In this paper, the dynamic behavior of a diffusive Rosenzweig-MacArthur (R-M) predator-prey model with hyperbolic tangent functional response and fear effect was investigated. For the local system, we gave a detailed classification of equilibria and performed bifurcation analysis. It was shown by numerical simulation that both the capture rate and fear factor have a stabilizing effect. Furthermore, the existence of limit cycles was discussed when the prey was in low fear or carrying capacity was sufficiently large. For the reaction-diffusion system, we considered the local stability of a unique positive equilibrium, Turing instability of both positive equilibrium and homogeneous periodic orbits under weak fear effect or strong carrying capacity, the direction of Hopf bifurcation and the stability of bifurcating periodic solutions under small fear cost and large diffusion coefficients, as well as the existence of positive nonconstant steady states. However, in the absence of fear effect, Turing instability of both positive equilibrium and homogeneous periodic orbits did not occur. Meanwhile, numerical examples were given to illustrate the corresponding analytic results.
Citation: Jing Zhang, Shengmao Fu. Hopf bifurcation and Turing pattern of a diffusive Rosenzweig-MacArthur model with fear factor[J]. AIMS Mathematics, 2024, 9(11): 32514-32551. doi: 10.3934/math.20241558
In this paper, the dynamic behavior of a diffusive Rosenzweig-MacArthur (R-M) predator-prey model with hyperbolic tangent functional response and fear effect was investigated. For the local system, we gave a detailed classification of equilibria and performed bifurcation analysis. It was shown by numerical simulation that both the capture rate and fear factor have a stabilizing effect. Furthermore, the existence of limit cycles was discussed when the prey was in low fear or carrying capacity was sufficiently large. For the reaction-diffusion system, we considered the local stability of a unique positive equilibrium, Turing instability of both positive equilibrium and homogeneous periodic orbits under weak fear effect or strong carrying capacity, the direction of Hopf bifurcation and the stability of bifurcating periodic solutions under small fear cost and large diffusion coefficients, as well as the existence of positive nonconstant steady states. However, in the absence of fear effect, Turing instability of both positive equilibrium and homogeneous periodic orbits did not occur. Meanwhile, numerical examples were given to illustrate the corresponding analytic results.
[1] | M. L. Rosenzweig, Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time, Science, 171 (1971), 385–387. https://doi.org/10.1126/science.171.3969.385 doi: 10.1126/science.171.3969.385 |
[2] | M. E. Gilpin, M. L. Rosenzweig, Enriched predator-prey systems: Theoretical stability, Science, 177 (1972), 902–904. https://doi.org/10.1126/science.177.4052.902 doi: 10.1126/science.177.4052.902 |
[3] | R. M. May, Limit cycles in predator-prey communities, Science, 177 (1972), 900–902. https://doi.org/10.1126/science.177.4052.900 doi: 10.1126/science.177.4052.900 |
[4] | M. R. Myerscough, M. J. Darwen, W. L. Hogarth, Stability, persistence and structural stability in a classical predator-prey model, Ecol. Model., 89 (1996), 31–42. https://doi.org/10.1016/0304-3800(95)00117-4 doi: 10.1016/0304-3800(95)00117-4 |
[5] | A. Persson, L. A. Hansson, C. Brönmark, P. Lundberg, L. B. Pettersson, L. Greenberg, et al., Effects of enrichment on simple aquatic food webs, Am. Nat., 157 (2001), 654–669. https://doi.org/10.1086/320620 doi: 10.1086/320620 |
[6] | M. Vos, B. W. Kooi, D. L. DeAngelis, W. M. Mooij, Inducible defences and the paradox of enrichment, Oikos, 105 (2004), 471–480. https://doi.org/10.1111/j.0030-1299.2004.12930.x doi: 10.1111/j.0030-1299.2004.12930.x |
[7] | M. L. Rosenzweig, R. H. MacAhthur, Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97 (1963), 209–223. https://doi.org/10.1086/282272 doi: 10.1086/282272 |
[8] | P. Turchin, Complex population dynamics, Princeton: Princeton University Press, 2003. |
[9] | G. F. Fussmann, B. Blasius, Community response to enrichment is highly sensitive to model structure, Biol. Lett., 1 (2005), 9–12. https://doi.org/10.1098/rsbl.2004.0246 doi: 10.1098/rsbl.2004.0246 |
[10] | G. Seo, G. S. K. Wolkowicz, Sensitivity of the dynamics of the general Rosenzweig-MacArthur model to the mathematical form of the functional response: A bifurcation theory approach, J. Math. Biol., 76 (2018), 1873–1906. https://doi.org/10.1007/s00285-017-1201-y doi: 10.1007/s00285-017-1201-y |
[11] | C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the European pine sawfly, Can. Entomol., 91 (1959), 293–320. https://doi.org/10.4039/ent91293-5 doi: 10.4039/ent91293-5 |
[12] | V. S. Ivlev, Experimental ecology of the feeding of fishes, New Haven: Yale University Press, 1961. |
[13] | A. D. Jassby, T. Platt, Mathematical formulation of the relationship between photosynthesis and light for phytoplankton, Limnol. Oceanogr., 21 (1976), 540–547. https://doi.org/10.4319/lo.1976.21.4.0540 doi: 10.4319/lo.1976.21.4.0540 |
[14] | L. Y. Zanette, A. F. White, M. C. Allen, C. Michael, Perceived predation risk reduces the number of offspring songbirds produce per year, Science, 334 (2011), 1398–1401. https://doi.org/10.1126/science.1210908 doi: 10.1126/science.1210908 |
[15] | X. Y. Wang, L. Zanette, X. F. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol., 73 (2016), 1179–1204. https://doi.org/10.1007/s00285-016-0989-1 doi: 10.1007/s00285-016-0989-1 |
[16] | Y. Wang, X. F. Zou, On a predator-prey system with digestion delay and anti-predation strategy, J. Nonlinear Sci., 30 (2020), 1579–1605. https://doi.org/10.1007/s00332-020-09618-9 doi: 10.1007/s00332-020-09618-9 |
[17] | H. S. Zhang, Y. L. Cai, S. M. Fu, W. M. Wang, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Appl. Math. Comput., 356 (2019), 328–337. https://doi.org/10.1016/j.amc.2019.03.034 doi: 10.1016/j.amc.2019.03.034 |
[18] | J. Wang, Y. L. Cai, S. M. Fu, W. M. Wang, The effect of the fear factor on the dynamics of a predator-prey model incorporating the prey refuge, Chaos, 29 (2019), 083109. https://doi.org/10.1063/1.5111121 doi: 10.1063/1.5111121 |
[19] | T. Qiao, Y. L. Cai, S. M. Fu, W. M. Wang, Stability and Hopf bifurcation in a predator-prey model with the cost of anti-predator behaviors, Int. J. Bifurcat. Chaos, 29 (2019), 1950185. https://doi.org/10.1142/s0218127419501852 doi: 10.1142/s0218127419501852 |
[20] | S. Mondal, G. P. Sudeshna, Dynamics of a delayed predator-prey interaction incorporating nonlinear prey refuge under the influence of fear effect and additional food, J. Phys. A, 53 (2020), 295601. https://doi.org/10.1088/1751-8121/ab81d8 doi: 10.1088/1751-8121/ab81d8 |
[21] | Y. Shi, J. H. Wu, Q. Cao, Analysis on a diffusive multiple Allee effects predator-prey model induced by fear factors, Nonlinear Anal. Real World Appl., 59 (2021), 103249. https://doi.org/10.1016/j.nonrwa.2020.103249 doi: 10.1016/j.nonrwa.2020.103249 |
[22] | P. Panday, N. Pal, S. Samanta, J. Chattopadhyay, Stability and bifurcation analysis of a three-species food chain model with fear, Int. J. Bifurcat. Chaos, 28 (2018), 1850009. https://doi.org/10.1142/s0218127418500098 doi: 10.1142/s0218127418500098 |
[23] | P. Panday, N. Pal, S. Samanta, J. Chattopadhyay, A three species food chain model with fear induced trophic cascade, Int. J. Appl. Comput. Math., 5 (2019), 100. https://doi.org/10.1007/s40819-019-0688-x doi: 10.1007/s40819-019-0688-x |
[24] | W. J. Ni, J. P. Shi, M. X. Wang, Global stability of spatially nonhomogeneous steady state solution in a diffusive Holling-Tanner predator-prey model, Proc. Amer. Math. Soc., 149 (2021), 3781–3794. https://doi.org/10.1090/proc/15370 doi: 10.1090/proc/15370 |
[25] | R. Yafia, M. A. Aziz-Alaoui, Existence of periodic travelling waves solutions in predator prey model with diffusion, Appl. Math. Model., 37 (2013), 3635–3644. https://doi.org/10.1016/j.apm.2012.08.003 doi: 10.1016/j.apm.2012.08.003 |
[26] | M. Banerjeea, V. Volpert, Spatio-temporal pattern formation in Rosenzweig-MacArthur model: Effect of nonlocal interactions, Ecol. Complex., 30 (2017), 2–10. https://doi.org/10.1016/j.ecocom.2016.12.002 doi: 10.1016/j.ecocom.2016.12.002 |
[27] | S. M. Fu, H. S. Zhang, Effect of hunting cooperation on the dynamic behavior for a diffusive Holling type Ⅱ predator-prey model, Commun. Nonlinear Sci. Numer. Simul., 99 (2021), 105807. https://doi.org/10.1016/j.cnsns.2021.105807 doi: 10.1016/j.cnsns.2021.105807 |
[28] | X. Li, W. H. Jing, J. P. Shi, Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model, IMA J. Appl. Math., 78 (2013), 287–306. https://doi.org/10.1093/imamat/hxr050 doi: 10.1093/imamat/hxr050 |
[29] | J. D. Meiss, Differential dynamical systems, Philadelphia: Society for industrial and applied mathematics, 2007. https://doi.org/10.1137/1.9780898718232 |
[30] | L. Perko, Differential equations and dynamical systems, New York: Springer, 1996. |
[31] | B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and applications of Hopf bifurcation, Cambridge-New York: Cambridge University Press, 1981. |
[32] | H. B. Shi, S. G. Ruan, Spatial, temporal and spatiotemporal patterns of diffusive predator-prey models with mutual interference, IMA J. Appl. Math., 80 (2015), 1534–1568. https://doi.org/10.1093/imamat/hxv006 doi: 10.1093/imamat/hxv006 |
[33] | X. Y. Gao, S. Ishag, S. M. Fu, W. J. Li, W. M. Wang, Bifurcation and Turing pattern formation in a diffusive ratio-dependent predator-prey model with predator harvesting, Nonlinear Anal. Real World Appl., 51 (2020), 102962. https://doi.org/10.1016/j.nonrwa.2019.102962 doi: 10.1016/j.nonrwa.2019.102962 |
[34] | Y. L. Song, T. H. Zhang, Y. H. Peng, Turing-Hopf bifurcation in the reaction-diffusion equations and its applications, Commun. Nonlinear Sci. Numer. Simul., 33 (2016), 229–258. https://doi.org/10.1016/j.cnsns.2015.10.002 doi: 10.1016/j.cnsns.2015.10.002 |
[35] | Y. Lou, W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differ. Equ., 131 (1996), 79–131. https://doi.org/10.1006/jdeq.1996.0157 doi: 10.1006/jdeq.1996.0157 |
[36] | Y. F. Jia, Y. Li, J. H. Wu, Effect of predator cannibalism and prey growth on the dynamic behavior for a predator-stage structured population model with diffusion, J. Math. Anal. Appl., 449 (2017), 1479–1501. https://doi.org/10.1016/j.jmaa.2016.12.036 doi: 10.1016/j.jmaa.2016.12.036 |
[37] | K. Ryu, I. Ahn, Coexistence theorem of steady states for nonlinear self-cross diffusion systems with competitive dynamics, J. Math. Anal. Appl., 283 (2003), 46–65. https://doi.org/10.1016/s0022-247x(03)00162-8 doi: 10.1016/s0022-247x(03)00162-8 |
[38] | E. N. Dancer, On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131–151. https://doi.org/10.1016/0022-247x(83)90098-7 doi: 10.1016/0022-247x(83)90098-7 |
[39] | L. Li, On positive solutions of a nonlinear equilibrium boundary value problem, J. Math. Anal. Appl., 138 (1989), 537–549. https://doi.org/10.1016/0022-247x(89)90308-9 doi: 10.1016/0022-247x(89)90308-9 |
[40] | J. K. Hale, H. Kocak, Dynamics and bifurcations, New York: Springer, 1991. https://doi.org/10.1007/978-1-4612-4426-4 |