
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(11): 32514–32551.
DOI: 10.3934/math.20241558
Received: 20 August 2024
Revised: 30 October 2024
Accepted: 07 November 2024
Published: 18 November 2024

Research article

Hopf bifurcation and Turing pattern of a diffusive Rosenzweig-MacArthur
model with fear factor

Jing Zhang1 and Shengmao Fu1,2,*

1 College of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070, China
2 School of Mathematics and Statistics, Kashi University, Kashi, 844006, China

* Correspondence: Email: fusm@nwnu.edu.cn; Tel: +8613893617107.

Abstract: In this paper, the dynamic behavior of a diffusive Rosenzweig-MacArthur (R-M) predator-
prey model with hyperbolic tangent functional response and fear effect was investigated. For the
local system, we gave a detailed classification of equilibria and performed bifurcation analysis. It
was shown by numerical simulation that both the capture rate and fear factor have a stabilizing effect.
Furthermore, the existence of limit cycles was discussed when the prey was in low fear or carrying
capacity was sufficiently large. For the reaction-diffusion system, we considered the local stability of a
unique positive equilibrium, Turing instability of both positive equilibrium and homogeneous periodic
orbits under weak fear effect or strong carrying capacity, the direction of Hopf bifurcation and the
stability of bifurcating periodic solutions under small fear cost and large diffusion coefficients, as well
as the existence of positive nonconstant steady states. However, in the absence of fear effect, Turing
instability of both positive equilibrium and homogeneous periodic orbits did not occur. Meanwhile,
numerical examples were given to illustrate the corresponding analytic results.

Keywords: Rosenzweig-MacArthur model; hyperbolic tangent functional response; fear effect; Hopf
bifurcation; Turing instability; steady state
Mathematics Subject Classification: 37G15, 35B32, 35B36, 35K57, 92D25

1. Introduction

The predator-prey system and its complex dynamics are perhaps the most extensively studied topics
in mathematical biology and population dynamics nowadays. Biologists strive to illustrate some
biological phenomena through experiments carried out in laboratories or in the wild. However, it
is often not entirely successful, and we also need to make mathematical progress on the analytic
aspects of the system. In terms of the ‘paradox of enrichment’ phenomenon [1–4], environmental
conditions and properties of the community such as web-like structure, shift to inedible prey, and
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inducible defences have been put forward by many scholars as interpretations for why communities
might fail to destabilize in the presence of enrichment [5,6]. The standard Rosenzweig-MacArthur (R-
M) predator-prey model [7] is possibly the simplest formulation of a trophic community able to cause
realistic dynamic behavior [8]. Rosenzweig and MacArthur in [7] used a graphical representation to
predict conditions for stability of the predator-prey interaction. In 2005, Fussmann and Blasius [9] first
suggested that it is highly sensitive to the properties of the mathematical model. They discussed the
generalized form of the standard Rosenzweig-MacArthur predator-prey model [7], which reads

du
dt

= g(u) − Φ(u)v,

dv
dt

= (Φ(u) − m)v,
(1.1)

where u(t) and v(t) are the densities of prey and predator, respectively. Prey and predator respectively
grow logistically at the rate g(u) = ru(1 − u/K) and according to the nonlinear functional response
Φ(u). m > 0 denotes the per capita mortality rate, r > 0 is called the prey intrinsic growth rate, and
K > 0 stands for the carrying capacity.

Fussmann and Blasius [9] obtained a surprising result that the extent of destabilization caused by
enrichment is highly sensitive to the mathematical nature of the response function.

Seo and Wolkowicz [10] paid attention to the general Rosenzweig-MacArthur predator-prey model
with three different response functions: Holling type II, Ivlev, and hyperbolic tangent as mentioned
in [11–13], respectively, which take the forms:

Holling type II : ΦH(u) =
aHu

1 + bHu
,

Ivlev : ΦI(u) = aI(1 − e−bIu),
Hyperbolic tangent : ΦT (u) = aT tanh(bT u).

Parameters aH, bH, aI , bI , aT , bT are all positive constants.
Seo and Wolkowicz [10] reconsidered the effects of the above three response functions on the

dynamic behavior of model (1.1) applying the bifurcation theory. First, they discussed the locally and
globally asymptotic stabilities of equilibria. Second, the dynamics sensitivities of model (1.1) for three
different response functions are analyzed. It is shown that there exist supercritical Hopf bifurcations
in cases of Holling type II and Ivlev functional response. Meanwhile, in case of hyperbolic tangent
functional response, the system also exhibits a subcritical Hopf bifurcation, co-dimension-two Bautin
(or generalized Hopf) bifurcation, transcritical bifurcation, and saddle-node bifurcation of periodic
orbits inducing two coexisting limit cycles. Finally, Seo and Wolkowicz illustrated the potential to
destabilize the dynamics of system (1.1) as more complex in the hyperbolic tangent functional response
case.

As for the R-M predator-prey system, little attention has been given to rigorously proving the effects
of the hyperbolic tangent response function on the dynamic behavior. Therefore, we focus on the
following R-M predator-prey model with hyperbolic tangent response function:

du
dt

= ru
(
1 − u

K

)
− a tanh(bu)v,

dv
dt

= (a tanh(bu) − m)v,
(1.2)
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where a is the predator’s conversion factor, and b is the efficiency of predator for capturing prey. Other
parameters have the same significances as introduced in (1.1).

In recent years, the prey’s antipredator behavior has been studied extensively from experimental and
mathematical points of view; one can refer to [14–21] and the references therein. In particular, Wang et
al. [15] first formulated the fear factor 1

1+hv , where the parameter h reflects the level of the fear reducing
intrinsic growth rate of prey. Inspired by [15], we try to study whether the system exhibits new dynamic
behavior when the cost of fear is incorporated into model (1.2). Therefore, we can modify system (1.2)
by multiplying the reproduction term ru of prey by a factor 1

1+hv as follows:
du
dt

= ru
1+hv

(
1 − u

K

)
− a tanh(bu)v,

dv
dt

= (a tanh(bu) − m)v.
(1.3)

However, the dynamic behavior of model (1.3) is similar to that of model (1.2) (can be checked by
hand; details omitted), which means that model (1.3) will not produce new biological phenomena (there
will only be a co-dimension-two Bautin bifurcation, will not be other bifurcations, e.g., Bogdanov-
Takens (B-T) bifurcation). Biologically, a high level of fear will reduce the foraging activities of
prey due to the energy and time limitations. This antipredator behavior indirectly reduces the capture
efficiency of the predator. To incorporate the fear into the low capture rate of the predator as in [22,23],
one can modify system (1.2) by multiplying the capture term bu of the predator by a factor 1

1+kv , where
k represents the level of the fear reducing capture rate of the predator.

Based on these reasons above, in this paper we discuss the following modified R-M predator-prey
model with both hyperbolic tangent functional response and fear factor:

du
dt

= ru
(
1 − u

K

)
− a tanh

(
bu

1+kv

)
v , f1(u, v),

dv
dt

=
(
a tanh

(
bu

1+kv

)
− m

)
v , f2(u, v).

(1.4)

Model (1.4) can in principle, be used to model numerous types of interactions, such as hares and foxes,
sardines and sharks, mice and owls, and so on.

Since environment, climate, food supplies, and other factors could lead to the densities of predator
and prey being spatially inhomogeneous within a fixed bounded domain at any given time, and each
species naturally diffuses to areas of smaller population concentration, we study the following reaction-
diffusion model associated with (1.4)

∂u
∂t − d1∆u = ru

(
1 − u

K

)
− a tanh

(
bu

1+kv

)
v, x ∈ Ω, t > 0,

∂v
∂t − d2∆v =

(
a tanh

(
bu

1+kv

)
− m

)
v, x ∈ Ω, t > 0,

∂u
∂υ

= ∂v
∂υ

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥,. 0, v(x, 0) = v0(x) ≥,. 0, x ∈ Ω,

(1.5)

where Ω ⊂ RN(N ≥ 1) is a bounded domain with smooth boundary ∂Ω, and υ is the outward unit
normal vector on ∂Ω. d1 > 0 and d2 > 0 are called diffusion coefficients. The homogeneous Neumann
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boundary conditions indicate that system (1.5) is self-contained with zero population flux across ∂Ω.
u0(x) and v0(x) are nonnegative smooth functions.

The asymptotic behavior of nonnegative solutions of (1.5) is closely connected with its nonnegative
steady states, and we discuss the following steady state problem associated with (1.5):

−d1∆u = ru
(
1 − u

K

)
− a tanh

(
bu

1+kv

)
v, x ∈ Ω,

−d2∆v =
(
a tanh

(
bu

1+kv

)
− m

)
v, x ∈ Ω,

∂u
∂υ

= ∂v
∂υ

= 0, x ∈ ∂Ω.

(1.6)

Note that some other cases of predator-prey R-D equations for which Hopf bifurcations and Turing
instability have been established (see [24–28] and references therein). Nevertheless, the diffusive
R-M predator-prey model with both hyperbolic tangent functional response and fear factor remains
unstudied.

The first purpose of this paper is to investigate the influence of fear factor on the stability of
system (1.4). It is shown that strong fear effect can stabilize the system (1.4). Our second purpose
is to perform bifurcation analysis for system (1.4). It is shown by numerical simulation that both
the capture rate of predator and the fear cost could stabilize the system. Moreover, system (1.4) will
generate a limit cycle when the prey is in a state of low fear or carrying capacity is large enough,
and will always undergo a transcritical bifurcation regardless of whether the prey is in fear or not. Our
third purpose is to discuss and compare the dynamic behavior of Reaction-Diffusion (R-D) model (1.5)
with and without fear factor. Case I. k = 0. There only exist supercritical Hopf bifurcations and
the bifurcating periodic solutions are orbitally asymptotically stable. Case II. k > 0. Theoretical
analysis and numerical simulation demonstrate that Turing instability of both positive equilibrium and
homogeneous periodic orbits occurs under weak fear effect or strong carrying capacity, which induces
spatial inhomogeneous patterns. Moreover, if the fear cost is sufficiently small and the diffusion
coefficients d1 and d2 are large enough, system (1.5) undergoes new Hopf bifurcations which produce
temporal inhomogeneous patterns. For completeness, the existence and nonexistence results of positive
nonconstant steady states of (1.5) are proved.

Briefly speaking, a strong fear effect can stabilize the system (1.4), while a weak fear effect causes
the system (1.4) to generate limit cycles. In system (1.5), a small fear factor gives rise to spatial and
temporal inhomogeneous patterns.

The rest of this paper is organized as follows: In Section 2, we first give a detailed classification
of the equilibria for Ordinary Differential Equation (ODE) model (1.4). Then, the existence, direction,
and stability of Hopf bifurcation for (1.4) are studied by the Poincaré-Andronov-Hopf bifurcation
theorem. Next, we use the Poincaré-Bendixson theorem to prove the existence of limit cycles and
apply the Sotomayor’s theorem to demonstrate that (1.4) undergoes a transcritical bifurcation. Finally,
numerical simulations are provided to discuss the dynamics differences between model (1.2) and (1.4).
In Section 3, we take into accuont the Turing instability of both positive equilibrium and homogeneous
periodic orbits for reaction-diffusion system (1.5), and the direction of Hopf bifurcation and the
stability of bifurcating periodic solutions of (1.5) are considered in one space dimension. Meanwhile,
the above analytic results are illustrated numerically. In Section 4, we investigate the existence of
positive nonconstant solutions of (1.6) according to the fixed point index theory. A brief discussion is
presented in Section 5.
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2. Stability and bifurcation analysis of ODE model (1.4)

It is easy to verify that model (1.4) has a predator-prey extinction equilibrium E0 = (0, 0), a predator-
extinction equilibrium EK = (K, 0), and a unique positive equilibrium Ē = (ū, v̄) if, and only if,

(H0) arctanh
(m

a

)
< bū < bK, a > m,

where

ū =
K

(
rk arctanh

(
m
a

)
− bm

)
+
√
4

2rk arctanh
(

m
a

) ,

v̄ =
bū − arctanh

(
m
a

)
k arctanh

(
m
a

) =
bK

(
rk arctanh

(
m
a

)
− bm

)
− 2rk arctanh2

(
m
a

)
+ b
√
4

2rk2 arctanh2
(

m
a

)
with

4 := K2
(
rk arctanh

(m
a

)
− bm

)2
+ 4mrkK arctanh2

(m
a

)
. (2.1)

2.1. Local stability analysis

For model (1.4), the Jacobian matrix at (u, v) can be written as

J(u, v) =


r
(
1 − 2u

K

)
− abv

(1+kv)cosh2( bu
1+kv )

abkuv
(1+kv)2cosh2( bu

1+kv )
− a tanh

(
bu

1+kv

)
abv

(1+kv)cosh2( bu
1+kv )

a tanh
(

bu
1+kv

)
− abkuv

(1+kv)2cosh2( bu
1+kv )
− m

 .
In what follows, we give the classification of the equilibria for model (1.4). Obviously, E0 is a saddle
point. The Jacobian matrix at EK is

J(K, 0) =

(
−r − a tanh(bK)
0 a tanh(bK) − m

)
.

It has two eigenvalues given by λ1 = −r < 0 and λ2 = a tanh(bK) − m. Hence, EK is a saddle point if
a tanh(bK) > m and EK is a stable node if a tanh(bK) < m.

The Jacobian matrix at Ē is as follows:

J(ū, v̄) =

(
a11 a12

a21 a22

)
, (2.2)

where

a11 =
K(a2 − m2)

(
arctanh

(
m
a

)
− bū

)
+ arkū(K − 2ū)

akKū
,

a12 =
(a2 − m2)

(
bū − arctanh

(
m
a

))
arctanh

(
m
a

)
abū

− m < 0,

a21 =
(a2 − m2)

(
bū − arctanh

(
m
a

))
akū

> 0,

a22 =
(a2 − m2)

(
arctanh

(
m
a

)
− bū

)
arctanh

(
m
a

)
abū

< 0.

(2.3)
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The corresponding characteristic equation of (2.2) is

P(λ) = λ2 − Θ1λ + Θ2

with

Θ1 := a11 + a22 =
K(a2−m2)

(
arctanh

(
m
a

)
−bū

) (
b+k arctanh

(
m
a

))
+abrkū(K−2ū)

abkKū
,

Θ2 := a11a22 − a12a21 =
(a2 − m2)

(
bū − arctanh

(
m
a

)) √
4

abkKū
> 0.

Lemma 2.1. (1) Θ1 < 0 if, and only if,

(H1) K(a2−m2)
(
bū−arctanh

(m
a

)) (
b+k arctanh

(m
a

))
> abrkū(K−2ū).

(2) Θ1 > 0 if, and only if,

(H2) K(a2−m2)
(
bū−arctanh

(m
a

)) (
b+k arctanh

(m
a

))
< abrkū(K−2ū).

(3) a11 < 0 if, and only if,

(H3) K(a2 − m2)
(
bū − arctanh

(m
a

))
> arkū(K−2ū).

(4) a11 > 0 if, and only if,

(H4) K(a2 − m2)
(
bū − arctanh

(m
a

))
< arkū(K−2ū).

Remark 2.1. Denote

k1 =
b
[
am − (a2 − m2)arctanh

(
m
a

)]
(a2 − m2)arctanh

(
m
a

) > 0,

k2 =
b
[
2am − (a2 − m2)arctanh

(
m
a

)]
arctanh

(
m
a

) [
(a2 − m2)arctanh

(
m
a

)
+ ar

] > 0

and
s∗ = (a2 − m2)arctanh

(m
a

) (
b + k arctanh

(m
a

))
> 0. (2.4)

If one of the following conditions holds

(HK1) k < min{k1, k2},

(HK2) k > max{k1, k2},

then

Θ1 < 0 ⇔ 0 < K <
arctanh

(
m
a

)
(s∗ − 2abm)2

b(s∗ − abm)
(
s∗ − 2abm + ark arctanh

(
m
a

)) , K0,

Θ1 > 0 ⇔ K > K0.
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Thus, we have the following conclusion.

Theorem 2.1. Assume that (H0) and (HK1) hold, or (H0) and (HK2) hold. Then, the positive equilibrium
Ē is a locally asymptotically stable node or focus if (H1) (i.e., K < K0) holds, whereas it is an unstable
node or focus if (H2) (i.e., K > K0) holds.

The impact of fear factor k on the stability of Ē is investigated in the following example.

Example 2.1. Choose a = 0.85, b = 3, m = 0.6, r = 4, and K = 2. Clearly, (H0) holds, and (H2) is
satisfied if k < 0.2734847026. (H1) will be satisfied as k increases from 0.2734847026. It means that
Ē changes from unstable to locally asymptotically stable as k increases. In the biological sense, the
higher level of fear drives prey to exhibit antipredation behaviors including habitat switch, reducing
foraging time, raising vigilance, and so on, the more likely prey and predator are to coexist.

2.2. Bifurcation analysis

In this subsection, we prove the existence of Hopf bifurcation, limit cycle and transcritical
bifurcation for system (1.4). The direction of Hopf bifurcation and the stability of bifurcating periodic
solution of (1.4) are discussed.

2.2.1. Hopf bifurcation and limit cycle

It is difficult to obtain a unique positive bifurcation parameter value and verify the transversality
condition by taking fear factor k as the bifurcation parameter. Hence, we choose K as the bifurcation
parameter to look for the condition for Hopf bifurcation of model (1.4) occurring at Ē.

Clearly, Θ1 = 0 if, and only if, K = K0 when one of (HK1) and (HK2) holds.
Let λ(K) = α(K) ± iβ(K) be a pair of complex roots of P(λ) = 0 when K is near K0. Then

α(K) =
Θ1

2
, β(K) =

1
2

√
−4a12a21 − (a11 − a22)2.

Some straightforward calculations imply that

α(K0) = 0,

α′(K0) =
r arctanh

(
m
a

)
(2abm − s∗) t∗

ab
[
K0

(
rk arctanh

(
m
a

)
− bm

)
+
√
40

]2 √
40

> 0,

where s∗ is defined as (2.4) and

40 = K2
0

(
rk arctanh

(m
a

)
−bm

)2
+4mrkK0 arctanh2

(m
a

)
,

t∗ =

(
rk arctanh

(m
a

)
−bm

) [
K0

(
rk arctanh

(m
a

)
−bm

)
+
√
40

]
+ 2mrk arctanh2

(m
a

)
> 2K0

(
rk arctanh

(m
a

)
−bm

)2
+2mrk arctanh2

(m
a

)
> 0.

Indeed, α′(K0) > 0 if (HK1) holds; and the sign of α′(K0) depends on the sign of 2abm − s∗ if (HK2)
holds. It is not hard to prove 2abm − s∗ < 0 is in contradiction with arctanh

(
m
a

)
< bK0, which means
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that (H0) does not hold. Then, α′(K0) > 0 if (HK2) is satisfied. Therefore, the transversality condition
always holds with α′(K0) > 0.

Thus, system (1.4) undergoes a Hopf bifurcation at Ē as K passes through K0.

A discussion about the detailed property of Hopf bifurcation can be found in Appendix 5 and one
can obtain the following result.

Theorem 2.2. Suppose that (H0) and (HK1) hold, or (H0) and (HK2) hold. Then, system (1.4) undergoes
a Hopf bifurcation at the positive equilibrium Ē when K = K0.

(i) The direction of the Hopf bifurcation is subcritical and the bifurcated periodic solutions are
unstable if a(K0) > 0 (see (5.5)).

(ii) The direction of the Hopf bifurcation is supercritical and the bifurcated periodic solutions are
orbitally asymptotically stable if a(K0) < 0 (see (5.5)).

In the following, we illustrate Theorem 2.2 by numerical simulations.

Example 2.2. Choose two sets of parameters in model (1.4) as follows:

a = 3.2, m = 2, b = 2, r = 4, k = 0.2, (2.5)
a = 0.9, m = 0.75, b = 3, r = 2, k = 0.6. (2.6)

Under (2.5), K0 ≈ 2.2037 and the parameters satisfy (H0) and (HK1). By computing, we obtain a(K0) ≈
0.0044 > 0. It follows from Theorem 2.2 that system (1.4) undergoes a subcritical Hopf bifurcation
and the bifurcating periodic solutions are unstable. In Figure 1(a), choose K = 2 < K0, and by
Theorem 2.1, Ē ≈ (0.4148, 0.6575) is locally asymptotically stable. In Figure 1(b), take K = 2.4 > K0,
and by Theorem 2.1, Ē ≈ (0.4171, 0.6893) is unstable.
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(a) K = 2
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E
0

E

E
K

(b) K = 2.4

Figure 1. The phase portraits of model (1.4) with (2.5). (a) Ē ≈ (0.4148, 0.6575) is locally
asymptotically stable; (b) Ē ≈ (0.4171, 0.6893) is unstable.

Under (2.6), K0 ≈ 2.2801 and the parameters satisfy (H0) and (HK1). Calculations yield that
a(K0) ≈ −0.1990 < 0. By Theorem 2.2, system (1.4) undergoes a supercritical Hopf bifurcation and the
bifurcating periodic solutions are stable. In Figure 2(a), take K = 2.2 < K0, and Ē ≈ (0.6975, 1.2422)
is locally asymptotically stable. In Figure 2(b), choose K = 2.4 > K0, and Ē ≈ (0.7226, 1.3468)
is unstable. There exists a stable limit cycle that surrounds Ē arising from a supercritical Hopf
bifurcation.

AIMS Mathematics Volume 9, Issue 11, 32514–32551.



32522

0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

u

v

E
0 E

K

_
E

(a) K = 2.2
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Figure 2. The phase portraits of model (1.4) with (2.6). (a) Ē ≈ (0.6975, 1.2422) is locally
asymptotically stable; (b) Ē ≈ (0.7226, 1.3468) is unstable. System (1.4) produces a stable
limit cycle that surrounds Ē arising from a supercritical Hopf bifurcation.

In the absence of fear, system (1.4) degenerates into (1.2). Notice that the cost of fear is incorporated
into the capture rate of predator in the modified R-M model (1.4), and we choose b as the bifurcation
parameter to compare the dynamics differences between model (1.2) and (1.4). Similar to the above
analysis associated with Theorem 2.2, we only give the corresponding numerical results as follows.

Example 2.3. Choose the following two sets of parameters in model (1.2):

a = 0.9, m = 0.3, r = 4, K = 1, (2.7)
a = 0.9, m = 0.8, r = 1, K = 2. (2.8)

Under (2.7), b0 ≈ 4.9186. System (1.2) undergoes a subcritical Hopf bifurcation and the bifurcating
periodic solutions are unstable. In Figure 3(a), choose b = 4 < b0, and the positive equilibrium E∗ ≈
(0.0866, 1.0552) of system (1.2) is locally asymptotically stable. The two limit cycles are generated
by saddle-node bifurcation of limit cycles. System (1.2) exhibits bistability (a stable equilibrium and a
stable limit cycle). In Figure 3(b), take b = 6.5 > b0, then E∗ ≈ (0.0533, 0.6730) is unstable.
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Figure 3. The phase portraits of model (1.2) with (2.7). (a) E∗ ≈ (0.0866, 1.0552) is locally
asymptotically stable. The two limit cycles are generated by saddle-node bifurcation of limit
cycles; (b) E∗ ≈ (0.0533, 0.6730) is unstable.

Under (2.8), b0 ≈ 1.7726. System (1.2) undergoes a supercritical Hopf bifurcation and the
bifurcating periodic solutions are stable. In Figure 4(a), take b = 1.6 < b0, and E∗ ≈ (0.8854, 0.6168)
is locally asymptotically stable. In Figure 4(b), choose b = 1.8 > b0, and E∗ ≈ (0.7870, 0.5966) is
unstable. There is a stable limit cycle that surrounds E∗ arising from a supercritical Hopf bifurcation.
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Figure 4. The phase portraits of model (1.2) with (2.8). (a) E∗ ≈ (0.8854, 0.6168) is locally
asymptotically stable; (b) E∗ ≈ (0.7870, 0.5966) is unstable. System (1.2) produces a stable
limit cycle that surrounds E∗ arising from a supercritical Hopf bifurcation.

Remark 2.2. (1) Conditions (HK1) and (HK2) indicate that system (1.4) may exhibit oscillation
behaviors under a low or high level of fear.

(2) It is shown by numerical simulation that system (1.2) exhibits bistability phenomenon.
System (1.4) produces a stable limit cycle that surrounds unstable Ē arising from a supercritical Hopf
bifurcation. This suggests that both the capture rate of predator and the fear factor could stabilize
the system.
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Remark 2.3. There will be a co-dimension-two Bautin (generalized Hopf or degenerate Hopf)
bifurcation at positive equilibrium in system (1.2) and (1.4) when the first Lyapunov coefficient σ2 = 0
(see (5.6)).

Notice that the above Hopf bifurcation is a small amplitude nonconstant periodic solution around Ē,
and the bifurcation structure is local. Therefore, we try to prove the existence of limit cycles applying
the Poincaré-Bendixson theorem.

Theorem 2.3. For system (1.4), there exists a limit cycle if (H0) and (H2) hold.

Proof. By Theorem 2.1, Ē = (ū, v̄) is unstable under conditions (H0) and (H2). Furthermore, EK =

(K, 0) is a saddle point. Note that

K > ū >
1
b

arctanh
(m

a

)
.

First, set L1 = u − K, and one has

dL1

dt

∣∣∣∣
L1=0

=
du
dt

∣∣∣∣
u=K

= −a tanh
(

bK
1 + kv

)
v < 0, ∀v ∈ (0,∞).

Next, let L2 = u + v − ς with ς > 0 to be specified later. It is not hard to verify that

dL2

dt

∣∣∣∣
L2=0

=

(
du
dt

+
dv
dt

) ∣∣∣∣
v=ς−u

= ru
(
1 −

u
K

)
− m(ς − u) < 0

for sufficiently large ς > 0 and 0 < u < K.
Finally, set L3 = ū + v − ς, and we obtain

dL3

dt

∣∣∣∣
L3=0

=
dv
dt

∣∣∣∣
v=ς−ū

=

(
a tanh

(
bu

1 + k(ς − ū)

)
− m

)
(ς − ū) < 0

for 0 < u < 1+k(ς−ū)
b arctanh

(
m
a

)
.

By the Poincaré-Bendixson theorem [29], there exists a limit cycle in system (1.4) if (H0) and (H2)
hold. �

Remark 2.4. Similar to Theorem 2.3, system (1.2) possesses a limit cycle when E∗ is unstable.

2.2.2. Transcritical bifurcation

Since the transcritical bifurcation occurs at a non-hyperbolic equilibrium of system, we need to
consider the axial equilibrium EK . Notice that EK could coincide with Ē when a tanh(bK) = m, and the
transversality condition for transcritical bifurcation of system (1.4) (k ≥ 0) is verified by Sotomayor’s
theorem as follows.

Theorem 2.4. The system (1.4) (k ≥ 0) experiences a transcritical bifurcation when the parameters
satisfy

b ≡ bTC =
1
K

arctanh
(m

a

)
.
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Proof. The Jacobian matrix at EK

JEK =

(
−r − m
0 0

)
has a zero eigenvalue. Let S and V be the two eigenvectors corresponding to the zero eigenvalue of
JEK and JT

EK
, respectively, and

S =

(
S 1

S 2

)
=

(
−m

r
1

)
, V =

(
V1

V2

)
=

(
0
1

)
.

One can obtain

fb(EK; bTC) =

(
−auv(1 − tanh2(bu))
auv(1 − tanh2(bu))

)
(EK ; bTC)

=

(
0
0

)
,

D fb(EK; bTC)S =

(
0 −au(1 − tanh2(bu))
0 au(1 − tanh2(bu))

) (
−m

r
1

)
(EK ; bTC)

=

 K(m2−a2)
a

K(a2−m2)
a

 ,

D2 f (EK; bTC)(S , S ) =

 ∂2 f1
∂u2 S 1S 1 + 2 ∂2 f1

∂u∂vS 1S 2 +
∂2 f1
∂v2 S 2S 2

∂2 f2
∂u2 S 1S 1 + 2 ∂2 f2

∂u∂vS 1S 2 +
∂2 f2
∂v2 S 2S 2


(EK ; bTC)

=

 −2r
K S 2

1 − 2ab(1 − tanh2(bu))S 1S 2

2ab(1 − tanh2(bu))S 1S 2


(EK ; bTC)

=


2rm(a2−m2)arctanh( m

a )−2arm2

ar2K

2m(m2−a2)arctanh( m
a )

arK

 .
Hence, S and V satisfy the transversality conditions

V> fb(EK; bTC) =
(

0 1
) ( 0

0

)
= 0,

V>[D fb(EK; bTC)S ] =
(

0 1
)  K(m2−a2)

a

K(a2−m2)
a

 =
K(a2 − m2)

a
, 0,

V>[D2 f (EK; bTC)(S , S )] =
(

0 1
) 

2rm(a2−m2)arctanh( m
a )−2arm2

ar2K

2m(m2−a2)arctanh( m
a )

arK

 , 0.

According to Sotomayor’s theorem [30], system (1.4) (k ≥ 0) undergoes a transcritical bifurcation
at EK . �

Remark 2.5. For the R-M predator-prey model (1.1) with Holling type II or Ivlev functional response,
a similar bifurcation analysis indicates that there only exist supercritical Hopf bifurcations. However,
in case of hyperbolic tangent functional response (k ≥ 0), it can also cause to occur a subcritical Hopf
bifurcation or a transcritical bifurcation.
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Remark 2.6. Note that the number of positive equilibria does not split from one to two when the
parameter crosses critical value, the stability will not change, and, thus, saddle-node bifurcation
cannot occur in system (1.4). On the other hand, the occurrence of transcritical bifurcation also implies
that system (1.4) will not give rise to a saddle-node bifurcation. The linearized matrix of system (1.4)
at the positive equilibrium has no zero eigenvalue with multiplicity 2. Hence, B-T bifurcation does not
occur in (1.4).

3. Turing instability and Hopf bifurcation of R-D model (1.5)

In this section, we study the Turing instability of both positive equilibrium and homogeneous
periodic orbits for (1.5). Moreover, the direction of Hopf bifurcation and the stability of bifurcating
periodic solutions to (1.5) are discussed in one space dimension.

3.1. Turing instability of positive equilibrium

In 1952, Turing demonstrated that a system of coupled reaction-diffusion equations is applicable
to depict patterns and forms within biological systems. Turing’s theory reveals that the interaction
between chemical reaction and diffusion might render the stable equilibrium of the local system
unstable for the diffusive system, and give rise to the spontaneous formation of a spatially periodic
stationary structure. This type of instability is named Turing instability or diffusion-driven instability.

Let 0 = µ1 < µ2 < µ3 < · · · be the eigenvalues of the operator −∆ on Ω with the homogeneous
Neumann boundary conditions and W(µn) be the eigen-space corresponding to µn in H1(Ω). Let X be
the closure of (C1(Ω̄))2 in (H1(Ω))2, {φns : s = 1, 2, · · ·, dim W(µn)} be an orthonormal basis of W(µn),
and Xns = {cφns : c ∈ R2}. Then,

X =

+∞⊕
n=1

Xn, Xn =

dim W(µn)⊕
s=1

Xns.

Theorem 3.1. Assume that (H0) and (H3) hold. Then, the unique positive equilibrium Ē of model (1.5)
is locally uniformly asymptotically stable.

The proof of Theorem 3.1 is given in Appendix 5.
It follows from Theorem 2.1 that the positive equilibrium Ē of ODE model (1.4) is locally

asymptotically stable if (H1) holds. In what follows, we look for the conditions for the Turing
instability of the spatially homogeneous equilibrium Ē of R-D model (1.5) under the assumption (H1)
and (H4).

For convenience, denote

ξ(µn) := Nn = d1d2µ
2
n − (a11d2 + a22d1)µn + Θ2,

which is a quadratic polynomial with respect to (w.r.t.) µn. If gn(λ) = 0 has two real eigenvalues with
different signs, then the positive equilibrium Ē of (1.5) is unstable. Note that if

H(d1, d2) := −a11d2 − a22d1 < 0,
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then ξ(µn) will take its minimum value

min
µn

ξ(µn) = Θ2 −
(a11d2 + a22d1)2

4d1d2

at the critical value µ̄ = a11d2+a22d1
2d1d2

> 0.
Define the radio γ = d2/d1 and

∆(d1, d2) = (a11d2 + a22d1)2 − 4d1d2Θ2 = a2
11d2

2 + 2(2a12a21 − a11a22)d1d2 + a2
22d2

1.

Thus,

∆(d1, d2) = 0 ⇔ a2
11γ

2 + 2(2a12a21 − a11a22)γ + a2
22 = 0,

H(d1, d2) = 0 ⇔ γ = −
a22

a11
≡ γ∗ > 0.

Moreover,

4(2a12a21 − a11a22)2 − 4a2
11a2

22 = 16a12a21(a12a21 − a11a22) = −16a12a21Θ2 > 0.

Then ∆(d1, d2) = 0 has two positive real roots

γ1 =
−(2a12a21 − a11a22) + 2

√
a12a21(a12a21 − a11a22)

a2
11

,

γ2 =
−(2a12a21 − a11a22) − 2

√
a12a21(a12a21 − a11a22)

a2
11

.

By direct calculations, γ1 > γ∗ > γ2 > 0. Hence, H(d1, d2) < 0 and minµn ξ(µn) < 0 when γ > γ1. This
implies that diffusion-driven instability appears.

Similarly, minµn ξ(µn) > 0 at µ̄ can be determined when γ1 > γ > γ∗ or γ∗ > γ > γ2. In these two
cases, all the roots of gn(λ) = 0 have negative real parts, and Ē is locally asymptotically stable.

Analyzing the distribution of the roots of gn(λ) = 0, one can obtain the following result.

Theorem 3.2. Suppose that (H0), (H1), and (H4) hold (in this case, Ē is stable w.r.t. ODE model (1.4)).
Then there exist unbounded regions

U1 := {(d1, d2) : d1 > 0, d2 > 0, γ1d1 > d2 > −d1a22/a11}, (3.1)
U2 := {(d1, d2) : d1 > 0, d2 > 0, − d1a22/a11 > d2 > γ2d1}, (3.2)
U3 := {(d1, d2) : d1 > 0, d2 > 0, d2 > γ1d1} (3.3)

such that Ē is locally asymptotically stable w.r.t. R-D model (1.5) in U1 or U2, and unstable w.r.t. R-D
model (1.5) in U3, which means that Turing instability occurs.

Now, we provide an example to explain Theorem 3.2 and investigate Turing instability of R-D
model (1.5).
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Example 3.1. Fix a set of parameters in model (1.5) as follows:

a = 3.2, b = 4, m = 2.4, r = 3, k = 2, K = 3, d1 = 0.01. (3.4)

The parameters in (3.4) satisfy (H0) and Θ1 ≈ −0.1026 < 0, i.e., (H1) holds. Then, the unique
positive equilibrium Ē ≈ (0.4943, 0.5161) in model (1.4) is locally asymptotically stable. Now we
choose d2 = 0.1, then γ1 ≈ 25.5802, γ1d1 − d2 ≈ 0.1558 > 0, and d2 + d1a22/a11 ≈ 0.0883 > 0, i.e.,
parameters in U1. Ē of model (1.5) is also locally asymptotically stable by Theorem 3.2 (see Figure 5).

Figure 5. Stable behavior of model (1.5) with parameters in (3.4) and d2 = 0.1.

Notice that if we increase d2 to 0.3, then γ1 ≈ 25.5802 and d2 − γ1d1 ≈ 0.0442 > 0, i.e., parameters
in U3. As a consequence, Ē ≈ (0.4943, 0.5161) is stable w.r.t. ODE model (1.4), and unstable w.r.t.
R-D model (1.5) by Theorem 3.2. It indicates that Turing instability occurs in (1.5) (see Figure 6).

Figure 6. Turing instability of model (1.5) with parameters in (3.4) and d2 = 0.3.

Remark 3.1. In the absence of fear, positive equilibrium E∗ of ODE system (1.2) and positive
equilibrium Ē of diffusive system (1.5) with k = 0 are always stable, which means that the Turing
instability of both positive equilibrium and homogeneous periodic orbits does not occur in (1.5) with
k = 0. Compared with Theorem 3.2, the fear effect induces Turing instability, which implies that the
cost of fear could create spatial inhomogeneous patterns.
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3.2. The existence and stability of Hopf bifurcation

This subsection is devoted to determining the direction of Hopf bifurcation and stability of the
bifurcating periodic solutions for system (1.5) by the normal form theory and center manifold theorem.
For the sake of convenience, we consider the following system in Ω = (0, `π), ` ∈ R+:

ut − d1uxx = ru
(
1 − u

K

)
− a tanh

(
bu

1+kv

)
v, x ∈ (0, `π), t > 0,

vt − d2vxx =
(
a tanh

(
bu

1+kv

)
− m

)
v, x ∈ (0, `π), t > 0,

ux(0, t) = ux(`π, t) = vx(0, t) = vx(`π, t) = 0, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (0, `π).

(3.5)

It is well-known that the eigenvalue problem

−ϕ′′ = µϕ, x ∈ (0, `π), ϕ′(0) = ϕ′(`π) = 0

has eigenvalues µn = n2

`2 (n = 0, 1, 2, · · · ) with corresponding eigenfunctions ϕn(x) = cos n
`
x.

As in [31] (see also [32, 33]), we shall derive our results in 3 steps as follows.
Step 1. Linearization analysis.

For system (3.5), we take the perturbation u = ũ + ū, v = ṽ + v̄, and still denote (ũ, ṽ) by (u, v). Then
the problem (3.5) is transformed into

ut − d1uxx = r(u + ū)
(
1 − u+ū

K

)
− a tanh

(
b(u+ū)

1+k(v+v̄)

)
(v + v̄), x ∈ (0, `π), t > 0,

vt − d2vxx =
(
a tanh

(
b(u+ū)

1+k(v+v̄)

)
− m

)
(v + v̄), x ∈ (0, `π), t > 0,

ux(0, t) = ux(`π, t) = vx(0, t) = vx(`π, t) = 0, t > 0,

u(x, 0) = u0(x) − ū, v(x, 0) = v0(x) − v̄, x ∈ (0, `π).

(3.6)

The linearized operator of system (3.6) evaluated at (0, 0) is

L(K) :=
 d1

d2

dx2 + A(K) B(K)
C(K) d2

d2

dx2 + D(K)


and

Ln(K) :=
 A(K) − d1n2

`2 B(K)
C(K) D(K) − d2n2

`2

 ,
where

A(K) =
K(a2 − m2)

(
arctanh

(
m
a

)
− bū

)
+ arkū(K − 2ū)

akKū
,

B(K) =
(a2 − m2)

(
bū − arctanh

(
m
a

))
arctanh

(
m
a

)
abū

− m,

C(K) =
(a2 − m2)

(
bū − arctanh

(
m
a

))
akū

,
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D(K) =
(a2 − m2)

(
arctanh

(
m
a

)
− bū

)
arctanh

(
m
a

)
abū

.

The characteristic equation of Ln(K) is as follows:

λ2 − λTn(K) + Dn(K) = 0, n = 0, 1, 2, · · · , (3.7)

where  Tn(K) = A(K) + D(K) − (d1+d2)n2

`2 ,

Dn(K) = d1d2n4

`4 −
(d1D(K)+d2A(K))n2

`2 + A(K)D(K) − B(K)C(K),

and the eigenvalues are given by

λ(K) =
Tn(K) ±

√
T 2

n (K) − 4Dn(K)
2

, n = 0, 1, 2, · · · .

Step 2. Identify possible Hopf bifurcation value and verify transversality conditions.
To look for Hopf bifurcation value KH, we need to verify that the following necessary and sufficient

condition [31] is satisfied:
(H5) There exists n ≥ 0 such that

Tn(KH) = 0, Dn(KH) > 0 and T j(KH) , 0, D j(KH) , 0 for j , n,

as well as for the unique pair of complex eigenvalues near the imaginary axis α(K) ± iβ(K),

α′(KH) , 0. (3.8)

Let λ(K) = α(K) ± iβ(K) be the roots of (3.7). Clearly, α(K) = Tn(K)/2. Notice that

Tn(K) =
1

abk arctanh
(

m
a

) [
K

(
rk arctanh

(
m
a

)
−bm

)
+
√
4
]{bK

(
bm−rk arctanh

(m
a

))
(
s∗−2abm+ark arctanh

(m
a

))
+2rks∗arctanh2

(m
a

)
+ b
√
4(2abm−s∗)

− abrk arctanh
(m

a

) (
4m arctanh

(m
a

)
+
√
4

) }
−

(d1+d2)n2

`2

where 4 and s∗ are defined as (2.1) and (2.4), respectively.
Assume that (HK1) or (HK2) holds. Then,

T ′n(K) =
r arctanh

(
m
a

)
(2abm − s∗) t̃

ab
[
K

(
rk arctanh

(
m
a

)
− bm

)
+
√
4
]2 √
4

> 0

with

t̃ =

(
rk arctanh

(m
a

)
−bm

) [
K

(
rk arctanh

(m
a

)
−bm

)
+
√
4

]
+ 2mrk arctanh2

(m
a

)
> 2K

(
rk arctanh

(m
a

)
−bm

)2
+2mrk arctanh2

(m
a

)
> 0.
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It indicates that Tn(K) is monotonically increasing w.r.t. K, and

lim
K→0

Tn(K) = lim
K→0

2rk arctanh2
(

m
a

)
(s∗−2abm)

abk arctanh
(

m
a

) [
K

(
rk arctanh

(
m
a

)
−bm

)
+
√
4
] = −∞,

lim
K→+∞

Tn(K) =
2abm − s∗ − ark arctanh

(
m
a

)
ak arctanh

(
m
a

) −
(d1 + d2)n2

`2 , Υ.

Note that Υ > 0 if, and only if, (HK1) and

(d1 + d2)n2

`2 <
2abm − s∗ − ark arctanh

(
m
a

)
ak arctanh

(
m
a

) . (3.9)

Then, Tn(KH
n ) = 0 has a unique positive root for each n ≥ 0. Hence, one obtains

Tn(KH
n ) = 0, α′(KH

n ) > 0 and T j(KH
n ) , 0, for j , n.

The transversality condition (3.8) is satisfied. We claim that D j(KH
n ) , 0 for n = 0, 1, 2, · · · . Indeed, if

n2

`2 >
d1D(K) + d2A(K)

d1d2
, (3.10)

then Dn(KH
n ) > 0. Therefore, the condition (H5) is satisfied, which means that (3.5) undergoes a Hopf

bifurcation at K = KH
n . Obviously, K = KH

0 (= K0) is always the unique value for the Hopf bifurcation
of spatially homogeneous periodic solution of (3.5). The above analysis can be summarized as follows.

Theorem 3.3. Assume (H0), (HK1), (3.9), and (3.10) hold. Then, system (3.5) undergoes Hopf
bifurcations at KH

n , n = 0, 1, 2, · · · .

Step 3. Verify the sign of the first Lyapunov coefficient, which will be defined later.
Recall that α′(K0) > 0, as in [31]. We know that the bifurcating periodic solutions are unstable

(resp., stable) and the bifurcation is subcritical (resp., supercritical) if Re(c1(K0)) > 0 (resp., < 0).
Under the conditions of Theorem 3.3, it is easy to see that all other eigenvalues of L(K0) have

negative real parts, and for any n ≥ 1, L(KH
n ) has at least one eigenvalue whose real part is positive.

Hence, the periodic solutions bifurcating from (0, 0,KH
n ) are unstable.

We make a further consideration for the bifurcation solution to discuss the direction and stability of
the periodic solutions bifurcating from (0, 0,K0).

As defined in (B.1), L is a linear operator with domain XC := X ⊕ iX = {x1 + ix2|x1, x2 ∈ X}, where

X := {(u, v) ∈ H2(0, `π) × H2(0, `π)|(ux, vx)|x=0,`π = 0}

denotes a real-valued Sobolev space. Let L∗ be the conjugate operator of L. Then

L∗E := D∆E + J∗E,

where J∗ = J> with the domain DL∗ = XC. Set

q :=
(

q1

q2

)
=

(
1

−
κ1
κ2

+
β0
κ2

i

)
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with κ1 = a11|K=K0 , κ2 = a12|K=K0 and

q∗ :=
(

q∗1
q∗2

)
=

κ2

2πβ0

( β0
κ2

+ κ1
κ2

i
i

)
.

For any π1 ∈ DL∗ , π2 ∈ DL, it is easy to verify that 〈L∗π1, π2〉 = 〈π1, Lπ2〉, L(K0)q = iβ0q, L∗(K0)q∗ =

−iβ0q∗, 〈q∗, q〉 = 1, 〈q∗, q̄〉 = 0, where 〈π1, π2〉 =
∫ `π

0
π̄1
>π2 dx denotes the inner product in L2[(0, `π)]×

L2[(0, `π)]. On the basis of [31], we decompose X = XC ⊕ XS with XC = {zq + z̄q̄|z ∈ C} and XS = {ψ ∈

X|〈q∗, ψ〉 = 0}.
For any (u, v) ∈ X, there exist z ∈ C and ψ = (ψ1, ψ2) ∈ XS such that(

u
v

)
= zq + z̄ q̄ +

(
ψ1

ψ2

)
, z = 〈q∗, (u, v)>〉.

Then  u = z + z̄ + ψ1,

v = z
(
−
κ1
κ2

+
β0
κ2

i
)

+ z̄
(
−
κ1
κ2
−

β0
κ2

i
)

+ ψ2.

Reduce system (3.5) to the following system in (z, ψ) coordinates
dz
dt = iβ0z + 〈q∗, F0〉,

dψ
dt = Lψ + H(z, z̄, ψ)

(3.11)

with
H(z, z̄, ψ) = F0 − 〈q∗, F0〉q − 〈q̄∗, F0〉q̄ and F0 := F0(zq + z̄q̄ + ψ). (3.12)

We write F0 in the form

F0(E) =
1
2

Q(E, E) +
1
6

C(E, E, E) + O(|E|4), (3.13)

where E = (u, v), Q, and C are symmetric multi-linear forms. For simplicity, we denote QXY = Q(X,Y).
Then,

F0 =
1
2

Qqqz2 + Qqq̄zz̄ +
1
2

Qq̄q̄z̄2 + O(|z|3, |z| · |ψ|, |ψ|2),

〈q∗, F0〉 =
1
2
〈q∗,Qqq〉z2 + 〈q∗,Qqq̄〉zz̄ +

1
2
〈q∗,Qq̄q̄〉z̄2 + O(|z|3, |z| · |ψ|, |ψ|2),

〈q̄∗, F0〉 =
1
2
〈q̄∗,Qqq〉z2 + 〈q̄∗,Qqq̄〉zz̄ +

1
2
〈q̄∗,Qq̄q̄〉z̄2 + O(|z|3, |z| · |ψ|, |ψ|2).

Hence,

H(z, z̄, ψ) =
N20

2
z2 + N11zz̄ +

N02

2
z̄2 + O(|z|3, |z| · |ψ|, |ψ|2).

By (3.12) and (3.13), we have 
N20 = Qqq − 〈q∗,Qqq〉q − 〈q̄∗,Qqq〉q̄,
N11 = Qqq̄ − 〈q∗,Qqq̄〉q − 〈q̄∗,Qqq̄〉q̄,
N02 = Qq̄q̄ − 〈q∗,Qq̄q̄〉q − 〈q̄∗,Qq̄q̄〉q̄.
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Moreover, N20 = N11 = N02 = (0, 0)> and H(z, z̄, ψ) = O(|z|3, |z| · |ψ|, |ψ|2). The model (3.11) possesses
a center manifold by Appendix A of [31], and then we can write ψ in the following form:

ψ =
ψ20

2
z2 + ψ11zz̄ +

ψ02

2
z̄2 + O(|z|3).

Therefore, one has 
ψ20 = (2iβ0I − L)−1N20,

ψ11 = (−L)−1N11,

ψ02 = ψ̄20,

which implies that ψ20 = ψ02 = ψ11 = 0. For later uses, define

g0 := fuuq2
1 + 2 fuvq1q2 + fvvq2

2 = 2a1 + 2a2q2 + 2a3q2
2,

h0 := guuq2
1 + 2guvq1q2 + gvvq2

2 = 2b1 + 2b2q2 + 2b3q2
2,

i0 := fuu|q1|
2 + fuv(q1q̄2 + q̄1q2) + fvv|q2|

2 = 2a1 + a2(q2 + q̄2) + 2a3|q2|
2,

j0 := guu|q1|
2 + guv(q1q̄2 + q̄1q2) + gvv|q2|

2 = 2b1 + b2(q2 + q̄2) + 2b3|q2|
2,

l0 := fuuu|q1|
2q1+ fuuv(2|q1|

2q2 + q2
1q̄2)+ fuvv(2q1|q2|

2 + q̄1q2
2)+ fvvv|q2|

2q2

= 6a4 + 2a5(2q2 + q̄2) + 2a6(2|q2|
2 + q2

2),
m0 := guuu|q1|

2q1+guuv(2|q1|
2q2 + q2

1q̄2)+guvv(2q1|q2|
2 + q̄1q2

2)+gvvv|q2|
2q2

= 6b4 + 2b5(2q2 + q̄2) + 2b6(2|q2|
2 + q2

2),

where all the partial derivatives evaluate at the point (u, v,K) = (0, 0,K0). Thus, the reaction-diffusion
system restricted to the center manifold in z and z̄ coordinates is given by

dz
dt

= iβ0z + 〈q∗, F0〉

= iβ0z +
1
2
χ20z2 + χ11zz̄ +

1
2
χ02z̄2 +

1
2
χ21z2z̄ + O(|z|4)

with
χ20 = 〈q∗, (g0, h0)>〉, χ11 = 〈q∗, (i0, j0)>〉, χ21 = 〈q∗, (l0,m0)>〉.

Notice that b1 = −a1 −
r
K , b2 = −a2, b3 = −a3, b4 = −a4, b5 = −a5, and b6 = −a6. Then, by the

straightforward but tedious calculations, we yield

χ20 =
κ2

2β0

((
β0

κ2
−
κ1

κ2
i
)

g0 − ih0

)
= a1 − a2 −

(κ2
1 − 2κ1κ2 + β2

0)a3

κ2
2

−
i

β0κ
2
2

[
κ2

2(κ1 − κ2)a1

+ κ2(κ1κ2 − κ
2
1 − β

2
0)a2 + (κ3

1 − κ
2
1κ2 + β2

0κ1 − β
2
0κ2)a3 −

rκ3
2

K0

]
,

χ11 =
κ2

2β0

((
β0

κ2
−
κ1

κ2
i
)

i0 − i j0

)
AIMS Mathematics Volume 9, Issue 11, 32514–32551.
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= a1 −
κ1a2

κ2
+

(κ2
1 + β2

0)a3

κ2
2

−
i

β0κ
2
2

[
κ2

2(κ1 − κ2)a1

+ κ1κ2(κ2 − κ1)a2 + (κ3
1 − κ

2
1κ2 + β2

0κ1 + β2
0κ2)a3 −

rκ3
2

K0

]
and

χ21 =
κ2

2β0

((
β0

κ2
−
κ1

κ2
i
)

l0 − im0

)
= 3a4 −

(2κ1 + κ2)a5

κ2
+

(κ2
1 + 2κ1κ2 + β2

0)a6

κ2
2

−
i

β0κ
2
2

[
3κ2

2(κ1 − κ2)a4

+ κ2(3κ1κ2 − 3κ2
1 − β

2
0)a5 + (3κ3

1 − 3κ2
1κ2 + 3β2

0κ1 − β
2
0κ2)a6

]
.

Thus, we have

Re(c1(K0)) = Re
{

i
2β0

(
χ20χ11 − 2|χ11|

2 −
1
3
|χ02|

2
)

+
1
2
χ21

}
= −

1
2β0

[Re(χ20)Im(χ11) + Im(χ20)Re(χ11)] +
1
2

Re(χ21)

=
1

2K0β
2
0κ

3
2

[
2K0κ

3
2(κ1−κ2)a2

1−K0κ
2
2(3κ2

1−2κ1κ2−κ
2
2+β2

0)a1a2+2K0κ1κ2(κ2
1−κ

2
2+β2

0)a1a3

− 2rκ4
2a1 + K0κ1κ2(κ2

1 − κ
2
2 + β2

0)a2
2 − K0(κ4

1 + 2κ3
1κ2 − 3κ2

1κ
2
2 + 2β2

0κ
2
1 + 2β2

0κ1κ2 − β
2
0κ

2
2

+ β4
0)a2a3 + rκ3

2(κ1 + κ2)a2 + 2K0(κ2
1 + β2

0)(κ2
1 − κ1κ2 + β2

0)a2
3 − 2rκ1κ

3
2a3 + 3K0β

2
0κ

3
2a4

− K0β
2
0κ

2
2(2κ1 + κ2)a5 + K0β

2
0κ

2
2(κ2

1 + 2κ1κ2 + β2
0)a6

]
.

Based on the above analysis, the results can be given as follows.

Theorem 3.4. Suppose that (H0), (HK1), (3.9), and (3.10) hold. Then, the reaction-diffusion
system (3.5) undergoes a Hopf bifurcation at K = K0.

(i) The direction of Hopf bifurcation is supercritical and the bifurcating periodic solutions are
asymptotically stable if Re(c1(K0)) < 0. Moreover, they are orbitally asymptotically stable in
unbounded region U1 or U2 (see (3.1) or (3.2)), and unstable in unbounded region U3 (see (3.3)).

(ii) The direction of Hopf bifurcation is subcritical and the bifurcating periodic solutions are
unstable if Re(c1(K0)) > 0.

We give the following example to illustrate Theorem 3.4.

Example 3.2. Choose two sets of coefficients as follows:

a = 0.9, b = 2, m = 0.8, r = 2.4, k = 0.6, d1 = 1, d2 = 0.1, ` = 4, n = 2, (3.14)

a = 2, b = 1, m = 0.7, r = 2.4, k = 0.2, d1 = 0.1, d2 = 0.01, ` = 3, n = 4. (3.15)

Under (3.14), K0 ≈ 12.6419 and the parameters satisfy (H0), (HK1), (3.9), and (3.10). By
calculations, Re(c1(K0)) ≈ −0.0314 < 0. It follows from Theorem 3.4 that Hopf bifurcation is
supercritical and the bifurcating temporal periodic solutions are asymptotically stable. Moreover,
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γ2 ≈ 0.0451, −d1a22/a11 − d2 ≈ 0.9 > 0, and d2 − γ2d1 ≈ 0.0549 > 0, that is, all parameters lie in U2.
The bifurcating periodic orbits of model (1.5) are orbitally asymptotically stable (see Figure 7).

Figure 7. Periodic solutions of model (3.5) with parameters set (3.14), and K0 = 12.6419.

Under (3.15), K0 ≈ 29.3260 and the parameters satisfy (H0), (HK1), (3.9), and (3.10). Re(c1(K0)) ≈
0.3205 > 0 implies that Hopf bifurcation is subcritical and the bifurcating temporal periodic solutions
are unstable (see Figure 8).

Figure 8. Periodic solutions of model (3.5) with parameters set (3.15), and K0 = 29.3260.

In the absence of fear, we still choose b as the bifurcation parameter. Some direct computations
are similar to the above analysis associated with Theorem 3.4, hence we only give the following
corresponding numerical results.

Example 3.3. Take the system coefficients as follows:

a = 0.9, m = 0.75, r = 6.4, K = 3, d1 = 3, d2 = 0.1, ` = 1.2, n = 1. (3.16)

Similar to the verification in Example 3.2, system (3.5) (with k = 0) undergoes a supercritical Hopf
bifurcation and the bifurcating temporal periodic solutions are orbitally asymptotically stable (see
Figure 9).
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Figure 9. Periodic solutions of model (3.5) with k = 0, parameters set (3.16), and b0 =

1.1128.

Remark 3.2. Denote

η1 = rk2`2(a2−m2)arctanh3
(m

a

)
+bk`2(m+r)(a2−m2)arctanh2

(m
a

)
+ bm

[
akn2(d1+d2) + b`2(a2−m2)

]
arctanh

(m
a

)
−2ab2m2`2,

η2 = k`2(a2−m2)arctanh2
(m

a

)
+
[
akn2(d1+d2)+b`2(a2−m2) + akr`2

]
arctanh

(m
a

)
−2abm`2,

K̄ =

{
K
∣∣∣Tn(K) = 0, K > arctanh

(m
a

)
/b

}
.

If
η1

η2
[
abmn2(d1 + d2) + r`2(s∗ − abm)

] > 0

with s∗ defined as (2.4), where (HK1) or (HK2) holds, then system (3.5) undergoes new Hopf bifurcations
at the Hopf bifurcation point K̄ ∈

(
arctanh

(
m
a

)
/b,K0

)
. The new Hopf bifurcations produce temporal

inhomogeneous patterns.

Remark 3.3. There will be a Turing-Hopf bifurcation in system (1.5). The existence and normal form
of the Turing-Hopf bifurcation can be analyzed as in [34]. Considering the limited length of this paper,
we will not expand the discussion.

4. Positive nonconstant steady states of (1.5)

In this section, the nonexistence and existence of positive nonconstant steady states for elliptic
system (1.6) are investigated.

4.1. A priori estimates

A prior estimates for the positive solution of (1.6) are established by the maximum principle in Lou
and Ni [35] as follows.
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Theorem 4.1. Assume that arctanh
(

m
a

)
< bK < 2arctanh

(
m
a

)
and 4a

rK

(
bK−arctanh

(
m
a

))
< k. Then any

positive solution (u, v) of (1.6) satisfies

rkK +
√
4∗

2rk
≤ u(x) ≤ K,

rk
(
bK − 2arctanh

(
m
a

))
+ b
√
4∗

2rk2arctanh
(

m
a

) ≤ v(x) ≤
bK − arctanh

(
m
a

)
k arctanh

(
m
a

)
with

4∗ := r2k2K2 − 4arkK
(
bK − arctanh

(m
a

))
> 0.

Proof. Let (u, v) be a given positive solution of (1.6) and

uM = max
Ω̄

u(x), uL = min
Ω̄

u(x),

vM = max
Ω̄

v(x), vL = min
Ω̄

v(x).

Applying the maximum principle in [35] to two equations of (1.6) yields that
ruM

(
1 − uM

K

)
− a tanh

(
buM

1+kvM

)
vL ≥ 0,

ruL

(
1 − uL

K

)
− a tanh

(
buL

1+kvL

)
vM ≤ 0

(4.1)

and 
a tanh

(
buM

1+kvM

)
− m ≥ 0,

a tanh
(

buL
1+kvL

)
− m ≤ 0.

(4.2)

Solving the first inequality of (4.1) and (4.2), respectively, one obtains

uM ≤ K, vM ≤
bK − arctanh

(
m
a

)
k arctanh

(
m
a

) .

The second inequality of (4.2) entails

buL

1 + kvL
≤ arctanh

(m
a

)
. (4.3)

Further, solve the second inequality of (4.1) to see that

ruL

(
1 −

uL

K

)
−

a
k

(
bK − arctanh

(m
a

))
≤ ruL

(
1 −

uL

K

)
−

abuLvM

1 + kvL
≤ 0.

Thus,

uL ≥
rkK +

√
4∗

2rk
.

Moreover, from (4.3) we have

vL ≥
buL − arctanh

(
m
a

)
k arctanh

(
m
a

) ≥
rk

(
bK − 2arctanh

(
m
a

))
+ b
√
4∗

2rk2arctanh
(

m
a

) .

This completes the proof. �
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4.2. Nonexistence of positive nonconstant steady states

One nonexistence result of positive solutions is considered as follows.

Theorem 4.2. If arctanh
(

m
a

)
≥ bK, then (1.6) has no positive nonconstant solution.

Proof. On the contrary, suppose that (1.6) has a positive nonconstant solution (u, v) when arctanh
(

m
a

)
≥

bK. Integrating the second equation of (1.6) on Ω, one has

0 = −d2

∫
Ω

∆vdx =

∫
Ω

(
a tanh

(
bu

1 + kv

)
− m

)
vdx <

∫
Ω

(a tanh(bK) − m)vdx.

Obviously, this is a contradiction with arctanh
(

m
a

)
≥ bK. �

Now, we prove another nonexistence result of positive solutions. For notational convenience, one
can denote the parameter set consisting of a, b,m, r, k, and K as M∗ = M∗(a, b,m, r, k,K).

Theorem 4.3. There exist positive constants d∗1 = d∗1(M∗, µ1) and d∗2 = d∗2(M∗, µ1) such that system (1.6)
has no positive nonconstant solution when d1 ≥ d∗1 and d2 ≥ d∗2.

Proof. Suppose that (u, v) is a positive solution of (1.6) when d1 > d∗1 and d2 > d∗2 for some positive
constants d∗1 and d∗2. Denote

û =
1
|Ω|

∫
Ω

u(x)dx, v̂ =
1
|Ω|

∫
Ω

v(x)dx.

Multiply the two equations in (1.6) by u − û and v − v̂, and then integrate the obtained equations by
parts, respectively. It follows from Theorem 4.1 that∫

Ω

d1|∇u|2dx =

∫
Ω

[
r
(
1−

u+û
K

)
(u − û)2 − a(u − û)

(
tanh

(
bu

1+kv

)
v−tanh

(
bû

1+kv̂

)
v̂
)]

dx

<

∫
Ω

[
r(u − û)2 − a(u − û)

(
tanh

(
bu

1+kv

)
v−tanh

(
bu

1+kv

)
v̂

+tanh
(

bu
1+kv

)
v̂−tanh

(
bu

1+kv̂

)
v̂+tanh

(
bu

1+kv̂

)
v̂−tanh

(
bû

1+kv̂

)
v̂
)]

dx

<

∫
Ω

(
(r + abv̂)(u − û)2 + a(1 + bkKv̂)|u − û||v − v̂|

)
dx

≤

∫
Ω

(r + abv̂)(u − û)2dx + a(1 + bkKv̂)
(
µ1

4

∫
Ω

(u − û)2dx +
1
µ1

∫
Ω

(v − v̂)2dx
)
.

Similarly,∫
Ω

d2|∇v|2dx <
∫

Ω

(
−m(v − v̂)2 + a|v − v̂|(|v − v̂| + bkKv̂|v − v̂| + bv̂|u − û|)

)
dx

≤

∫
Ω

(a − m + abkKv̂)(v − v̂)2dx + abv̂
(
µ1

4

∫
Ω

(u − û)2dx +
1
µ1

∫
Ω

(v − v̂)2dx
)
.
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The above estimates imply that

d1

∫
Ω

|∇u|2dx + d2

∫
Ω

|∇v|2dx <
(
r + abv̂ +

aµ1

4
(1 + bv̂ + bkKv̂)

) ∫
Ω

(u − û)2dx

+
(
a − m + abkKv̂ +

a
µ1

(1 + bv̂ + bkKv̂)
) ∫

Ω

(v − v̂)2dx.

Applying the Poincaré inequality µ1

∫
Ω

(ω − ω̄)2dx ≤
∫

Ω
|∇ω|2dx yields

d1µ1

∫
Ω

(u − û)2dx + d2µ1

∫
Ω

(v − v̂)2dx ≤ d1

∫
Ω

|∇u|2dx + d2

∫
Ω

|∇v|2dx.

Let

d∗1 =
a(1 + bv̂ + bkKv̂)µ1 + 4(r + abv̂)

4µ1
,

d∗2 =
(a − m + abkKv̂)µ1 + a(1 + bv̂ + bkKv̂)

µ2
1

.

Then

d1

∫
Ω

(u − û)2dx + d2

∫
Ω

(v − v̂)2dx < d∗1

∫
Ω

(u − û)2dx + d∗2

∫
Ω

(v − v̂)2dx.

Obviously, it leads to a contradiction with d1 ≥ d∗1 and d2 ≥ d∗2. �

4.3. Existence of positive nonconstant steady states

The existence of positive nonconstant solutions is studied by applying the fixed point index
theory [36, 37]. Theorem 3.1 indicates that there is no positive nonconstant solution to (1.6) near
Ē when (H3) holds. Hence, we always assume that (H0) and (H4) are satisfied in the sequel.

The following preliminaries for later use can be found in [38, 39].
Let E be a real Banach space and P ⊂ E be a closed convex set. For any real number α ≥ 0, P is

called a wedge on E if αP ⊂ P. A wedge P is termed as a cone if P ∩ {−P} = {0}. For ζ ∈ P, denote

Pζ = {~ ∈ E|ζ + l~ ∈ P, l > 0}, Qζ = {~ ∈ P̄ζ | − ~ ∈ P̄ζ}.

Then, P̄ζ is a wedge and it is convex, and Qζ is a closed convex set on E.
Set Y to be a compact linear map on E which is invariant on P̄ζ . If there exist ı ∈ (0, 1) and y ∈ P̄ζ\Qζ

such that y − ıYy ∈ Qζ , then Y has property α. Assume P is a wedge on E and F : P→ P is a compact
map with fixed point ζ0 ∈ P. The Fréchet derivative of F at ζ0 is defined as T = F′(ζ0). Then, T maps
P̄ζ0 into itself.

Now the fixed point index of compact maps is given as follows.

Lemma 4.1. (1) Suppose that I−T is invertible in E and T has property α on P̄ζ0 . Then, index(F, ζ0) =

0.
(2) Suppose that I − T is not invertible in E but is on P̄ζ0\{0}. Moreover, I − T : P̄ζ0 → P̄ζ0 is not

surjective. Then, index(F, ζ0) = 0.
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As is well-known index(F, ζ0) means the Leray-Schauder degree deg(I − F,U(ζ0), 0), where U(ζ0)
is a neighborhood of ζ0 in P.

If (u, v) is a positive solution of (1.6), it follows from Theorem 4.1 that there exist positive constants
D1 and D2 such that D1 < u, v < D2. Denote

X = {(u, v) ∈ (C1(Ω̄))2| ∂υu = ∂υv = 0, x ∈ ∂Ω},

X+ = {(u, v) ∈ X|u, v ≥ 0, x ∈ Ω̄, ∂υu = ∂υv = 0, x ∈ ∂Ω},

D = {(u, v) ∈ X+|D1 < u, v < D2, x ∈ Ω̄},

A = {u ∈ C0(Ω̄)|u ≥ 0, x ∈ Ω̄, ∂υu = 0, x ∈ ∂Ω},

P = A⊕A.

Then,A is a cone in C0(Ω̄).
We can find a large constant Θ > 0 due to the boundedness of (u, v) such that

max
{
max

Ω̄
{|ru(1 − u/K) − a tanh(bu/(1 + kv))v|},max

Ω̄
{|(a tanh(bu/(1 + kv)) − m)v|}

}
< Θ.

To calculate the index(F, E0) and index(F, EK), one can let

F(u, v) =

 (−d1∆ + Θ)−1
(
ru

(
1 − u

K

)
− a tanh

(
bu

1+kv

)
v + Θu

)
(−d2∆ + Θ)−1

((
a tanh

(
bu

1+kv

)
− m

)
v + Θv

)  ,
where (−di∆ + Θ)−1, i = 1, 2 are positive compact linear operators, and F is the direct sum of positive
compact linear operators according to the strong maximum principle. Obviously, (u, v) is the solution
of (1.6) if, and only if, (u, v) is the fixed point of F, which is independent of the choice of Θ.

Take into account the system
−d1∆u = ru

(
ϑ − u

K

)
− a tanh

(
bu

1+kv

)
v, x ∈ Ω,

−d2∆v =
(
aϑ tanh

(
bu

1+kv

)
− m

)
v, x ∈ Ω,

∂u
∂υ

= ∂v
∂υ

= 0, x ∈ ∂Ω,

(4.4)

with ϑ ∈ [0, 1]. It can be similarly proved that (uϑ, vϑ) is bounded if (uϑ, vϑ) is a solution of (4.4) and
D1 < uϑ, vϑ < D2.

Denote

Fϑ(u, v) =

 (−d1∆ + Θ)−1
(
ru

(
ϑ − u

K

)
− a tanh

(
bu

1+kv

)
v + Θu

)
(−d2∆ + Θ)−1

((
aϑ tanh

(
bu

1+kv

)
− m

)
v + Θv

)  .
Clearly, (uϑ, vϑ) is a solution of (4.4) if, and only if, (uϑ, vϑ) is a fixed point of Fϑ. Moreover, by the
boundedness of solutions of (4.4), there is no fixed point of Fϑ on ∂D. Then, the homotopy invariance
of degree shows that index(Fϑ, intD, P) does not depend on ϑ. Furthermore, if (u, v) is a fixed point of
Fϑ, then

deg(I − Fϑ,U(u, v), (0, 0)) = index(F′ϑ(u, v), (0, 0), P) = (−1)σ, (4.5)

where U(u, v) is a neighborhood of (u, v), and σ is the sum of algebraic multiplicities of all eigenvalues
of F′ϑ(u, v) which are greater than 1. Therefore, index(F′ϑ(u, v), (0, 0), P) = 1 by (4.5) if the spectral
radius R(F′ϑ(u, v)) ≤ 1.
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Now, we take ϑ = 0. Obviously, (4.4) has a unique nonnegative solution (0, 0). Further, (0, 0) is a
unique fixed point of Fϑ on P. Hence,

index(Fϑ, intD, P) = deg(I − Fϑ,U(0, 0), (0, 0)).

By direct computations, one has

F′ϑ(0, 0) =

(
(−d1∆ + Θ)−1(rϑ + Θ) 0

0 (−d2∆ + Θ)−1(Θ − m)

)
.

It is obvious that F′ϑ(0, 0) has no eigenvalues which are greater than 1 when ϑ = 0. Thus, R(F′ϑ(u, v)) ≤
1 and

index(Fϑ, intD, P) = deg(I − Fϑ,U(0, 0), (0, 0))
= index(F′ϑ(0, 0), (0, 0), P)
= 1

(4.6)

holds for all ϑ ∈ [0, 1]. Particularly, take ϑ = 1. For F1 := F, one has

index(F, intD, P) = index(F1, intD, P) = 1.

We discuss the indexes of F at E0, EK and Ē below. To obtain the index of F at Ē, some other
preliminaries need to be provided. Let D = diag(d1, d2), E = (u, v), and

G(E) =

 ru
(
1 − u

K

)
− a tanh

(
bu

1+kv

)
v(

a tanh
(

bu
1+kv

)
− m

)
v

 , A =

(
a11 a12

a21 a22

)
with ai j given as (2.3). Then, system (1.6) could be rewritten as

− D∆E = G(E), x ∈ Ω; ∂υE = 0, x ∈ ∂Ω. (4.7)

Hence E is a solution of (1.6), if, and only if, E is a solution of (4.7), if, and only if, E is a solution of
the problem

Ψ(E) := E − (I − ∆)−1(D−1G(E) + E) = 0, x ∈ Ω; ∂υE = 0, x ∈ ∂Ω

in X+. Obviously, the operator Ψ is a compact perturbation of the identity operator I. In view of
the definition of the Leray-Schauder degree, we conclude from Ψ(E) , 0 on ∂Ω that deg(Ψ,D, 0) is
well-defined. Furthermore, E is a fixed point of F if, and only if, E is a zero point of Ψ.

In what follows, we look for the index of F at Ē by Ψ. The main result of this subsection is as
follows.

Theorem 4.4. Assume that I − F′(EK) is invertible on (C0(Ω̄))2. If the determinant det(A + D) < 0,
then the system (1.6) has at least a positive nonconstant solution.

Proof. We first calculate the index of F at E0. Clearly, P̄E0 = P and QE0 = {(0, 0)}. Consider

F′(E0) =

(
(−d1∆ + Θ)−1(r + Θ 0)
(−d2∆ + Θ)−1(0 Θ − m)

)
.
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Take (τ, ) ∈ (C0(Ω̄))2. If (I − F′(E0))(τ, )> = 0, then{
−d1∆τ = rτ,
−d2∆  = −m .

(4.8)

The invertibility of I − F′(E0) on (C0(Ω̄))2 is investigated as follows.
The second equation of (4.8) means that  ≡ 0. For the first equation, the following two cases need

to be considered.
Case 1. r

d1
< σ(−∆), where σ(−∆) represents the spectrum set of −∆ with homogenous Neumann

boundary conditions. Thus, τ ≡ 0, which implies that I − F′(E0) is invertible on (C0(Ω̄))2. Set ı = Θ
r+Θ

.
Then, ı ∈ (0, 1). Let f0 be the principal eigenfunction of −∆. Then, ( f0, 0) ∈ P̄E0\QE0 . Hence,

(I − ıF′(E0))
(

f0

0

)
=

(
f0 − ı(−d1∆ + Θ)−1(r + Θ) f0

0

)
=

(
0
0

)
∈ QE0 ,

which indicates that F′(E0) has property α on P̄E0 . Therefore, index(F, E0) = 0 due to Lemma 4.1.
Case 2. r

d1
∈ σ(−∆). Then, there exist τ,  ∈ C0(Ω̄), τ . 0, satisfying (I − F′(E0))(τ, )> = 0. Thus,

I−F′(E0) is not invertible on (C0(Ω̄))2. Assume that τr is the eigenfunction of I−F′(E0) corresponding
to r

d1
. Then, τr must change sign in Ω, which means that I − F′(E0) is invertible on P̄E0 . Furthermore,

the nodes of τr divide Ω into finite subregions. Hence, we can find a positive function τ̃, ∂υτ̃|∂Ω = 0 on
Ω that satisfies

∫
Ω
τ̃τrdx , 0. We claim that I − F′(E0) is not surjective on P̄E0 .

In fact, take  ∈ A and assume that there exist τ0, 0 ∈ A such that (I − F′(E0))(τ0, 0)> = (τ̃, )>.
Then, {

τ0 − (r + Θ)(−d1∆ + Θ)−1τ0 = τ̃,

0 − (Θ − m)(−d2∆ + Θ)−1 0 = .
(4.9)

Multiply the first equation of (4.9) by τr and then integrate over Ω to obtain∫
Ω

(−d1∆ − r)τ0τrdx =

∫
Ω

(−d1∆ + Θ)τ̃τrdx. (4.10)

Clearly, the lefthand side is
∫

Ω
(−d1∆ − r)τ0τrdx = 0 of (4.10), whereas, the righthand side is

(r + Θ)
∫

Ω
τ̃τrdx , 0 of (4.10). This implies that there does not exist τ0, 0 ∈ A such that

(I − F′(E0))(τ0, 0)> = (τ̃, )>. Consequently, I − F′(E0) is not surjective on P̄E0 . One can still obtain
index(F, E0) = 0 due to Lemma 4.1.

Next, we calculate index(F, EK). For EK , P̄EK = C0(Ω̄) ⊕A, and QEK = C0(Ω̄) ⊕ {0}, consider

F′(EK) =

(
(−d1∆ + Θ)−1( − r + Θ − a tanh(bK)

)
(−d2∆ + Θ)−1(0 a tanh(bK) − m + Θ

) )
.

Take ı =
−(r+δ)+Θ

−r+Θ
for some δ > 0, then ı ∈ (0, 1) since Θ is large. Moreover, f0 is still denoted as the

principal eigenfunction of −∆. Then, for ( f0, 0) ∈ P̄EK\QEK , one has

(I − ıF′(EK))
(

f0

0

)
=

(
f0 − ı(−d1∆ + Θ)−1(−r + Θ) f0

0

)
=

(
f0 − (−d1∆ + Θ)−1 (−(r + δ) + Θ) f0

0

)
=

( r+δ
Θ

f0

0

)
∈ QEK ,
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which induces that F′(EK) has property α on P̄EK . We have already assume that I−F′(EK) is invertible
on (C0(Ω̄))2, thus index(F, EK) = 0 by Lemma 4.1.

Then, we will change our ideas about calculating index(F, Ē).
Notice that the Fréchet derivative of F at Ē is precisely the matrix A, then

I − Ψ′(Ē) = (I − ∆)−1(D−1A + I).

By the definition of fixed point index, if I − Ψ′(Ē) is invertible, then the fixed point index of I − Ψ at
Ē is denoted by index(I − Ψ, Ē) = (−1)ι, where ι is the number of negative eigenvalues of I − Ψ′(Ē).
Therefore, we need to investigate the eigenvalues of I − Ψ′(Ē).

It is not hard to verify that µ is an eigenvalue of I − Ψ′(Ē) if, and only if, µ is an eigenvalue of
1

1+µn
(D−1A + I). This indicates that I − Ψ′(Ē) is invertible if, and only if, the matrix D−1A + I is

non-degenerate. Hence we only need to focus on the determinant D−1A + I. Since

det(D−1A + I) =
1

d1d2
det(A + D),

if det(A + D) , 0, then I − Ψ′(Ē) is invertible and the number of negative eigenvalues of I − Ψ′(Ē) is
odd if, and only if, det(D−1A + I) < 0. In fact, our assumption implies that

index(I − Ψ, Ē) = −1,

which means that index(F, Ē) = −1. Recall index(F, E0) = index(F, EK) = 0. We derive the result and
the proof is completed. �

Remark 4.1. A priori estimates in Subsection 4.1 play an important role in later discussions. However,
it is difficult to establish a priori positive lower bounds for the positive solution of (1.6) when k = 0.
Then, the homotopy mapping defined later is zero at the boundary and the Leray-Schauder degree has
no definition. Hence, we cannot investigate the existence of positive nonconstant solutions applying
neither the fixed point index theory nor Leray-Schauder degree theory. It further indicates that the
fear effect makes it possible to apply the fixed point index theory or Leray-Schauder degree theory to
study spatially nonconstant steady states. On the other hand, this is another reason why model (1.4) is
discussed instead of (1.3).

5. Conclusions

In this paper, Hopf bifurcation and Turing pattern of a diffusive R-M predator-prey model with
both hyperbolic tangent functional response and fear factor were studied. Mathematical analysis and
numerical simulations reveal that fear factor plays a key role in the dynamic behavior of the system.

For the ODE system (1.4), we first gave a detailed classification of equilibria based on stability
analysis. It is shown that positive equilibrium Ē becomes locally asymptotically stable as k increases
to a critical value k0 (see Example 2.1). Biologically, strong fear effect could stabilize the system by
changing the prey’s foraging activity, defense behavior, reproduction capacity, and so on. Then, we
proved the existence, direction and stability of Hopf bifurcation for (1.4) by the Poincaré-Andronov-
Hopf bifurcation theorem. It is observed by numerical simulation that system (1.2) exhibits the
bistability phenomenon. System (1.4) produces a stable limit cycle that surrounds unstable Ē arising
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from a supercritical Hopf bifurcation. It indicates that both the capture rate of predator and fear factor
have a stabilizing effect. Finally, the existence of limit cycles and the transversality condition for
transcritical bifurcation of (1.4) were discussed. It is shown that system (1.4) will generate a limit
cycle when the prey is in a state of low fear or carrying capacity is large enough, and will always
undergo a transcritical bifurcation regardless of whether the prey is in fear or not.

For the diffusive system (1.5), Case I. k = 0, the stability of positive equilibrium E∗ of (1.2) is
exactly the same as for (1.5) with k = 0, which means that the Turing instability of both positive
equilibrium and homogeneous periodic orbits does not occur in (1.5) with k = 0. Case II. k > 0, we
first demonstrated that positive equilibrium Ē is locally asymptotically stable w.r.t. R-D model (1.5)
in unbounded region U1 or U2 (see (3.1) or (3.2)), and unstable w.r.t. R-D model (1.5) in unbounded
region U3 (see (3.3)), which implies that Turing instability of positive equilibrium Ē occurs under
weak fear effect or strong carrying capacity. Then, the direction of Hopf bifurcation and the stability of
bifurcating periodic solutions for system (3.5) were discussed. If the fear cost is sufficiently small and
the diffusion coefficients d1 and d2 are large enough, system (3.5) undergoes new Hopf bifurcations
and exhibits Turing instability of spatially homogeneous periodic orbits. It is shown that fear effect
can drive Turing instability and create spatial inhomogeneous patterns. Finally, the existence and
nonexistence of positive nonconstant steady states of (1.5) were studied applying the fixed point index
theory.

To sum up, the qualitative analysis of the R-M predator-prey model with hyperbolic tangent
functional response reveals that different response functions play an important role in determining
dynamics of the model. We mainly investigated the impact of fear on the R-M predator-prey model
with hyperbolic tangent functional response. It is shown that fear factor could stabilize the system,
cause the system to generate limit cycles, and give rise to spatial and temporal inhomogeneous patterns.
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Appendix A. The proof of Theorem 2.2

In order to understand the detailed property of the Hopf bifurcation, we need a further analysis
for the normal form. One can translate the positive equilibrium Ē to the origin by the transformation
ŭ = u − ū and v̆ = v − v̄. For the sake of convenience, we still denote ŭ and v̆ by u and v, respectively.
Thus, the local system (1.4) can be given by

du
dt

= r(u + ū)
(
1 − u+ū

K

)
− a tanh

(
b(u+ū)

1+k(v+v̄)

)
(v + v̄),

dv
dt

=
(
a tanh

(
b(u+ū)

1+k(v+v̄)

)
− m

)
(v + v̄).

(5.1)

Rewrite the system (5.1) as  du
dt
dv
dt

 = J

 u

v

 +

 f (u, v,K)

g(u, v,K)

 , (5.2)

where

f (u, v,K) = a1u2 + a2uv + a3v2 + a4u3 + a5u2v + a6uv2 + · · · ,

g(u, v,K) = b1u2 + b2uv + b3v2 + b4u3 + b5u2v + b6uv2 + · · · ,

and

a1 = −
r
K
−

m(a2 − m2)
a2kū2 arctanh

(m
a

) (
arctanh

(m
a

)
− bū

)
,

a2 =
a2 − m2

a2bū2 arctanh2
(m

a

) (
2m arctanh

(m
a

)
− 2mbū − a

)
,

a3 =
k(a2 − m2)

a2b2ū2 arctanh3
(m

a

) (
mbū + a − m arctanh

(m
a

))
,

a4 =
(a2 − m2)(a2 − 3m2)

3a3kū3 arctanh2
(m

a

) (
bū − arctanh

(m
a

))
,

a5 =
a2 − m2

a3bū3 arctanh2
(m

a

) [
(a2 − 3m2)arctanh2

(m
a

)
+ (bū(3m2 − a2) + 2am)arctanh

(m
a

)
− ambū

]
,

a6 =
k(m2−a2)

a3b2ū3 arctanh3
(m

a

) [
(a2−3m2)arctanh2

(m
a

)
+(bū(3m2−a2)+4am)arctanh

(m
a

)
−2ambū−a2

]
,

b1 = −a1 −
r
K
, b2 = −a2, b3 = −a3, b4 = −a4, b5 = −a5, b6 = −a6.

Set the matrix

P :=
(

N 1
M 0

)
with M = −a21

β
and N = a22−a11

2β . Then,

P−1JP = Φ(K) :=
(
α(K) −β(K)
β(K) α(K)

)
.

Let
M0 := M|K=K0 , N0 := N|K=K0 , β0 := β(K0).
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By the transformation (u, v)> = P(x, y)>, the system (5.2) is transformed into( dx
dt
dy
dt

)
= Φ(K)

(
x
y

)
+

(
f 1(x, y,K)
g1(x, y,K)

)
, (5.3)

where

f 1(x, y,K) =
1
M

g(Nx + y,Mx,K)

=

(
−

rN2

KM
−

N2

M
a1 − Na2 − Ma3

)
x2 +

(
−

2rN
KM

−
2N
M

a1 − a2

)
xy

−

( r
KM

+
a1

M

)
y2 −

(
N2

M
a4 + Na5 + Ma6

)
Nx3

−

(
3N2

M
a4 + 2Na5 + Ma6

)
x2y −

(
3N
M

a4 + a5

)
xy2 −

a4

M
y3 + · · · ,

g1(x, y,K) = f (Nx + y,Mx,K) −
N
M

g(Nx + y,Mx,K)

=

[
rN3

KM
+ N2

(
1 +

N
M

)
a1 + N(M + N)a2 + M(M + N)a3

]
x2

+

[
2rN2

KM
+2N

(
1+

N
M

)
a1+(M+N)a2

]
xy+

[ rN
KM

+

(
1+

N
M

)
a1

]
y2

+

[
N3

(
1 +

N
M

)
a4 + N2(M + N)a5 + MN(M + N)a6

]
x3

+

[
3N2

(
1 +

N
M

)
a4 + 2N(M + N)a5 + M(M + N)a6

]
x2y

+

[
3N

(
1 +

N
M

)
a4 + (M + N)a5

]
xy2 +

(
1 +

N
M

)
a4y3 + · · · .

The polar coordinate form of (5.3) is as follows:

ρ̇ = α(K)ρ + a(K)ρ3 + · · · ,

θ̇ = β(K) + c(K)ρ2 + · · · .
(5.4)

Then, the Taylor expansion of (5.4) at K = K0 yields

ρ̇ = α′(K0)(K − K0)ρ + a(K0)ρ3 + o
(
(K − K0)2ρ, (K − K0)ρ3, ρ5

)
,

θ̇ = β(K0) + β′(K0)(K − K0) + c(K0)ρ2 + o
(
(K − K0)2, (K − K0)ρ2, ρ4

)
.

We need to verify the sign of the coefficient a(K0), which is given by

a(K0) :=
1
16

(
f 1
xxx + f 1

xyy + g1
xxy + g1

yyy

)
+

1
16β0

[
f 1
xy

(
f 1
xx + f 1

yy

)
− g1

xy

(
g1

xx + g1
yy

)
− f 1

xxg
1
xx + f 1

yyg
1
yy

]
to determine the stability of Hopf bifurcation periodic solution, where all partial derivatives are
evaluated at bifurcation point (x, y,K) = (0, 0,K0), and

f 1
xxx(0, 0,K0) = −6N0

(
N2

0

M0
a4 + N0a5 + M0a6

)
,
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f 1
xyy(0, 0,K0) = −2

(
3N0

M0
a4 + a5

)
,

g1
xxy(0, 0,K0) = 2

[
3N2

0

(
1+

N0

M0

)
a4+2N0(M0+N0)a5+M0(M0+N0)a6

]
,

g1
yyy(0, 0,K0) = 6

(
1 +

N0

M0

)
a4,

f 1
xx(0, 0,K0) = −2

(
rN2

0

K0M0
+

N2
0

M0
a1 + N0a2 + M0a3

)
,

f 1
xy(0, 0,K0) = −

2rN0

K0M0
−

2N0

M0
a1 − a2,

f 1
yy(0, 0,K0) = −

2
M0

(
r

K0
+ a1

)
,

g1
xx(0, 0,K0) =2

[
rN3

0

K0M0
+N2

0

(
1+

N0

M0

)
a1+N0(M0+N0)a2+M0(M0+N0)a3

]
,

g1
xy(0, 0,K0) =

2rN2
0

K0M0
+2N0

(
1+

N0

M0

)
a1+(M0+N0)a2,

g1
yy(0, 0,K0) = 2

[
rN0

K0M0
+

(
1+

N0

M0

)
a1

]
.

By direct calculations, we have

a(K0) = −
1

8K0M0β0

[
2K0

(
N4

0 +M0N3
0 +2N2

0 +M0N0+1
)

a2
1

− K0

(
N4

0−2M0N3
0−(3M2

0 − 2)N2
0−2M0N0−M2

0 +1
)

a1a2 + 2K0M0N0

(
M2

0−N2
0−1

)
a1a3

+ 2r
(
N4

0 +2N2
0 +1

)
a1 + K0M0N0

(
M2

0−N2
0−1

)
a2

2 − K0M2
0

(
3N2

0 +2M0N0−M2
0 +1

)
a2a3

− r
(
N4

0−M0N3
0 +2N2

0−M0N0+1
)

a2 − 2K0M3
0(M0+N0)a2

3 − 2rM0N0

(
N2

0 +1
)

a3

− 3K0M0β0

(
N2

0 +1
)

a4 + K0M0β0

(
N2

0−2M0N0+1
)

a5 + K0M2
0β0(2N0−M0)a6

]
. (5.5)

Denote
σ2 = −

a(K0)
α′(K0)

. (5.6)

Recall that α′(K0) > 0, and one can obtain the result of Theorem 2.2 by the Poincaré-Andronov-Hopf
bifurcation theorem [40].

Appendix B. The proof of Theorem 3.1

Let D = diag(d1, d2), E = (u, v), and L = D∆ + JE(Ē). Then, the linearized system of (1.5) at Ē is

Et = LE. (B.1)

The eigenvalues of the operator L are the eigenvalues of the matrix −µnD + JE(Ē), ∀n ≥ 1, where

JE(Ē) =

(
a11 a12

a21 a22

)
.
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The characteristic equation of −µnD + JE(Ē) is given by

gn(λ) , |λI + µnD − JE(Ē)| = λ2 + Mnλ + Nn,

where
Mn = (d1 + d2)µn − Θ1, Nn = d1d2µ

2
n − (a11d2 + a22d1)µn + Θ2.

(H3) implies that a11 < 0, then Mn > 0 and Nn > 0. The roots λn,1 and λn,2 of gn(λ) = 0 all have
negative real parts.

We claim that there exists a positive constant δ̄ such that

Re{λn,1}, Re{λn,2} ≤ −δ̄, ∀n ≥ 1. (B.2)

In fact, let λ = µn%, then
gn(λ) = µ2

n%
2 + Mnµn% + Nn , ḡn(%)

and
lim
n→∞

ḡn(%)
µ2

n
= %2 + (d1 + d2)% + d1d2 , ḡ(%).

Notice that ḡn(%) = 0 has two negative roots −d1 and −d2. By continuity, there exists an n0 such that
the two roots %n,1 and %n,2 of ḡn(%) = 0 satisfy

Re{%n,1}, Re{%n,2} ≤ −
d̂
2
, d̂ = min{d1, d2}, ∀n ≥ n0.

In turn, Re{λn,1}, Re{λn,2} ≤ −
d̂
2 , ∀n ≥ n0.

Denote
max

1≤n≤n0
{Re{λn,1},Re{λn,2}} = −$.

Then, $ > 0, and (B.2) holds for δ = min{$, d̂
2 }. This implies that all eigenvalues of L lie in {Re λ ≤

−δ̄}. Therefore, Ē is locally, uniformly, asymptotically stable. The proof of Theorem 3.1 is completed.
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