ş,

    (2) For each BCFLI (BCFRI) М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) over Ş, λPМ(ҳ)=λPМ(ɏ)λRPМ(ҳ)=λRPМ(ɏ) and λIPМ(ҳ)=λIPМ(ɏ), and λNМ(ҳ)=λNМ(ɏ)λRNМ(ҳ)=λRNМ(ɏ) and λINМ(ҳ)=λINМ(ɏ)ҳ,ɏŞ.

    are equivalent.

    Proof. 12. Suppose that М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCFLI on Ş and ҳ,ɏŞ such that ҳ,ɏΨ(Ş), then as 1 holds so we have that ҳɏ=ҳ and ɏҳ=ɏ and

    λRPМ(ҳ)=λRPМ(ҳɏ)λRPМ(ɏ)

    and,

    λRPМ(ɏ)=λRPМ(ɏҳ)λRPМ(ҳ).

    Next, we have

    λIPМ(ҳ)=λIPМ(ҳɏ)λIPМ(ɏ)

    and,

    λIPМ(ɏ)=λIPМ(ɏҳ)λIPМ(ҳ).

    This implies that λPМ(ҳ)=λPМ(ɏ). Likewise one can show that λNМ(ҳ)=λNМ(ɏ).

    21. As Ş is a regular semigroup and Ψ(Ş) is non-empty. Hence by utilizing Theorem (4 part (2)) we get that bipolar complex characteristic function МŞɏ=(λPМŞɏ,λNМŞɏ) of the left ideal Şɏ is a BCFLI on Ş. Consequently, (λNМŞɏ)(ҳ)=(λNМŞɏ)(ɏ)=1ι1 and so ҳŞɏ. Therefore, for some aŞ, ҳ=aɏ=a(ɏɏ)=(aɏ)ɏ=ҳɏ. Consequently, Ψ(Ş) is a left zero sub-semigroup on Ş. Likewise one can prove for right zero.

    Before going to the next result, we recall that, if for every ҳŞ ɏŞ such that ҳ=ҳ2ɏ then Ş is known as right (left) regular.

    Theorem 10. Suppose a semigroup Ş, then

    (1) Ş is left (right) regular;

    (2) For each BCFRI (BCFLI) М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) over Ş, λPМ(ҳ)=λPМ(ҳ2)λRPМ(ҳ)=λRPМ(ҳ2) and λIPМ(ҳ)=λIPМ(ҳ2), and λNМ(ҳ)=λNМ(ҳ2)λRNМ(ҳ)=λRNМ(ҳ2) and λINМ(ҳ)=λINМ(ҳ2)ҳŞ,

    are equivalent.

    Proof. 12. Assume that М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCFLI over Ş and ҳŞ, then as we know that Ş is left regular, so ɏŞ such that ҳ=ɏҳ2. Thus,

    λRPМ(ҳ)=λRPМ(ɏҳ2)λRPМ(ҳ2)

    and,

    λRPМ(ҳ2)λRPМ(ҳ).

    Next, we have

    λIPМ(ҳ)=λIPМ(ɏҳ2)λIPМ(ҳ2)

    and,

    λIPМ(ҳ2)λIPМ(ҳ).

    This implies that λPМ(ҳ)=λPМ(ҳ2). Likewise one can show that λNМ(ҳ)=λNМ(ҳ2).

    21. Suppose ҳŞ, then by Theorem (4 part (2)), we have that bipolar complex characteristic function Мҳ2Şҳ2=(λPМҳ2Şҳ2,λNМҳ2Şҳ2) of left ideal ҳ2Şҳ2 of Ş is a BCFLI over Ş. As ҳ2ҳ2Şҳ2, so λNМҳ2Şҳ2(ҳ)=λNМҳ2Şҳ2(ҳ2)=1ι1ҳҳ2Şҳ2 and so, Ş is left-regular. One can prove likewise for right regular.

    Before discussing the next definition we recall that a subset Q of Ş is known as semiprime if ҳŞ,ҳ2QҳQ.

    Definition 13. A BCF set М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) over Ş is known as BCF semiprime if ҳŞ λPМ(ҳ)λPМ(ҳ2)λRPМ(ҳ)λRPМ(ҳ2) and λIPМ(ҳ)λIPМ(ҳ2), and λNМ(ҳ)λNМ(ҳ2)λRNМ(ҳ)λRNМ(ҳ2) and λINМ(ҳ)λINМ(ҳ2).

    Theorem 11. Suppose Q is a subset of Ş, then

    (1) Q is semiprime;

    (2) The bipolar complex characteristic function МQ=(λPМQ,λNМQ) of Q is a BCF semiprime set,

    are equivalent.

    Proof. 12. Let ҳŞ. If ҳ2Q, ҳQ. Then, λPМQ(ҳ)=1+ι1=λPМQ(ҳ2) and λNМQ(ҳ)=1ι1=λNМQ(ҳ2). If ҳ2Q, then λPМQ(ҳ2)=0+ι0λPМQ(ҳ) and λPМQ(ҳ2)=0+ι0λNМQ(ҳ). Consequently, МQ=(λPМQ,λNМQ) is a BCFSP set.

    21. Suppose ҳŞ such that ҳ2Q. As МQ=(λPМQ,λNМQ) is a BCFSP set, so λNМQ(ҳ)λNМQ(ҳ2)=1ι1 and λNМQ(ҳ)=1ι1, i.e. ҳQ. Therefore, Q is a semiprime.

    Theorem 12. For a BCF sub-semigroup М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) over Ş the following

    (1) М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is BCFSP set on Ş.

    (2) For each ҳŞ, λPМ(ҳ)λPМ(ҳ2)λRPМ(ҳ)λRPМ(ҳ2) and λIPМ(ҳ)λIPМ(ҳ2), and λNМ(ҳ)λNМ(ҳ2)λRNМ(ҳ)λRNМ(ҳ2) and λINМ(ҳ)λINМ(ҳ2).

    Proof. 12. Suppose that М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCF semiprime set on Ş and ҳŞ, then we get that

    λPМ(ҳ)λPМ(ҳ2)λRPМ(ҳ)λRPМ(ҳ2) and λIPМ(ҳ)λIPМ(ҳ2),

    and

    λNМ(ҳ)λNМ(ҳ2)λRNМ(ҳ)λRNМ(ҳ2) and λINМ(ҳ)λINМ(ҳ2)

    thus,

    λPМ(ҳ2)  min(λPМ(ҳ),λPМ(ҳ))=λPМ(ҳ)
    λRPМ(ҳ2)  min(λRPМ(ҳ),λRPМ(ҳ))=λRPМ(ҳ) and 
    λIPМ(ҳ2)  min(λIPМ(ҳ),λIPМ(ҳ))=λIPМ(ҳ),

    and

    λNМ(ҳ2)  max(λNМ(ҳ),λNМ(ҳ))=λNМ(ҳ)
    λRNМ(ҳ2)  max(λRNМ(ҳ),λRNМ(ҳ))=λRNМ(ҳ) and 
    λINМ(ҳ2)  max(λINМ(ҳ),λINМ(ҳ))=λINМ(ҳ).

    Consequently, 2 holds. 21 is obvious.

    Before going to describe the next theorem, we recall the definition of intra-regular. If for every ҳŞ ɏ1,ɏ2Ş such that ҳ=ɏ1ҳ2ɏ2.

    Theorem 13. For Ş, the following

    (1) Ş is intra-regular;

    (2) Each BCFTSI over Ş is BCF semiprime,

    are equivalent.

    Proof. 12. Assume that М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCFTSI over Ş and ҳŞ. As Ş is intra-regular, so ɏ1,ɏ2Ş such that ҳ=ɏ1ҳ2ɏ2. Thus, we get

    λPМ(ҳ)=λPМ(ɏ1ҳ2ɏ2)λRPМ(ҳ)=λRPМ(ɏ1ҳ2ɏ2)λRPМ(ҳ2ɏ2)λRPМ(ҳ2).

    And λIPМ(ҳ)=λIPМ(ɏ1ҳ2ɏ2)λIPМ(ҳ2ɏ2)λIPМ(ҳ2), thus 

    λPМ(ҳ)λPМ(ҳ2)

    and

    λNМ(ҳ)=λNМ(ɏ1ҳ2ɏ2)λRNМ(ҳ)=λRNМ(ɏ1ҳ2ɏ2)λRNМ(ҳ2ɏ2)λRNМ(ҳ2).

    And λINМ(ҳ)=λINМ(ɏ1ҳ2ɏ2)λINМ(ҳ2ɏ2)λINМ(ҳ2), thus

    λNМ(ҳ)λNМ(ҳ2).

    It follows that λPМ(ҳ)=λPМ(ҳ2) and λNМ(ҳ)=λNМ(ҳ2).

    21. As 1 holds, so by Theorem (4 part (4)), we have that bipolar complex characteristic function МI[ҳ2]=(λPМI[ҳ2],λNМI[ҳ2]) of principal ideal I[ҳ2]=ҳ2Şҳ2ҳ2Şҳ2Şҳ2 of Ş is a BCFTSI over Ş. As ҳ2J[ҳ2], so λNМI[ҳ2](ҳ)=λNМI[ҳ2](ҳ2)=1ι1ҳҳ2Şҳ2ҳ2Şҳ2Şҳ2. Ş is intra-regular. This completes the proof.

    Theorem 14. For Ş, the following

    (1) Ş is intra-regular;

    (2) М1М2М1М2 for each BCFLI М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and for each BCFRI М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2) over Ş,

    are equivalent.

    Proof. 12. Suppose that М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) is a BCFLI and М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2) is a BCFRI over Ş and ҳŞ, then as Ş is intra-regular so ɏ1,ɏ2Ş such that ҳ=ɏ1ҳ2ɏ2. Thus,

    (λRPМ1λRPМ2)(ҳ)=supҳ=ʑ1ȥ2{  min(λRPМ1(ʑ1),λRPМ2(ʑ2))}
      min(λRPМ1(ɏ1ҳ),λRPМ2(ҳʑ2))
      min(λRPМ1(ҳ),λRPМ2(ҳ))=(λRPМ1λRPМ2)(ҳ)

    and

    (λIPМ1λIPМ2)(ҳ)=supҳ=ʑ1ȥ2{  min(λIPМ1(ʑ1),λIPМ2(ʑ2))}
      min(λIPМ1(ɏ1ҳ),λIPМ2(ҳʑ2))
      min(λIPМ1(ҳ),λIPМ2(ҳ))=(λIPМ1λIPМ2)(ҳ).

    Next,

    (λRNМ1λRNМ2)(ҳ)=infҳ=ʑ1ȥ2{  max(λRNМ1(ʑ1),λRNМ2(ʑ2))}
      max(λRNМ1(ɏ1ҳ),λRNМ2(ҳʑ2))
      max(λRNМ1(ҳ),λRNМ2(ҳ))=(λRNМ1λRNМ2)(ҳ)

    and

    (λINМ1λINМ2)(ҳ)=infҳ=ʑ1ȥ2{  max(λINМ1(ʑ1),λINМ2(ʑ2))}
      max(λINМ1(ɏ1ҳ),λINМ2(ҳʑ2))
      max(λINМ1(ҳ),λINМ2(ҳ))=(λINМ1λINМ2)(ҳ).

    Thus, we have М1М2М1М2.

    21. Suppose that U1 is any left ideal of Ş and U2 is any right ideal of Ş, and ҳŞ such that ҳU1U2, then ҳU1 and ҳU2, by Theorem 4 МU1=(λPМU1,λNМU1) is a BCFLI and МU1=(λPМU1,λNМU1) is a BCFRI over Ş. Now by Lemma 1, we obtain

    (λNМU1U2)(ҳ)=(λNМU1λNМU2)(ҳ)
    (λNМλNМ)(ҳ)=(λNМU1U2)(ҳ)=1ι1.

    Thus, we have ҳU1U2 and we get that U1U2U1U2. Consequently, Ş is intra-regular.

    Theorem 15. For Ş k, the following

    (1) Ş is regular and intra-regular;

    (2) М1М2(М1М2)(М2М1) for each BCFRI М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and BCFRI М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2) over Ş,

    are equivalent.

    Proof. 12. Suppose that М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) is a BCFRI and М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2) is a BCFLI over Ş, then by employing Theorems 8 and 14 we have that

    М1М2=М2М1М2М1 and М1М2М1М2.

    Thus,

    М1М2(М1М2)(М2М1).

    21. Suppose that М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) is a BCFRI and М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2) is a BCFLI over Ş, then

    М1М2М1М2(М1М2)(М2М1)М2М1.

    Therefore, by employing Theorem 14 we get that Ş is intra-regular. Next,

    (М1М2)ŞМ2М2 and (М1М2)М1ŞМ1,

    which implies that М1М2М1М2 and it always holds that М1М2М1М2М1М2=М1М2. Consequently, Ş is a regular semigroup.

    Now we recall the conception of semi-simple before discussing the next theorem. If every two-sided ideal of Ş is idempotent then Ş is known as semi-simple.

    Theorem 16. For Ş k, the following

    (1) Ş is semi-simple,

    (2) Each BCFTSI on Ş is idempotent,

    (3) М1М2М1М2 for each BCFTSIs М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2) over Ş,

    are equivalent.

    Proof. 12. Suppose that М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2) are two BCFTSIs over Ş, by assumption

    (М1М2)ŞМ2М2 and (М1М2)М1ŞМ1,

    which implies that М1М2М1М2. Next, let ҳŞ and as Ş is semi-simple so ɏ1,ɏ2,ʑ1,ʑ2Ş such that ҳ=(ɏ1ҳɏ2)(ʑ1ҳʑ2), thus

    (λRPМλRPМ)(ҳ)=supҳ=ab{  min(λRPМ(a),λRPМ(b))}
      min(λRPМ(ɏ1ҳɏ2),λRPМ(ʑ1ҳʑ2))
      min(λRPМ(ҳɏ2),λRPМ(ҳʑ2))
      min(λRPМ(ҳ),λRPМ(ҳ))=(λRPМλRPМ)(ҳ)

    and

    (λIPМλIPМ)(ҳ)=supҳ=ab{  min(λIPМ(a),λIPМ(b))}
      min(λIPМ(ɏ1ҳɏ2),λIPМ(ʑ1ҳʑ2))
      min(λIPМ(ҳɏ2),λIPМ(ҳʑ2))
      min(λIPМ(ҳ),λIPМ(ҳ))=(λIPМλIPМ)(ҳ).

    Thus, (λPМλPМ)(ҳ)(λPМλPМ)(ҳ). Next,

    (λRNМλRNМ)(ҳ)=infҳ=ab{  max(λRNМ(a),λRNМ(b))}
      max(λRNМ(ɏ1ҳɏ2),λRNМ(ʑ1ҳʑ2))
      max(λRNМ(ҳɏ2),λRNМ(ҳʑ2))
      max(λRNМ(ҳ),λRNМ(ҳ))=(λRNМλRNМ)(ҳ)

    and

    (λINМλINМ)(ҳ)=infҳ=ab{  max(λINМ(a),λINМ(b))}
      max(λINМ(ɏ1ҳɏ2),λINМ(ʑ1ҳʑ2))
      max(λINМ(ҳɏ2),λINМ(ҳʑ2))
      max(λINМ(ҳ),λINМ(ҳ))=(λINМλINМ)(ҳ).

    Thus, М1М2М1М2 and so М1М2=М1М2.

    32 is obvious.

    21. Suppose that ҳŞ, then by employing Theorem (4 part (4)), we have that bipolar complex characteristic function МI[ҳ]=(λPМI[ҳ],λNМI[ҳ]) of principal ideal I[ҳ] of Ş is a BCFTSI over Ş. By Lemma 1 we obtain

    (λNМI[ҳ]I[ҳ])(ҳ)=(λNМI[ҳ]λNМI[ҳ])(ҳ)
    (λNМI[ҳ]λNМI[ҳ])(ҳ)=(λNМI[ҳ]I[ҳ])(ҳ)=1ι1.

    Since, ҳI[ҳ]I[ҳ]I[ҳ], we have

    ҳ(ҳŞҳҳŞŞҳŞ)(ҳŞҳҳŞŞҳŞ)(ҳŞҳҳŞŞҳŞ)(ŞҳŞ)(ŞҳŞ).

    Therefore, Ş is semi-simple.

    The conception of a semigroup is an influential approach and has been utilized by numerous scholars and employed in various areas. Due to the great significance of semigroup, numerous authors modified this concept to introduce novel notions such as fuzzy semigroup, bipolar fuzzy semigroup, etc. The concept of fuzzy semigroup has various applications such as fuzzy languages, theory fuzzy coding, etc. In recent years, numerous authors generalized the conception of fuzzy algebraic structures and employed genuine-life dilemmas in various areas of science. To keep in mind all this, and the research gap, in this analysis we investigated the algebraic structure of semigroups by employing the BCF set. Firstly, we established BCF sub-semigroup, BCFLI, BCFRI, and BCFTSI over Ş and then initiated their related theorem with proof. Further, we diagnosed bipolar complex characteristic function, positive (ω,η)-cut, negative (ϱ,σ)-cut, positive and ((ω,η),(ϱ,σ))-cut and their associated results with proof. Secondly, we established various classes of semigroups such as intra-regular, left regular, right regular, and semi-simple, by the features of the BCF ideals and proved their related results. Also, these classes are interpreted in terms of BCFLIs, BCFRIs, and BCFTSIs. In this regard, we showed that, for a semigroup Ş, Ş is a regular semigroup if and only if for each BCFLI М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and BCFRI М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2) over Ş, М1М2=М1М2. Furthermore, we construed regular, intra-regular semigroup and showed that a semigroup Ş is regular and intra-regular iff М1М2М1М2 for each BCFLI М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and for each BCFRI М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2) over Ş. The introduced combination of BCFS and semigroup is the generalization of the fuzzy set (FS), bipolar fuzzy set (BFS), and complex FS (CFS) in the environment of semigroups and from the introduced notions we can easily achieve these conceptions.

    In the future, we want to expand this research to BCF bi-ideals, BCF quasi-ideals, and BCF interior ideals. Further, we would like to review numerous notions like BCF soft sets [46], interval-valued neutrosophic SSs [48], and bipolar complex intuitionistic FS [49] and would try to fuse them with the notion of the semigroup.

    The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work under grand code: 22UQU4310396DSR36.

    About the publication of this manuscript the authors declare that they have no conflict of interest.



    [1] M. Z. Hussain, M. Hussain, Visualization of data preserving monotonicity, Appl. Math. Comput., 190 (2007), 1353–1364. http://dx.doi.org/10.1016/j.amc.2007.02.022 doi: 10.1016/j.amc.2007.02.022
    [2] M. Sarfraz, M. Z. Hussain, M. Hussain, Shape-preserving curve interpolation, Int. J. Comput. Math., 89 (2012), 35–53. http://dx.doi.org/10.1080/00207160.2011.627434 doi: 10.1080/00207160.2011.627434
    [3] M. Hussain, A. Abd Majid, M. Z. Hussain, Convexity-preserving bernstein-bézier quartic scheme, Egypt. Inform. J., 15 (2014), 89–95. http://dx.doi.org/10.1016/j.eij.2014.04.001 doi: 10.1016/j.eij.2014.04.001
    [4] B. Kvasov, Monotone and convex interpolation by weighted quadratic splines, Adv. Computat. Math., 40 (2014), 91–116. http://dx.doi.org/10.1007/s10444-013-9300-9 doi: 10.1007/s10444-013-9300-9
    [5] S. Karim, K. Pang, Monotonicity preserving using gc 1 rational quartic spline, AIP Conf. Proc., 1482 (2012), 26–31. http://dx.doi.org/10.1063/1.4757432 doi: 10.1063/1.4757432
    [6] A. Edeo, G. Gofeb, T. Tefera, Shape preserving C2 rational cubic spline interpolation, ASRJETS, 12 (2015), 110–122.
    [7] S. Karim, Rational cubic spline interpolation for monotonic interpolating curve with C2 continuity, MATEC Web Conf., 131 (2017), 04016. http://dx.doi.org/10.1051/matecconf/201713104016 doi: 10.1051/matecconf/201713104016
    [8] A. Ahmad, M. Misro, Preserving monotonicity of ball curve and it's curvature profile, Proceedings of 6th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), 2021, 1–6. http://dx.doi.org/10.1109/ICRAIE52900.2021.9704025
    [9] A. Tahat, A. Piah, Z. Yahya, Rational cubic ball curves for monotone data, AIP Conf. Proc., 1750 (2016), 030021. http://dx.doi.org/10.1063/1.4954557 doi: 10.1063/1.4954557
    [10] A. Ahmad, M. Misro, Curvature comparison of bézier curve, ball curve and trigonometric curve in preserving the positivity of real data, AMCI, 11 (2022), 12–20.
    [11] F. Pitolli, Ternary shape-preserving subdivision schemes, Math. Comput. Simulat., 106 (2014), 185–194. http://dx.doi.org/10.1016/j.matcom.2013.04.003 doi: 10.1016/j.matcom.2013.04.003
    [12] P. Ashraf, M. Sabir, A. Ghaffar, K. Nisar, I. Khan, Shape-preservation of the four-point ternary interpolating non-stationary subdivision scheme, Front. Phys., 7 (2020), 241. http://dx.doi.org/10.3389/fphy.2019.00241 doi: 10.3389/fphy.2019.00241
    [13] A. Chand, N. Vijender, M. Navascués, Shape preservation of scientific data through rational fractal splines, Calcolo, 51 (2014), 329–362. http://dx.doi.org/10.1007/s10092-013-0088-2 doi: 10.1007/s10092-013-0088-2
    [14] P. Viswanathan, A. Chand, A fractal procedure for monotonicity preserving interpolation, Appl. Math. Comput., 247 (2014), 190–204. http://dx.doi.org/10.1016/j.amc.2014.06.090 doi: 10.1016/j.amc.2014.06.090
    [15] L. Peng, Y. Zhu, C1 convexity-preserving piecewise variable degree rational interpolation spline, J. Adv. Mech. Des. Syst., 14 (2020), JAMDSM0002. http://dx.doi.org/10.1299/jamdsm.2020jamdsm0002 doi: 10.1299/jamdsm.2020jamdsm0002
    [16] M. Sarfraz, Visualization of positive and convex data by a rational cubic spline interpolation, Inform. Sciences, 146 (2002), 239–254. http://dx.doi.org/10.1016/S0020-0255(02)00209-8 doi: 10.1016/S0020-0255(02)00209-8
    [17] M. Abbas, A. Abd Majid, J. Ali, Local convexity-preserving rational cubic spline for convex data, Sci. World J., 2014 (2014), 391568. http://dx.doi.org/10.1155/2014/391568 doi: 10.1155/2014/391568
    [18] Y. Zhu, C2 rational quartic/cubic spline interpolant with shape constraints, Results Math., 73 (2018), 127. http://dx.doi.org/10.1007/s00025-018-0883-9 doi: 10.1007/s00025-018-0883-9
    [19] M. Z. Hussain, M. Hussain, A. Waseem, Shape-preserving trigonometric functions, Comp. Appl. Math., 33 (2014), 411–431. http://dx.doi.org/10.1007/s40314-013-0071-1 doi: 10.1007/s40314-013-0071-1
    [20] V. Bogdanov, Y. Volkov, Near-optimal tension parameters in convexity preserving interpolation by generalized cubic splines, Numer. Algor., 86 (2021), 833–861. http://dx.doi.org/10.1007/s11075-020-00914-9 doi: 10.1007/s11075-020-00914-9
    [21] X. Han, Y. Ma, X. Huang, The cubic trigonometric bézier curve with two shape parameters, Appl. Math. Lett., 22 (2009), 226–231. http://dx.doi.org/10.1016/j.aml.2008.03.015 doi: 10.1016/j.aml.2008.03.015
    [22] S. Maqsood, M. Abbas, G. Hu, A. Ramli, K. Miura, A novel generalization of trigonometric bézier curve and surface with shape parameters and its applications, Math. Probl. Eng., 2020 (2020), 4036434. http://dx.doi.org/10.1155/2020/4036434 doi: 10.1155/2020/4036434
    [23] M. Misro, A. Ramli, J. Ali, Quintic trigonometric bézier curve with two shape parameters, Sains Malays., 46 (2017), 825–831. http://dx.doi.org/10.17576/jsm-2017-4605-17 doi: 10.17576/jsm-2017-4605-17
    [24] M. Misro, A. Ramli, J. Ali, Quintic trigonometric bézier curve and its maximum speed estimation on highway designs, AIP Conf. Proc., 1974 (2018), 020089. http://dx.doi.org/10.1063/1.5041620 doi: 10.1063/1.5041620
    [25] V. Bulut, Path planning for autonomous ground vehicles based on quintic trigonometric bézier curve: path planning based on quintic trigonometric bézier curve, J. Braz. Soc. Mech. Sci. Eng., 43 (2021), 104. http://dx.doi.org/10.1007/s40430-021-02826-8 doi: 10.1007/s40430-021-02826-8
    [26] J. Li, D. Zhao, An investigation on image compression using the trigonometric bézier curve with a shape parameter, Math. Probl. Eng., 2013 (2013), 731648. http://dx.doi.org/10.1155/2013/731648 doi: 10.1155/2013/731648
    [27] N. Ismail, M. Misro, Surface construction using continuous trigonometric bézier curve, AIP Conf. Proc., 2266 (2020), 040012. http://dx.doi.org/10.1063/5.0018101 doi: 10.1063/5.0018101
    [28] M. Z. Hussain, M. Hussain, Z. Yameen, A C2-continuous rational quintic interpolation scheme for curve data with shape control, J. Nati. Sci. Found. Sri, 46 (2018), 341–354. http://dx.doi.org/10.4038/jnsfsr.v46i3.8486 doi: 10.4038/jnsfsr.v46i3.8486
    [29] S. Graiff Zurita, K. Kajiwara, K. Miura, Fairing of planar curves to log-aesthetic curves, Japan J. Indust. Appl. Math., 40 (2023), 1203–1219. http://dx.doi.org/10.1007/s13160-023-00567-w doi: 10.1007/s13160-023-00567-w
    [30] S. Mahzir, M. Misro, Shape preserving interpolation of positive and range-restricted data using quintic trigonometric bézier curves, Alex. Eng. J., 80 (2023), 122–133. http://dx.doi.org/10.1016/j.aej.2023.08.009 doi: 10.1016/j.aej.2023.08.009
  • This article has been cited by:

    1. Ubaid ur Rehman, Tahir Mahmood, A study and performance evaluation of computer network under the environment of bipolar complex fuzzy partition Heronian mean operators, 2023, 180, 09659978, 103443, 10.1016/j.advengsoft.2023.103443
    2. Tahir Mahmood, Ubaid Ur Rehman, Gustavo Santos-García, The prioritization of solutions for reducing the influence of climate change on the environment by using the conception of bipolar complex fuzzy power Dombi aggregation operators, 2023, 11, 2296-665X, 10.3389/fenvs.2023.1040486
    3. Tahir Mahmood, Ubaid ur Rehman, Majed Albaity, Analysis of Γ-semigroups based on bipolar complex fuzzy sets, 2023, 42, 2238-3603, 10.1007/s40314-023-02376-w
    4. Ubaid ur Rehman, Kholood Alnefaie, Tahir Mahmood, Bipolar complex fuzzy near rings, 2024, 99, 0031-8949, 115254, 10.1088/1402-4896/ad7efe
    5. Ubaid ur Rehman, Tahir Mahmood, Prioritization of types of wireless sensor networks by applying decision-making technique based on bipolar complex fuzzy linguistic heronian mean operators, 2024, 46, 10641246, 967, 10.3233/JIFS-232167
    6. Turki Alsuraiheed, Ubaid ur Rehman, Meraj Ali Khan, Tahir Mahmood, Bipolar complex fuzzy submodules, 2024, 99, 0031-8949, 065225, 10.1088/1402-4896/ad421a
    7. Ahsan Mahboob, M. Al-Tahan, Ghulam Muhiuddin, Characterizations of ordered semigroups in terms of fuzzy (m, n)-substructures, 2024, 28, 1432-7643, 10827, 10.1007/s00500-024-09880-z
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1191) PDF downloads(79) Cited by(1)

Figures and Tables

Figures(9)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog