Research article Special Issues

Matrix measure-based exponential stability and synchronization of Markovian jumping QVNNs with time-varying delays and delayed impulses

  • Received: 05 November 2024 Revised: 20 November 2024 Accepted: 22 November 2024 Published: 02 December 2024
  • MSC : 00A69

  • This article explored the topics of global exponential stability and synchronization issues of a type of Markovian jumping quaternion-valued neural networks (QVNNs) that incorporate delayed impulses and time-varying delays. By utilizing the matrix measure strategy and delayed differential inequality techniques with an impulsive factor, several effective and practical criteria can be established to confirm that the impulsive QVNNs in question can achieve exponential synchronization with the given response system. Furthermore, the contained exponential convergence rate can be clearly presented. Notably, derived criteria are straightforward to verify and implement in real-world applications. In the end, to demonstrate the accuracy and effectiveness of achieved theoretical findings, one numerical example with an explanation was presented.

    Citation: Miao Zhang, Bole Li, Weiqiang Gong, Shuo Ma, Qiang Li. Matrix measure-based exponential stability and synchronization of Markovian jumping QVNNs with time-varying delays and delayed impulses[J]. AIMS Mathematics, 2024, 9(12): 33930-33955. doi: 10.3934/math.20241618

    Related Papers:

  • This article explored the topics of global exponential stability and synchronization issues of a type of Markovian jumping quaternion-valued neural networks (QVNNs) that incorporate delayed impulses and time-varying delays. By utilizing the matrix measure strategy and delayed differential inequality techniques with an impulsive factor, several effective and practical criteria can be established to confirm that the impulsive QVNNs in question can achieve exponential synchronization with the given response system. Furthermore, the contained exponential convergence rate can be clearly presented. Notably, derived criteria are straightforward to verify and implement in real-world applications. In the end, to demonstrate the accuracy and effectiveness of achieved theoretical findings, one numerical example with an explanation was presented.



    加载中


    [1] T. Liu, S. Boumaiza, F. M. Ghannouchi, Dynamic behavioral modeling of 3G power amplifiers using real-valued time-delay neural networks, IEEE T. Microw. Theory, 52 (2004), 1025–1033. https://doi.org/10.1109/TMTT.2004.823583 doi: 10.1109/TMTT.2004.823583
    [2] H. Dong, F. Shen, J. Zhao, X. Mu, Understanding neural network through neuron level visualization, Neural Networks, 168 (2023), 484–495. https://doi.org/10.1016/j.neunet.2023.09.030 doi: 10.1016/j.neunet.2023.09.030
    [3] H. Zhang, Q. Yang, C. Zhang, Y. Li, Y. Chen, Magnetic properties simulation of electrical steel sheet based on recurrent neural network, IEEE T. Magn., 60 (2024), 7300304. https://doi.org/10.1109/TMAG.2023.3316753 doi: 10.1109/TMAG.2023.3316753
    [4] T. Zhang, Z. Li, Switching clusters' synchronization for discrete space-time complex dynamical networks via boundary feedback controls, Pattern Recogn., 143 (2023), 109763. https://doi.org/10.1016/j.patcog.2023.109763 doi: 10.1016/j.patcog.2023.109763
    [5] C. Zhang, C. Zhang, X. Zhang, F. Wang, Y. Liang, Dynamic event-triggered control for intra/inter-layer synchronization in multi-layer networks, Commun. Nonlinear Sci., 119 (2023), 107124. https://doi.org/10.1016/j.cnsns.2023.107124 doi: 10.1016/j.cnsns.2023.107124
    [6] J. Hu, J. Wang, Global stability of complex-valued recurrent neural networks with time-delays, IEEE T. Neur. Net. Lear., 23 (2012), 853–865. https://doi.org/10.1109/TNNLS.2012.2195028 doi: 10.1109/TNNLS.2012.2195028
    [7] X. Chen, Q. Song, State estimation for quaternion-valued neural networks with multiple time delays, IEEE T. Syst. Man Cy. Syst., 49 (2019), 2278–2287. https://doi.org/10.1109/TSMC.2017.2776940 doi: 10.1109/TSMC.2017.2776940
    [8] X. Qin, H. Jiang, J. Qiu, C. Hu, Fixed/prescribed-time synchronization of quaternion-valued fuzzy BAM neural networks under aperiodic intermittent pinning control: A non-separation approach, Neurocomputing, 549 (2023), 126460. https://doi.org/10.1016/j.neucom.2023.126460 doi: 10.1016/j.neucom.2023.126460
    [9] W. Wei, J. Yu, L. Wang, C. Hu, H. Jiang, Fixed/preassigned-time synchronization of quaternion-valued neural networks via pure power-law control, Neural Networks, 146 (2022), 341–349. https://doi.org/10.1016/j.neunet.2021.11.023 doi: 10.1016/j.neunet.2021.11.023
    [10] N. Ohtani, N. Nagai, M. Suzuki, N. Miki, Formulation of quantum effects by using a complex-valued equivalent circuit, Electr. Commun. Japan II, 74 (1991), 11–19. https://doi.org/10.1002/ecjb.4420740702 doi: 10.1002/ecjb.4420740702
    [11] D. P. Mandic, V. S. L. Goh, Complex valued nonlinear adaptive filters: Noncircularity, widely linear and neural models, John Wiley & Sons, 2009.
    [12] E. N. Sanchez, J. P. Perez, Input-to-state stability (ISS) analysis for dynamic neural networks, IEEE T. Ind. Inform., 46 (1999), 1395–1398. https://doi.org/10.1109/81.802844 doi: 10.1109/81.802844
    [13] A. Cariow, G. Cariowa, Fast algorithms for quaternion-valued convolutional neural networks, IEEE T. Neur. Net. Lear., 32 (2021), 457–462. https://doi.org/10.1109/TNNLS.2020.2979682 doi: 10.1109/TNNLS.2020.2979682
    [14] J. Xiang, M. Tan, Existence and stability of Stepanov-almost periodic solution in distribution for quaternion-valued memristor-based stochastic neural networks with delays, Nolinear Dyn., 111 (2023), 1715–1732. https://doi.org/10.1007/s11071-022-07877-7 doi: 10.1007/s11071-022-07877-7
    [15] W. Zhang, H. Zhao, C. Sha, Y. Wang, Finite time synchronization of delayed quaternion valued neural networks with fractional order, Neural Process. Lett., 53 (2021), 3607–3618. https://doi.org/10.1007/s11063-021-10551-5 doi: 10.1007/s11063-021-10551-5
    [16] H. Wei, B. Wu, Z. Tu. Exponential synchronization and state estimation of inertial quaternion-valued Cohen-Grossberg neural networks: Lexicographical order method, Int. J. Robust Nonlin., 30 (2020), 2171–2185. https://doi.org/10.1002/rnc.4871 doi: 10.1002/rnc.4871
    [17] Y. Liu, D. Zhang, J. Lu, Global exponential stability for quaternion-valued recurrent neural networks with time-varying delays, Nonlinear Dyn., 87 (2017), 553–565. https://doi.org/10.1007/s11071-016-3060-2 doi: 10.1007/s11071-016-3060-2
    [18] C. Zhang, H. Wu, X. Han, X. Zhang, Exponential synchronization of reaction-diffusion neural networks via switched event-triggered control, Inform. Sci., 648 (2023), 119599. https://doi.org/10.1016/j.ins.2023.119599 doi: 10.1016/j.ins.2023.119599
    [19] R. Liu, C. Zhang, Y. Guo, X. Zhang, Intermittent event-triggered control for exponential synchronization of delayed neural networks on time scales, Commun. Nonlinear Sci., 137 (2024), 108158. https://doi.org/10.1016/j.cnsns.2024.108158 doi: 10.1016/j.cnsns.2024.108158
    [20] J. Ran, Y. Zhou, H. Pu, Global stability and synchronization of stochastic discrete-time variable-order fractional-order delayed quaternion-valued neural networks, Math. Comput. Simulat., 226 (2024), 413–437. https://doi.org/10.1016/j.matcom.2024.07.017 doi: 10.1016/j.matcom.2024.07.017
    [21] Q. Li, J. Liang, Dissipativity of the stochastic Markovian switching CVNNs with randomly occurring uncertainties and general uncertain transition rates, Int. J. Syst. Sci., 51 (2020), 1102–1118. https://doi.org/10.1080/00207721.2020.1752418 doi: 10.1080/00207721.2020.1752418
    [22] H. Xu, Q. Zhu, W. X. Zheng, Exponential stability of stochastic nonlinear delay systems subject to multiple periodic impulses, IEEE T. Automat. Contr., 69 (2024), 2621–2628. https://doi.org/10.1109/TAC.2023.3335005 doi: 10.1109/TAC.2023.3335005
    [23] B. Wang, Q. Zhu, S. Li. Stability analysis of discrete-time semi-Markov jump linear systems with time delay, IEEE T. Automat. Contr., 68 (2023), 6758–6765. https://doi.org/10.1109/TAC.2023.3240926 doi: 10.1109/TAC.2023.3240926
    [24] B. Wang, Q. Zhu, S. Li, Stabilization of discrete-time hidden semi-Markov jump linear systems with partly unknown emission probability matrix, IEEE T. Automat. Contr., 69 (2024), 1952–1959. https://doi.org/10.1109/TAC.2023.3272190 doi: 10.1109/TAC.2023.3272190
    [25] X. Yang, H. Wang, Q. Zhu, Event-triggered predictive control of nonlinear stochastic systems with output delay, Automatica, 140 (2022), 110230. https://doi.org/10.1016/j.automatica.2022.110230 doi: 10.1016/j.automatica.2022.110230
    [26] Q. Zhu, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control, IEEE T. Automat. Contr., 64 (2019), 3764–3771. https://doi.org/10.1109/TAC.2018.2882067 doi: 10.1109/TAC.2018.2882067
    [27] Q. Li, J. Liang, W. Gong, K. Wang, J. Wang, Nonfragile state estimation for semi-Markovian switching CVNs with general uncertain transition rates: An event-triggered scheme, Math. Comput. Simulat., 218 (2024), 204–222. https://doi.org/10.1016/j.matcom.2023.11.028 doi: 10.1016/j.matcom.2023.11.028
    [28] Q. Li, H. Wei, D. Hua, J. Wang, J. Yang, Stabilization of semi-Markovian jumping uncertain complex-valued networks with time-varying delay: A sliding-mode control approach, Neural Process. Lett., 56 (2024), 111. https://doi.org/10.1007/s11063-024-11585-1 doi: 10.1007/s11063-024-11585-1
    [29] Y. Tian, H. Yan, H. Zhang, J. Cheng, H. Shen, Asynchronous output feedback control of hidden semi-Markov jump systems with random mode-dependent delays, IEEE T. Automat. Contr., 67 (2022), 4107–4114. https://doi.org/10.1109/TAC.2021.3110006 doi: 10.1109/TAC.2021.3110006
    [30] Y. Tian, H. Yan, H. Zhang, M. Wang, J. Yi, Time-varying gain controller synthesis of piecewise homogeneous semi-Markov jump linear systems, Automatica, 146 (2022), 110594. https://doi.org/10.1016/j.automatica.2022.110594 doi: 10.1016/j.automatica.2022.110594
    [31] W. Xie, Q. Zhu, Self-triggered state-feedback control for stochastic nonlinear systems with Markovian switching, IEEE T. Syst. Man Cy. Syst., 50 (2020), 3200–3209. https://doi.org/10.1109/TSMC.2018.2870494 doi: 10.1109/TSMC.2018.2870494
    [32] B. Li, Q. Huang, Synchronization of time-delay systems with impulsive delay via an average impulsive estimation approach, Math. Biosci. Eng., 21 (2024), 4501–4520. https://doi.org/10.3934/mbe.2024199 doi: 10.3934/mbe.2024199
    [33] Z. Xu, D. Peng, X. Li, Synchronization of chaotic neural networks with time delay via distributed delayed impulsive control, Neural Networks, 118 (2019), 332–337. https://doi.org/10.1016/j.neunet.2019.07.002 doi: 10.1016/j.neunet.2019.07.002
    [34] Y. Huang, A. Wu, J. E. Zhang, Exponential stability of stochastic time-delay neural networks with random delayed impulses, Neural Process. Lett., 56 (2024), 38. https://doi.org/10.1007/s11063-024-11521-3 doi: 10.1007/s11063-024-11521-3
    [35] Y. Lu, Q. Zhu, Exponential stability of impulsive random delayed nonlinear systems with average-delay impulses, J. Franklin I., 361 (2024), 106813. https://doi.org/10.1016/j.jfranklin.2024.106813 doi: 10.1016/j.jfranklin.2024.106813
    [36] X. Liu, P. Cheng, Y. Cui, Almost sure exponential stability and stochastic stabilization of impulsive stochastic differential delay equations, Syst. Control Lett., 187 (2024), 105786. https://doi.org/10.1016/j.sysconle.2024.105786 doi: 10.1016/j.sysconle.2024.105786
    [37] B. Chen, Z. Tang, J. Feng, Matrix measure-based distributed impulsive consensus on nonlinear multi-agent systems with mixed time-varying delays, ISA T., 145 (2024), 104–111. https://doi.org/10.1016/j.isatra.2023.11.025 doi: 10.1016/j.isatra.2023.11.025
    [38] M. Vidyasagar, Nonlinear system analysis, Englewood Cliffs: Prentice Hall; 1993.
    [39] D. W. C. Ho, J. Liang, J. Lam, Global exponential stability of impulsive high-order BAM neural networks with time-varying delays, Neural Networks, 19 (2006), 1581–1590. https://doi.org/10.1016/j.neunet.2006.02.006 doi: 10.1016/j.neunet.2006.02.006
    [40] B. Gan, H. Chen, B. Xu, W. Kang, A norm stability condition of neutral-type Cohen-Grossberg neural networks with multiple time delays, Chaos Solition. Fract., 175 (2023), 113958. https://doi.org/10.1016/j.chaos.2023.113958 doi: 10.1016/j.chaos.2023.113958
    [41] V. Singh, New global robust stability results for delayed cellular neural networks based on norm-bounded uncertainties, Chaos Solition. Fract., 30 (2006), 1165–1171. https://doi.org/10.1016/j.chaos.2005.08.183 doi: 10.1016/j.chaos.2005.08.183
    [42] M. Augustyniak, L. Bauwens, A. Dufays, A new approach to volatility modeling: The factorial hidden Markov volatility model, J. Bus. Econ. Stat., 37 (2019), 696–709. https://doi.org/10.1080/07350015.2017.1415910 doi: 10.1080/07350015.2017.1415910
    [43] A. Eriksson, B. Mahjani, B. Mehlig, Sequential Markov coalescent algorithms for population models with demographic structure, Theor. Popul. Biol., 76 (2009), 84–91. https://doi.org/10.1016/j.tpb.2009.05.002 doi: 10.1016/j.tpb.2009.05.002
    [44] Q. Li, H. Wei, W. Gong, J. Wang, $H_\infty$ synchronization of semi-Markovian switching complex-valued networks with time-varying delay: A delay-dependent event-triggered mechanism, Int. J. Robust Nonlin., 2024. https://doi.org/10.1002/rnc.7739 doi: 10.1002/rnc.7739
    [45] H. Zhang, Z. Qiu, J. Cao, M. Abdel-Aty, L. Xiong, Event-triggered synchronization for neutral-type semi-Markovian neural networks with partial mode-dependent time-varying delays, IEEE T. Neural Net. Lear., 31 (2020), 4437–4450. https://doi.org/10.1109/TNNLS.2019.2955287 doi: 10.1109/TNNLS.2019.2955287
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(452) PDF downloads(70) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog