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Abstract:  This article explored the topics of global exponential stability and synchronization
issues of a type of Markovian jumping quaternion-valued neural networks (QVNNSs) that incorporate
delayed impulses and time-varying delays. By utilizing the matrix measure strategy and delayed
differential inequality techniques with an impulsive factor, several effective and practical criteria can be
established to confirm that the impulsive QVNNs in question can achieve exponential synchronization
with the given response system. Furthermore, the contained exponential convergence rate can be
clearly presented. Notably, derived criteria are straightforward to verify and implement in real-world
applications. In the end, to demonstrate the accuracy and effectiveness of achieved theoretical findings,
one numerical example with an explanation was presented.
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1. Introduction

Over the last couple of decades, famous neural networks have garnered special attention and have
been extensively researched owing to their myriad of applications across various domains, as
evidenced by numerous studies [1-5]. These applications encompass a wide spectrum, including but
not limited to signal processing, image processing, and engineering optimization. Moreover, neural
networks, including real-valued and complex-valued ones, have led to the presentation of numerous
groundbreaking results in the field, as detailed in [6]. These results have significantly contributed to
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the advancement of neural network technologies and their practical applications. Furthermore, the
quaternion, discovered by the British mathematician W. R. Hamilton, has found its way into various
practical applications. It has been utilized in array processing, which involves the manipulation and
analysis of data arrays in various contexts such as color image processing, which leverages the
quaternion representation to capture and manipulate color information more accurately; and modeling
of 3-D wind signals, which employs quaternion algebra to represent and analyze complex wind
patterns in three-dimensional space. These applications, as referenced in [7-10], demonstrate the
versatility and power of quaternion-based methods in addressing real-world problems.

It is worth noting that quaternion-valued neural networks (QVNNSs) can be viewed as an extension
of complex-valued neural networks (CVNNs), which exhibit far more intricate properties compared to
CVNNs due to the non-commutative property of quaternion multiplication. These properties
encompass quaternion-valued states, quaternion-valued connection weights, and quaternion-valued
activation functions. In the realm of complex numbers, according to Liouville’s theorem [11], every
bounded entire function must be constant. From this point of view, choosing an appropriate activation
function is very important. Fortunately, to date, numerous authors have delved into the analyticity
problem [12, 13]. For instance, the existence issue and stability problem of stochastic delayed QVNNs
have been addressed in [14]. Finite-time synchronization of fractional-order delayed QVNNs has
been given in [15]. By resorting to the lexicographical order method, the exponential synchronization
and state estimation problems of inertial quaternion-valued Cohen-Grossberg neural networks have
been researched in [16]. Therefore, addressing the dynamics of neural networks with delays has risen
as a vital issue.

It is well-established that numerous prior studies have primarily concentrated on deterministic
neural models [17-19]. However, random phenomenons are ubiquitous in social life because of
fluctuations in the environment. Therefore, they should be modeled using stochastic systems to
accurately represent real-world situations [20]. With the help of the stochastic analysis technique,
dissipativity results of delayed Markovian jumping CVNNs were investigated in [21]. Meanwhile,
lots of dynamical works on stochastic Markovian switching models was reported [22-28]. For
example, the asynchronous output feedback control has been addressed in [29] for semi-Markov
systems with random delays. Additionally, time-varying gain controller synthesis was examined
in [30] for nonhomogeneous semi-Markovian switching linear systems. The self-triggered control
problem of Markovian jumping nonlinear systems with stochastic disturbances was researched
in [31]. When talking about global exponential stability and synchronization in delayed Markovian
jumping QVNN:s, little research attention has been paid to these issues. This scarcity of research
serves as the primary motivation behind our ongoing research efforts.

Apart from stochastic perturbations, impulsive effects and delayed impulses are also prevalent in
neural systems [32—-34]. Furthermore, impulse is also an effective method to implement in practical
scenarios. For instance, combining the average impulsive interval with the Lyapunov method, p-th
moment exponential stability was addressed in [35] of impulsive random delayed nonlinear systems
with average-delay impulses. In [36], the almost sure exponential stability issue was demonstrated for
the impulsive stochastic differential delay equation with bounded variable delays. By jointly
introducing the matrix measure protocol, the global and exponential leader-following consensus issue
was concentrated in [37] for nonlinear multi-agent systems with mixed delays. Despite the research
on stability and synchronization of impulsive systems, there is limited literature focusing on
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Markovian jumping QVNNs under delayed impulses. Therefore, with the help of the matrix measure
method, our primary objective aims to propose the stability and synchronization results of delayed
Markovian jumping QVNNs with delayed impulses.

Inspired by the preceding statements, this paper delves into exponential stability and
synchronization of delayed Markovian jumping QVNNSs with delayed impulses. The key highlights
can be presented as follows. (1) With the consideration of a Markov chain, the investigated model
becomes significantly more realistic in practical applications. Our findings reveal that impulses have a
profound effect on the stability and synchronization of QVNNSs. (2) By resorting to the advantage of
the matrix measure approach, i.e., the measure value of the matrix can be positive or negative, the
desired results can be derived. Meanwhile, the achieved criteria verify that it is a more practical and
effective tool for dealing with the considered model. (3) This paper first takes into account not only
time-varying delays but also delayed impulses on dynamical phenomenons of the proposed QVNNSs.

Notations: The notations R"” and Q" denote n-dimensional real vectors and n-dimensional quaternion
value vectors, respectively. R”™" and Q™" refer to m X n-dimensional real matrices as well as m X n-
dimensional quaternion value matrices, respectively. The symbol “Z”” denotes identity matrix, with its
dimension determined by the context. A”” signifies the transpose of matrix A, and “diag” is used to
represent a diagonal matrix. The notation “+” is employed to indicate an element that is symmetrically
implied in a given context, while |x| refers to the magnitude of vector x. (f), ¥, {?A'}tzo, @) denotes the
complete probability space. Moreover, Amax(A) (Amin (A)) means the largest (smallest) eigenvalue of
involved matrix A. E{-} denotes mathematical expectation, and min{a, b} means the minimum value
between a and b.

2. Problem formulation and preliminaries

Consider the delayed Markovian jumping QVNNSs with delayed impulses below:

{ﬁ(t) = —Roh(1) + Ser[(1(D) + T 9(h(t = 3(0))), t# 1, 2.0

AR(ty) = Lih(ty) + Mih(t, — oy, I=1

in which k € N, = {1,2,...}, i(t) = (1 (1), (), ..., h,(t))T € Q" refers to the state value of
QVNN (2.1). Repy = diag{Cicn)> C2c(1)> - - - » oy} € R™" with E,¢yr) > 0 denotes the self-feedback
matrix, ¢ = 1,2,...,n. S, = (Quer) € Q7" and Ty = (buery) € Q™ refer to connection matrix
without delays and the delayed one, respectively. f(i(¢)) and g(h(r — 3(¢))) denote the
quaternion-valued nonlinear activation functions without and with time delays, respectively. 3(7)
stands for time-varying delay subject to 0 < J(¢) < § and 0 < @ < 5 means the impulsive delay. #;
is the impulsive point satisfying #; < £, < ... and limy_, oty = +oo. Ah(f;) = h(z) — h(t;) means
impulsive difference. Set ii(ty) = h(f)) = lim,_,;+7i(¢) and 7(z;) = lim,,, 7i(¢). Ly and M refer to the
strength of impulses. ¢(7) denotes a Markov process, which is specified on space (Q, 7:‘ {7}},20, ?A’) and
takes its precise value in a set T = {1,2,...,N}. Moreover, the corresponding generator is
® = (6;,)nxN, and the probability can be presented as

§ly5t + o(Ar), [+,

. i (2.2)
1+8,At+0(A), 1=v

Plet+An =v g =1) ={
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in which Az > 0 as well as limA~t_,0(0(A~t) /At) = 0. In addition, §,y > 0 (I # v) refers to the jumping rate
and é)ll = - ZN é)lv-

v=1,v#l
In order to achieve the desired outcomes, all involved nonlinear functions are presumed to meet the
constraints below.

Assumption 2.1. Set it = iR + ih! + jh’ + knK with iR, 1!, 1/, 7K € R, and the considered T,(1) and g,(h)
can be expressed as follows:
fi(h) = #F @R + F @D + Ji (1) + KiE "),
a/(h) = af (i*) + ia! (W) + jo!(h) + ke (")
in which f{(), gLr() ‘R—>R (L = 1, 2’ cee n)’ = “R”’ “I”, “J”, “K” and Satl'Sf_‘y
iR = ;) < mR =7, laj(R) - (R)| < o]l — A
in which m] and q] are known positive scalars, and fi, i are scalars in R. Moreover, §,(0) = g,(0) = 0.
Assumption 2.2. For h = i® + il + fhl + khK with R R R BK € R, §,(B) and a,(h) can be expressed
as follows:
(k) = R@R) + T + i @) + K05,
a/(h) = af (*) + il (") + jo] (W) + kaf (W), 1=1,2,-- ,n,

where r = “R”,“I”’,“J”,“K”. Moreover, when h # h, " and g] satisfy the inequalities below:

Oswsm’, Osws(ﬂ.
h—nh h—h

Moreover, §,(0) = ¢,(0) = 0.

Next, set 7i(t) = #R(7) + ih!(¢) + jh’(¢) + kE(¢), and then model (2.1) can also be converted to

R(1) = = RopR(@®) + SSH1(RD) + S5F3(R (1)) + S5754(R(0) + T3V 02(R(t = 3(2)))
+ T8Nt = 3(1)) + SS"T2R©)) + T3 9:(R(t = F0))) + T3 "qu®t = I(0)),  (2.3)
AN(t) = Lii(t)) + MR(t; — &),

in which X(1) = (R ()T, (R ()T, (R (1))T, (7% (£))T)T, and other symbols are showed as follows:

Ry = diag{Re» Re» R Ren s Mi = diag{ My, M, My, My}, Ly = diag{ Ly, Li, Li Li),
S = diag{SSy, Sty St Sl S5 = diag{=Si, Sty Sk ~Stin

S = diag{~S . =S Sery- Setn S = diag{-S» St =Sy Senh
T = diag{T (. Ter Tot Teto} T "= diag{~7 0 7ol Tatrr ~T et
T3 = diagl=TJy ~T ooy Taiir Tatoh» T = diag(=T %, Tols =T o Tt}
fLR@) = (@), G@ER )", GR@E* o), @ on"T,

BL@) = (F@ o), G @ @), F @ o), G @ ONh',
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HINO) = (P H O 7 E O, F @ )T, FH ),

F(R() = (FEEEONT, GEEE )T, KEE )T, K E O,

GR(HR(t - 3(1)) o' (h(t - F(1)))
oR(HR(t - 3(1))) et - sy
gkt - 3| PRI = i - sy |
ok (hR(t - 3(1))) o' (h(t - 3(1)))

o (h (i - (1)) oK (K (1 - 3(1)))
o (h (i - S(1)) R
(- 3| IO =1 kar - gy |
o (i (- 3(1)) oK (K (1 - 3(1)))

(N - 3@)) =

-

(R - 3(D)) =

Next, some important lemmas and definition are presented.

Definition 2.1. [38] For a matrix W = (dg9)nxn, the homologous matrix measure value is set as

- T+¥5-1
@ = 1im 1+ %
0—0* o

(2.4)

in which 6 takes its value in {1, 2, o). The symbol || - ||s refers to the matrix 6-norm defined as
n 1 n
s ~ s <7\ 2 < ~
190, = lrngX{; Gosl}. 1 = (Anax @), A = {“3"‘{; Gl

and the corresponding matrix measurements can be acquired as outlined below:

) = max [0+ D Jinl) o) = ()
- 0=1,0+9

HeoT) = max {Gag + > agl)-
- 9=1,0+9

Lemma 2.1. [38] The involved matrix measure us(-) and it owns several properties: for a positive
constant ¢, matrices U, B € R™" (1): =|Wls < psQ) < 1Mls; (2): p1s(QA) = L5 ), (3): A+ B) <
,u(;(gl) + ,u(;(%). From these properties, the matrix measure can be negative.

Lemma 2.2. [39] Take the differential inequalities as

DYH() < -1 H@) + 22 sup H(s), 11,

. R . t—ﬁgsr_) (2.5
Ht) < ayH@) + b sup H(s), keN,

o
f—I<s<t

in which H(t) is nonnegative and continuous in [ty — 3, t)]. Then, when ¥ > ¥, > 0, there owns a
>
positive scalar @ > 1 such that ty — t,_; > @3, and then

H(t) < iniin - iiesr €7 sup  H(s)e ) (2.6)

N
to—J<s<ny
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52

in which t € [ty,tx11] and 7, = max{l,a; + l;ief }ywithy = 1,2,...,k + 1. Particularly, when E =

dy + bie® eld
Supgen, A1, dx + bret~}, one yields

S - S _pm@dY)
H() <& sup H(s)e Ty )

o
to—J<s<1g

2.7)

2 . ., . . 2 ?d
where ( refers to the unique positive root of equation ¢ = {1 — j»e*°.

Remark 2.1. Compared to the existing relevant results [40,41], they utilize the matrix norm method to
handle the introduced matrix, resulting in a positive value. On the other hand, this paper employs the
matrix measure method to deal with the introduced matrix, which can yield a negative value because
matrix measures offer greater flexibility when applied to matrices. Therefore, the derived results in this
paper, which are expressed in the format of a matrix measure, are more accurate than those achieved
using the matrix norm method.

3. Main results

In this section, by utilizing the matrix measure strategy, exponential stability criteria can be derived.

Theorem 3.1. Under the premise of Assumption 2.1, system (2.3) can attain the provided global
exponential stability that two constraints hold below for ¢:

M w1 > w, >0, in which

. = 1
wi £ min {~us(~Rp) — 42 (mESls + 1S5 15 + 1S5 + mEUSll)}

A 1
wy = max {47 ("7 1ls + o' IT3ls + o’ IT3ls + a*IT3s)}

1<I<N
with 6 belonging to {1, 2, oo}, and

mf = max(m®}, m' = max{m’}, m =max{m/}, m* = max{mX}.
1<i<n 1<i<n 1<i<n 1<i<n

In(ce?S)

. =2
Y. There exists a constant 5 > = and one gets
é

inf{t, — ;1) > B3
keNy

in which o = sup,_, {1, a;+ bee®), ap 2 |1 L+ Ils, b 2 |IMells, and @ denotes the unique positive

root of 3 = wy — wye®.

Proof. In the case of t # 1;, take the differential of [|N(?)||s5, and we get

IR+ 9)lls — ROl _ . I8O) +o8(®) + 0(0)lls = INDlls 31
. = 0 G-

DT |IN@®)lls = lim
0—0*

in which
IN() + oR(®) + 0(0)lls
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= [N + o [-ResN@) + S50 + SR @) + SLTH®O)
+ ST + T 001 (R(t = F@0) + T3 g (Rt - I(1)
+ T30 = 50) + T 0N = I0))] + o0),
< ||Z = o€, IR@s + 0 S5, 151 R)lls + || S5 285
+ 0|5 IR0l + @ S5, a8 @)ls + ¢ |75 s (Rt = Sl
+0 |75 ozt = 3@l + o [ 75| las Ntz = SOl
+ 0|73 ; lsa Rt = S5 + llo(@)ls-

It follows from the expression of f;(N(#)) and Assumption 2.1 that

T4 @()lls
f*(@* (1)) - 1%(0) |

_|[FE@EER@) = O |, N kg ko]
- fR(hR(t)) _ TR(O) - [4 Z |Tl (ht (t)) - ft (O)|

ko) - iroll

. 4melhf<t)|ﬂ < 4R Dlls < 45 M IRl (3.2)
L (=1

Utilizing the similar method in (3.2), we have

ROs < 458Dl IR < 45ROl TSRO < 4k I8RO, (3.3)
and the inequalities are satisfied below:
a1 (R(t = FOlls < 47 R INE = FO)lls s = TONls < 477 IN@ = F@)ls,
la2(R(2 = SOl < 470" I8E = FO)lls, Nlaa®(z = FONls < 4765I8@ = FO)ls. (34

Next, by substituting the inequalities from (3.2) to (3.4) into (3.1), we can derive that

DN
I —oRals =1 .
< lim 5 ISRl + 4 m USSRl

+ 45 mE SO ISIND s + 45 mRIAS USR5 + 47 aRITT NN = F@)lls
+ 45 /TS OSIING — TO)lls + 45 TS USIING — T@)lls
+ 45 K TEONNINE ~ TO)ls
< (p(~Roq) + 4 mFUSTO s + 45 1S5l + 45118575 + 45 m 1185115 IR D)

+ (45 QRIT s + 45 1T + 45 9 NT5 s + 45 NT5ll5) sup INCs)lls, (3.5)

-J<s<t

which further verifies that the following inequality is valid:

DTIR@ls < —wrlR@lls + w2 sup [IR(s)lls. (3.6)

tfﬁSxSt
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In addition, when ¢ = #;, one gets

INEOls = [|[(7 + ZoR(Ep) + M — &0,
< IMINGEE = BOlls + 11T + Ll IG5
<IMills sup [IN()lls + 17 + ZellsIN Gl

rkfﬁgsstk

= aiIN@)ls + bk sup [IR(s)lls. (3.7

t-F<s<ty

Then, combine (3.6), (3.7), the conditions {; and {, in Theorem 3.1, as well as Lemma 2.2, and one
can infer

33
—(g- o)
IN@Ils < o sup [IN(s)l|pe B(t—1), t=1

t9-J<s<tg

in which g denotes the unique positive root of g = w; — wzegﬁ, which further insures global exponential
stability of system (2.3) under Assumption 2.1. The proof is now complete.

Theorem 3.2. Under the premise of Assumption 2.2, considered system (2.3) can attain the provided
global exponential stability of the given constraints below are valid for 6 = 1 or oco:

I w; > w,y =0, in which
w1 £ min{ —p(~Ry) = u(S;D) — (i + 20 S}l — (i + 2m) Sl
= (i + 2m)ISHlls — (7 + 20 lIS; o
w £ max {45 (o177l + IIT3ls + o’ I35 + a*1173115)}

where § € {1,2, 00}, D = diag{mf,-u st mlmd e g mE ,m,’f}, m=mf+ml+
J K Ql _ (7l I _ (5l 1 _ (5l [ _ (%l S* _ (4l :

m’ +m-, S] - (aw)4n><4m 82 - (aw)4n><4n’ 83 - (aw)4n><4m 84 - (aw)4n><4n and Sl - (aw)4n><4n with

al, = max{0,al, + a, + al, + a )} while . = v. Otherwise d', = a, +a, +a', + &, and all other

symbols retain their definitions as stated in Theorem 3.1.

- 33 . .
i, For a constant 8 > ln([:—g), the inequality
é

inf{t, — 1,1} > A3

keNy

holds, where o = sup,_, {1, a; + bee®), ap 2 || L + Ils, br = [IMills, and @ stands for the unique
positive root of 3 = w — we®.

Proof. In the case of t # #;, analogous to the derivative process of Theorem 3.1, one can derive (3.1).
Set

k) -0 fFokw) - RO o) -f0)
ZA0 N 10 N (N

E(NR(@)) = diag{
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iLr®) - 0) HAR@) -HO)  #@mw) - 20)
O o B, (1)
ﬁmﬁm—wm)”_wmﬁm—ﬁm?
mw X (1) '

Based on the explanation of f;(N(#)), one yields

P (A" (1) - F(0)
P (A" (1) - F*(0)

OO =] ity - 700)
fR(#R (1)) — (0)
= X1 (1) — X4(1) + Xs(1) — Xao(0) — X3(2) + X6(1) + X7(0) (3.8)
in which
R(7R (1)) — F*(0)
| F@e) -0 |_ 2
%l(t) - Tj(hj(t)) _ TI(O) - —'(N(t))x(t)’
INGAGIERN()
0n><1 Onxl
%) = f/(n' (1)) - §(0) (1) = Onxi
2= O T Y@ 1) - 1(0)
0n><1 0n><1
Onxl Onxl
3 Onxi | @R @) - *(0)
%4(2‘) B 0n><1 ’ %S(I) B 0n><1
K@% (1)) - 5(0) Onx
OnXl On><l
_ 0n><1 _ Onxl
0= wrgriy) - ro) | 0 O
Onxi R(#mR (1)) — (0)

Similarly, one can yield

(3 (0) - 7(0)

_| Py - o
RO =) 1) - 1(0)
(3 (0) ~ 7(0)

= ENR@OIN() — X4(1) — X3(0) + Xo(t) — Xs(1) + X10(2) + X11(D) (3.9)
in which
fR(#R (1)) — F*(0) f/(n' (1)) - (0)
X (t) _ On><l X (t) _ 0n><1
8 Bl Onxl ’ B 0n><1
0n><1 0n><l
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Onxl 0n><1
_ Onxl _ Onxl
0= gy -ro) | O o,
Ouxt (! (1)) - §1(0)
(R (1) - 7(0)
L@ =| FE =70
’ /(7' (1)) — 1/(0)
(R (1) - 7(0)
= ZNR@O)N@) + X12(2) — X5(2) — X4(1) — Xg(2) + X13(0) + X14(0) (3.10)
in which
(R () - 7(0) O
J(:d &
o= o xu = | O =TO
0n><1 0n><1
0n><1
X4() = 8::
(R (1) - 7(0)
K (BK (1)) - 75 (0)
K (RK (1)) - 75 (0)
1O = k% (1)) - %(0)
iK(BK (1)) — 75 (0)
= ZRE)N() — X5(1) — Xx(6) — X (1) + X15(0) + Xy6(0) + X17(2) (3.11)
in which
K (RK (1)) — 15 (0) Ouxi
KK 5K
X)5(0) = g:: X =| " (gle ro
Onxl 0n><1
Onxl
_ Onxl
B9 =1 sx ik (1) - 15(0)
Onx]

In addition, substituting (3.8)—(3.11) into ||N(?) + QR(Z) + 0(0)||s, one can derive that

IN() + o8(2) + 0(0)lls
= [|R(®) + o(=Rs))R (@) — Xo(1) — X3() — X4(8) + Xs5() + 0SSV (EROIND)
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+ X6(1) + X7(1)) + 0S5 (EROIN() — X5(1) — Xy(1) — X5(1) + Xo (1)
+ X1o() + X11(1) + 08T ER@OIN(E) — X2(1) — X4(t) — Xs(1) + X12(0)
+ X13(0) + X14(0) + 0S5V (ER@OIN(E) — X (8) — X3(8) — Xs(8) + Xy5(1)
+ Xi6(t) + X17(0) + 0T3P a:(R(t = 3(1)) + 0T TV a1(R(t = 3(1)))

+ 075" a3(R(1 = 3(1)) + 0T a4 (R(r = (1)) + 0(0)|,
|7+ o[ Roo + (ST + 857+ 859+ S5) 28| INOIs

IA

+ 0llS5lls (X )lls + 1€l + 1Xs@)lls + 1Eo(lls + 1X10Dlls + %11 (Dlls)
+allSTlls A D)lls + 1X30)lls + 1Ea@)lls + 1Xs@D)lls + 1 €6 (D5 + 1X(0)l5)
+ allSE lls U2 Dlls + 1X)lls + EsDlls + 1X15Dlls + X161l + 1¥17(D)lls)
+allSTlls A D)lls + X 0)lls + 1Ea@)lls + 1Xs@D)lls + 1 €6 (D5 + 1X(0)l5)

+ 0l 77 lsllgs (Rt = SONNs + ol T llsllsa (Rt = SOl

+ 0l 75 lsllaa(R(t = FOls + T Nollar Rt = IONls + llo(@)lls
<[ 7+ o[ Reo + (S + S5+ S5+ ) 2RO ||| 1N

+ o(ft + 2mP) ISR D5 + oGt + 2m)IS5 IR Dl

+ ot + 2m) IS5V SN @)lls + o(7 + 2m IS5 IR @5

+ 45 Rl TFIslIR( — FO)lls + 45l TS ISNINGE — F@)lls

+ 450l TN = S@)lls + 45 TS NlING = @)l + llo@ls

Hence, the result can eventually be reached that

DTIIR(®)ls
_ iy N+ Ol — NGl
= lm
0—0* Y
T+ ol Ry + (S + S5 + S50+ SENIls — 1
< lim N S INOIls

+ (1 + 2SSOSR @)l + ot + 2mDISSOISIR @] + (e + 2m)ISSO511R@)ls

+ (7 + 2m)) SNSRIl + (7 -+ 205 ST lIN Ol
+45 (BTSN + 1T + o N7 + 1T ) INC = T@O)ls
[ (R + (S5 + S50 + S5 + SIOER@) + (7t -+ 2mM) S5
#4208 + (2SS + 7+ 20T IR
+ 45 (IO + o 1T5 N + o NT5 s + aUT5 ) IR = T@)lls
< i (~Rep + (S5 + S50 + S5 + SINER®)) + (7 + 2mP) IS5l
+ (i 2mS5 s+ (0 + 2S5 s + (Gt + 2m S5l [ INO

1
+ 45 (aMUTTOls + o IT5 N + 1T Ols + o ITSs) sup IN()lls

1=9<s<t

(3.12)
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< [u(-Re) + 1Sy D) + (it + 2mF) IS5 + (W + 2m) IS5l + (7 + 2m))lISS s
+ (it + 20 ISS s | IRl + 47 (BT s + g 175 s + o 175l
+ a7 ) sup INCs)lls

N
1—=J<s<t

< —wilIR@lls + w2 sup [N(s)ls. (3.13)

~F<s<r
Based on this, in the case of t = #, the conclusion is immediately available that

(A ln(rre@)ﬁ)
INOls <o sup [NGlpe & B (t—ty), >t (3.14)

o
to—J<s<ny

in which & denotes the unique positive root of 3 = w; — w-e?”, and this solution further ensures the
desired exponential stability under Assumption 2.2. The detailed proof is thus concluded.

In the subsequent section, we will be devoted to exploring the synchronization issue of considered
system. If the drive system is (2.1), then the corresponding response system can be shown as

(3.15)

RO = ~Rey2(t) + SeinF(RD) + Toos(R(t = FD)) + U (D), 1 # 14,
AR(ty) = LR@) + MR, — &), t =1,

where R(1) = RE@) + (RI(1) + JR/(1) + kRX(1) refers to the corresponding status value with
RE(©), RI(1), R/ (1), RX(r) € R", and U, (¢) stands for the designed control input as

Usry (1) = By p(1), (3.16)

where P ;) € R™" represents designed the gain matrix and ¢() is given later.

Take the initial value of (3.15) as
R(s) =d(s), s €lto- I, nl,

where 9(s) = 98(s) + 19/(s) + 9 (s) + k9K (s) with 9R(s), 9'(s), ¥ (5), 9K (s) € C([to — T, 1], R").

Set the error system p(1) = R(t) — A(f) with p(t) = (PR®)T, (' )T, (9’ ()T, (pX())T)T with
PR = RR@) = 1R(0), 9’ (1) = RI(1) = 0/ (1), p' (1) = RI() — Wl (1), () = RE(r) — hX(?), and it follows
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from systems (2.1) and (3.15), as well as controller (3.16), that one obtains

PR(1) = —ﬂmgf(z) ST (0 (0) + SE, R (R (0) - 87, P (97 ()
TR 3Rt - 3()) - SK, (9K 0) - T, 5 (9 (t — I(1)))
=T8535 (0"t = 3(0)) = T7,8' (9t = 3®)) + P (), t# 4,
9'(1) = —Ree' (1) + SL, T (9" 0) + SF, T (9! (0) + SI, K (¥ (1))
TR (9t = 30) - SKF (9’ 0) + TL, 8 (9"t = 3(1)))
g(,)g’(g)’(t = 3(0) + T3, 85 (0"t = 3®)) + P (©), 1# 1,
97(1) = =Ry’ (1) = ST, T (K (1) + SF, T (97 (1) + 87, (9" (1))
TR0/t = 3(0)) + SK T(9' (1) - T, 5K (9% (t — I(1)
" 7;’;;’@ (t = 3) + T2, 8 (@R = 3D)) + e’ 0, t# 1,
g‘a’%r) ~Ron9X (1) + SL, T (97 (1) + SR, K (9% (1) - S, T (9! (1)
TR K (95 (1 - 3)) + SK R (R + T1, 8 (97t — I(1)

(3.17)

T oo 8@t = 3(1) = T 7,8 (9"t = 3®)) + Beirn 9™ (), t# 1,
ASOR(tk) = L") + MipR(t; — &), t=t,
Ap'(t) = Ly (1)) + Mo (1, — &), t=t,

A9’ (1) = Lip! (1) + My (1, = &), t=t,
ApK () = LipK () + MipX(t; = &), t=1,

in which R(pR(t) = FFRR@) — F@R @), (" - 3(1)) = gR(RR@ - 3(1)) - " (1Rt — I))),
Fp'®) = FR'®) - @ @), §('¢ - 3®) = ¢RI - I®) - ' - I, P9/ (1) =
F(RI() - @ 1), 5% (0) = FFRX)-T* @ (1), § (' t-3@1)) = /(R (t-3(1))) -’ W/ (t-
J®)), 35X (- 3()) = a¥(RE(1 - 3(1))) — oK (rX(t — T(¢))). To facilitate the subsequent discussions,
one useful definition can be introduced.

Definition 3.1. Systems (2.1) and (3.15) are said to realize exponential synchronization if the impulsive
switched error system (3.17) reaches the desired exponential stability, i.e., there exist positive scalars
{ and &, and one can derive

9" Olls + llp" @)lls + llp” @O)lls + llp* D)ls
<¢ sup (p*Ols + 19" Slls + 97 9lls + 9" (Do) 87, 1> 1.

to—J<s<ny

Theorem 3.3. Under the premise of Assumption 2.1, the considered system (2.1) can attain globally
exponential synchronization with system (3.15) if the given constraints below are valid for d:

M w; > w, >0, in which

I|'>

min {—ps(~R; + B1) = 7 (I1SFlls + KS]1ls + 157 lls + 115 115)}

<I<N

W1

wy = max {G (177115 + 177 lls + 117 lls + 1B 1)}

1<I<N
in  which 6 € {1,2, o0}, and m = max{m®, m!/, m’, mX},
mR = maXlSLSn{m{e}) ! = maXlSLSn{mLI}) mJ = maXlStSn{m{}’ mK = maxlétén{m{(}l E =
ax{a®, o', q’, ¢*}), of = max,__{a®}, o/ = max__{q]}, ¢/ = max__{q/}, and ¢f = max,._{a¥}.
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. =2 555
Y. There exists a constant 5 > %, where
d

inf{t; — tr1) > B3,

keN4+

in which o = sup,_, {1, a; + bie?®), ap 2 || Li + Tls, be = IMlls, and 3 stands for the unique

positive root of 3 = w — we®.
Proof. For the case of t # t;, choose the Lyapunov functional factor as
V(p@) = lp"Olls + l9’ @lls + llp” Olls + 119" Olls»
and then, take the differential of V(p(¢)), and one gets
ngg)l (Il@R(I +0)lls = l9"Olls + llp' (2 + 25 = ll9’ Dlls

Hip’ (@ + 0)lls = llp” Olls + "t + 0)lls — ||80K(f)||5) /o
=ng})1 (II@'(I) + 09" (1) + 0()lls = 9" Dlls + ll9” (1) + 09" (1) + 0(0)lls = ll9” D5

+ 9% + 09" (1) + 0(@lls = 9" D)lls + lp" (®) + 09" (1) + 0(O)lls IIsOK(l)II5) /o

Combining the expression of ||fR(goR(t))||5 with Assumption 2.1, one gets
" @Dl = IF* (RE@) = F* @ @)ls = [Z [ RE@) = FE @)

=1

1
n

<> (mf | R - hf<r>|)”} <mfllpf@)lls < mllp® @)l

=1
Using a similar approach, the following inequalities can be derived:
7' (o' )lls < mllp @)lls < Wllp" @lls,

IF (0" )lls < m?llp” 0)lls < Tllp? @)lls,
IF @ @Dlls < m¥lp* 0lls < mllp* @),

and one also obtains

13 (" = IOls < afllp" @ = ID)lls <™t = F@)lls,
1" (9"t = SONIs < o'llp”t = I@)lls < llp’ @ = F@)ls,
137 (0’ (t = BONIls < o’llp’ ¢ = IO)ls <Tllp’(t = FO)ls,
15%(0* @ = 3))lls < aXllp% = F)lls <Tlle* = FD))ls.

By resorting to the inequalities (3.21)—(3.27), one can calculate

9"z + s = 9" @) + 09" (®) + 0I5

(3.18)

(3.19)

(3.20)

(3.21)
(3.22)
(3.23)

(3.24)
(3.25)
(3.26)
(3.27)
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< |17+ o(=Rey + B, 195 Olls + o (IS lll" Olls + 1% lsllg D)5 + 1524
g’ Olls + IS5, sl 0lls) + & (IT L lsllg" = SEDlls + 1T, lllo" (2 = S
HITE M9 @ = SElls + 17 lsllp” ¢ = S@)lls) + llo(@)lls (3.28)

In addition, by the similar method as in (3.28), one also has
9"t + )5 = 9" (1) + 02" (1) + 0 (0I5
< |7 + o(=Rey + Bea)||; 19" Olls + 0T (I1SL sl @)ls + IS5 lsll" Dlls + 1182, ls
X lp"O)lls + ISK llsllo” @)lls) + 0a (T2 lallo™ 2 = S@)lls + 1T, lsllo" ¢ = S@)ls
+ T2 lsllo™ (£ = SOs + 175, sl (¢ = F@)s) + llo(@)lls, (3.29)
9’ (t + 0)lls = llp” @) + 09 (1) + 0I5
< |7 + o(=Re + Bew)|; 197 Olls + 01 (IS5, sl Dlls + 1SL llsllo  @)lls + 1182l
X lp"Olls + kS5, lsllp” Olls) + 08 (172 lsllo” (¢ = SEDlls + 1T 2 llallp™ ¢ = S@)ls
+ T2 lallo™ (e = S@)lls + 1T 5 lsll" e = SD)s) + llo@)lls, (3.30)
9 ( + 0)lls = lp* (1) + 09" (@) + 0(0)ll5
< |7 + o(=Rey + Be)||; 195 Olls + 01 (IKSL lsllp? Dlls + 1S5, lsllo™ D)lls + 1152, ls
X [lp" @lls + IS5, lsllp™ Olls) + 08 (+IBL llllp? (¢ = SO + 175, lollp* (2 = @)l
+ 1T 59" = S@Dls + 174 lllo ¢ = SE)I) + 0@ - (3.31)
By substituting equations (3.28) to (3.31) into Eq (3.19), one can have
D*V(e(t)) < |s(—Ren + o) + T (ISL lls + 1SS lls + 1S5, lls + 182, l1s) | Vo ()
FT(IBL s + 1T 5 lls + 1T lls + 17 5)ls) sup Vig(s))

—3<s<t

=—w V(p(®) +w; sup V(p(s)). (3.32)

S
—3<s<t

Likewise, when ¢ = f;, one gets

V(p(@) = llp"@lls + 119" @lls + " @lls + lp™ @lls
< L+ sl @Olls + 9 @Olls + 10" @Ols + 9" @Ol
+ IMls(l9"™ 5 = Bolls + 197 (5 = Blls + 9™ (5 = Bolls + e (5 = Bo)lls)
<NLie + L1, V(@) + IIMlls sup Ve(s))

zk—ﬁs.ch

= aV(p()) + b sup V(p(s)). (3.33)

[k7§£x<tk
Combine (3.32) and (3.33) with Lemma 2.2 as well as conditions {; and {, stated in this theorem, one
can yield

G-

Vip(®) <o sup V(p(s)e A3 , >t (3.34)

5
to—J<s<ny
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is right, in which g represents the unique positive root of § = w; — wze§§ . Consequently, in
accordance with Definition 3.1, we can deduce that systems (2.1) and (3.15) achieve global
exponential synchronization. Thus, the proof has been fully established.

Theorem 3.4. Under the premise of Assumption 2.2, the system (2.1) can attain global exponential
synchronization with the system (3.15) if the given constraints below are valid for 6:

(][1 w1 > Wy > 0, in which

@1 2 min {5 (~Ry + B) = 1 (S; D) = (it + 2mP) IS} lls = (it + 2m")||Sh

I<I<N

— (i + 2m))|S4ls = (7 + 2m) IS}l
@2 = max 45 (o171l + IIT3ls + o’ I35 + a*1173115)}

. _ 1 R R .1 I . J K K
wzch)—dlag{ml,---,mn,ml,---,mn,ml,---,mn,ml,---,mn}.

_ S (e
9> There exists a constant 3 > “((’:—g) where
©

inf{t, — te1) > 53,

keN4+

in which § = 1 or o, o = sup,_, {1,a; + bie?®), ap £ |7 + Lills, b 2 [|Mls, and 3 denotes
unique positive root of 3 = @, — @»e”. The remaining symbols retain their definitions as stated
in Theorem 3.2.

Proof. In the case of ¢ # 1, based on the specific expression of fl(go(t)), one can infer

(9" () AR @) - @ (1)
(" (1)) PY(RE@) - T (1)

PO Sk || #ERE) - k)
k@) )\ RRRG) — RGR()
= D5(5) + D1(5) = V() = V() + V(1) = V(1) + D5(0) (3.35)
in which
O R RR(1) — R(R ()
| PRI - ) | i) - Py
9:(0) = O - VO= vy - |
Ot (R (1) - (K (1)
Onxl Onxl
_ Onxl _ Onxl
VO=1 wriay - vy | P90 = O ’
O (R (1) — K (RE (1)
0n><1 0n><1
| rerR) - @) ) O
D50 = Op © O R - ) |
Onxl 0n><l
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Onxl
Onxl
Onxl

fRRE®) — 0" (1))
Utilizing an analogous approach employed for Eq (3.35), we can likewise derive that

fI(RI(0) - F' (' (1))
fI(RY(1) — T ('(1))

Y7(1) =

ReO) =1 51 R 1y - (1)
f(R1(1)) — T/ (1))
=91(0) = D3(1) = V(1) — V(@) + Vo(2) + V10(1) + V11(0) (3.36)
in which
PR(RE@) — FR(R () /(R (1) — T (7' (1))
— Onxl _ Onxl
Ys(r) = O Vo(1) = O
0n><1 0n><1
0n><1 Onxl
_ On><1 _ 0n><1
I = semi) -ty [ 0= O
Onxi f(RI (1) - (7' (1))
PR/ (1) - @ (1)
z | PR @) - # (1)
PO 5w - (1)
(R (1) - /(7' (1))
=91(1) = V2(1) = Va() = V(@) + V12(2) + VD 13(2) + V14(2) (3.37)
in which
F(R/(1) - /(7 (1)) Onxi
TR T 5T (h]
V0al) = o Vs = | TR0 D)
Onxl 0n><1
Onxl
D14() = g:j
(R (1) - /(7 (1))

PERE @) - @ (1)
PERE(@D) = X (R (1)
PERE (@) = XA (1)
PERE@) - @ (1)

fale() =
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=D1(1) = D2(1) = D3(0) = V(1) + V15(1) + D16(0) + V17() (3.38)
in which
(RE (1) ~ (5 (1) Op
Kip Koo K (3K
Vi5(0) = o D =| T T
Onxl 0n><1
Ope R0 (1)
_ O _| iy - iy | _
PO = sy sy | O PR - ) | SO0
O TRE(D) - 71K (1)
with

=00 - dia {f’f(%f(t))—ff(hf(t)) RRR@) - ReR@) IR0 -TIRI0)
SIS NTTRI - T REO R0 R0 - R0
R(R0) = @) HER{O) -HE®)  §(R0) = T 1)
RIO-nlny ~ Rio-wl@ ~ RO -EQ®
FREO) -Faf @) K RE@) - Kok (t))}
REO-nf@y ~ ~ REO-1E@) '

By incorporating the inequalities (3.35)—(3.38) into |[p(7) + 09(%) + 0(0)||s, one further derives

lp(2) + 09(®) + 0(0)lls
< |7+ o[ Con + (ST + S50+ 557+ S1) 200 ool
+ o(fft + 2m)ISlsllp(Dlls + (e + 2mOIISS sl (D)lls
+ o(fit + 2m) IS5 lsllp(0)lls + o(T + 2m IS5 lsllp ()5
+ 456 o T3 Nsllp(r = SO)ls + 45 Rl T lsllp (e = T@)lls
+ 45 qKoll TSV lsllp(r = SO)ls + 450 AlTEVlsllp(2 = FS@)lls + llo(@)lls- (3.39)

Hence, it follows from the presented first condition in Theorem 3.4 that one has

D*llp®lls
< -0 ¢ SC(I) SC(Z) SC(t) Ss‘(f) = 71+ 2mR Sg‘(t)
< 1y (~Cotr + Poto + (S + S5 + S5 + S{)E(p(1) + (1 + 20F) IS
+ (i + 2mDlISS s + (i + 2m)ISS s + (i + 20 ISE s llp )l
+ 45 (@MUl + TSl + o T 55 + 51T (e = Sl
< 1ty (~Rer + Pew) + 1y (S D) + (i + 2mHIS5 5 + (72 -+ 2mF) IS5

+ (it + 2nYSS s + (i + 2 YISl | llp o)l
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1
+ 40 @I ls + o175 ls
+ 1175 s + a1T5 ) sup lp(s)lls
1-J<s<t
< ~o1llp@lls + @2 sup llp(s)lls (3.40)

N
t—-9<s<t

When ¢ = t;, combine (3.39) and (3.40) with Lemma 2.2, and one can conclude

> ln((reﬁg )

Vp) <o sup V(p(s)e & 5

N
to—J<s<1y

s g (3.41)

in which g denotes the unique positive root of g = @; — c2)2e§g . Hence, according to Definition 3.1, we
obtain that systems (2.1) and (3.15) can reach global exponential synchronization. The specific proof
has been completed.

Remark 3.1. The sufficient and effective criteria for achieving exponential synchronization between
systems (2.1) and (3.15) are contingent upon several factors, including the time delay, network
parameters, intensity of the impulses, pulse delay, and the minimum duration between impulsive
intervals. Furthermore, these criteria build upon previous studies outlined in references [29-37],
offering new insights and expanding our understanding of synchronization in such systems.

Remark 3.2. It is crucial to acknowledge that time delays are inherently prevalent in information
processing because signals travel through various links at a limited speed. Deservedly, the time delay
also exists in pulse signals, which are usually called delay impulses. In comparison to the existing
literatures [32, 33, 36, 39], this paper first addresses the exponential stability and synchronization
control issues of QVNNs with delayed impulses, which is more in line with practical engineering.

Remark 3.3. The connection between a Markov process and general stochastic process can be
described as follows. A Markov process is a specific subset of a stochastic process. While a stochastic
process represents a broad framework for modeling random variables evolving over time, a Markov
process imposes additional structure through its memoryless property, making them particularly
suitable for modeling scenarios. This distinction allows Markov processes to serve as foundational
models in areas such as queueing theory, population dynamics, and financial modeling [42,43].

4. Numerical example

Example 4.1. Consider a two-neuron QVNN given in system (2.1) with two jumping modes as the
master system, and the involved parameters can be taken as R, = diag{0.4,0.5}, R, = diag{0.4,0.6},

L, = L, = diag{0.2,0.4}, M; = M, = diag{0.2,0.3}, I(¢) = 0.2 + 0.2sin 2¢, & = 0.4 with § =04,
and

s - 1.1-1.17+ 127+ 1.3k 0.9+ 0.87+ 0.9+ 0.7k
"0+ 087+ 117+ 138 1.2+097+1.27+0.7k|

(12— 1474157412k 14+ 160+ 1.2]+ 1.1k
2T 12+ 147+ 137+ 1.4k 1.4+0.17+1.2]+ 1.6k|
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[0.8-1.97+0.77-0.5k 1.1-127/-1.17+1.2k
"7 10.8+097-1.17+0.9% 0.6—1.17+0.8]+ 1.1k’
091374097 - 1.5 2.1 - 1.6/—2.1]+ 1.5k
7109+ 147137+ 1.2k 1.2-1.40+097+ 1.3k|"

Besides, the involved nonlinear activation functions take the form

1

i) =1/ = of () = g/ (W) = 7 Sin(%),
1

fi(h) = T () = o/() = g () = 7 cos().

Based on this, it can be computed according to Assumption 2.1 that m] = q, = 0.5. In addition, the
considered response system can be described as (3.15) with mode-dependent controller (3.16), and the
controller gain matrices are set as follows:

-16 0.4 ~18 0.1
q31‘[0.3 —17]’ q32‘[0.2 —17]‘

Besides, the considered Markov process with initial modal value ¢(0) = 1 follows exponential
distribution, and the corresponding jumping trajectory can be presented in Figure 1. Moreover, the
infinitesimal generator matrix is set as
-3 3
07 3]

0 2 4 6 8 10
t

Figure 1. Evolution of Markov process ¢(¢) with two modes.

Combine the system parameters given above, and we can get the following pleasing results. When
6= 1and s(t) = 1, one can get ~u(~Ry + B1) — W (ISFL + ISl + ISl + ISK11) = 9.649, and

AIMS Mathematics Volume 9, Issue 12, 33930-33955.



33950

TR+ N7+ 10+ 1K) = 4.0, While r(ty = 2, it also gets
(R + B = A(ISEl -+ IS+ IS+ 1SKL) = 9.650, and
E(IITflll + T+ 1751+ ||‘7’2K||1) = 6.05. In  this case, one  has

w; = min{9.649,9.650} = 9.649 > w, = max{6.05,4.10} = 6.05, which means that the first condition
in Theorem 3.3 is valid. Besides, it is easy to have a; = 1.4, by = 0.3, oo = 1.8330, and g = 0.9173.
According to Theorem 3.3, it can be inferred that systems (2.1) and (3.15) can attain global
exponential synchronization if there exists a scalar ﬁ satisfying the condition [;’) £ 2.66 > 2.6515 such
that the involved impulsive interval conforms to inf., {ty — ti—1} > ﬁg = 1.0640.

Next, in order to facilitate the simulation, set the impulsive interval to 1.08, that is, t,,1 — t, = 1.08.
In addition, let the initial values of drive-response systems (2.1) and (3.15) be 7i(t) = (h,(2), ix(1))7,
R(1) = (Ri(0), Ro(t) with 1) = —4.4 + 2.6] — 2.1 + 3.4k, 7o) = —2.6 — 3.4i — 3.6] — 1.4k,
Ri(1) = 3.4 — 1.6] + 2.4] — 1.4k, and Ro(t) = 2.1 + 327 + 2.1] + 2.5k for t € [—0.4,0]. Under
the influence of the mode-dependent linear feedback controller U, (1), the response time trajectories
of states R¥(1) = (RE¥1), RE0)" and 12(t) = (W), m2(0)" as well as their synchronization error
PR (1) = (pR(0), p§())" are shown in the upper-left corner of Figure 2. Similarly, the trajectory plots for
the states h'(t), RI(t) and ' (1), the states 1’ (t), R’(t) and their synchronization error ¢’ (t), as well as
states W5 (1), RE(t) and error pX(t), are illustrated in the remaining positions of Figure 2.

8
Tﬁe
= i
< o =
;”? oot ==
£ 2 —
—~ 0 =
S =
S [ L1 Y =
s A4 A AN A =
= A4r [ | | =
<. .6 =4
=
8 -6
0 2 4 6 8 10 0 2 4 6 8 10
t t
6 12
THO) _ 0
= —R{(1) =10 — R
S Bi() <o 0
= — R - — %O
= ol (1) = el (®)
=, — () % 6 — k()
5 < &
s < ™
S 4 S <, J ~
® A = 0 IO NN
=2 \,_/V_ =0 /
é% L/‘ /7< 1 /V =L,
= —~
=4 =
= V V < 4
=
-6 -6‘
0 2 4 6 8 10 0 2 4 6 8 10

t t

Figure 2. The response time trajectories of states 7(r), R(r) and their synchronization
error p(f).
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5. Conclusions

This article delves into global exponential stability and synchronization problems for a specific
type of delayed Markovian jumping QVNNs that incorporate delayed impulses. By employing the
matrix measure strategy and delayed differential inequality methods that account for impulsive
factors, we establish several practical and effective criteria to ascertain that the impulsive QVNNSs in
question can attain exponential synchronization with a given response system. Additionally, the
explicit exponential convergence rate is provided. Notably, the derived criteria are straightforward to
verify and can be readily applied in real-world scenarios. Finally, to underscore the precision and
efficacy of our theoretical findings, we present one numerical example accompanied by an
explanation. Moreover, inspired by the existing research findings in references [44, 45], our further
focus will be on the event-triggered synchronization problem of semi-Markovian jumping QVNNs
with time-varying delay, where the sojourn time follows a more general distribution.
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