Research article

A note on Kaliman's weak Jacobian Conjecture

  • Received: 07 July 2024 Revised: 22 September 2024 Accepted: 08 October 2024 Published: 25 October 2024
  • MSC : 13F20, 14R15

  • We improve Kaliman's weak Jacobian Conjecture by the Hurwitz formula and resolution of singular curves. Furthermore, we give a more general form of Kaliman's weak Jacobian Conjecture.

    Citation: Yan Tian, Chaochao Sun. A note on Kaliman's weak Jacobian Conjecture[J]. AIMS Mathematics, 2024, 9(11): 30406-30412. doi: 10.3934/math.20241467

    Related Papers:

  • We improve Kaliman's weak Jacobian Conjecture by the Hurwitz formula and resolution of singular curves. Furthermore, we give a more general form of Kaliman's weak Jacobian Conjecture.



    加载中


    [1] H. Bass, E. H. Connell, D. Wright, The Jacobian Conjection: Reduction of degree and formal of expansion of the inverse, Bull. Aust. Math. Soc., 7 (1982), 287–330.
    [2] M. De Bondt, D. Yan, Irreducibility properties of Keller maps, Algebra Colloq., 23 (2016), 663–680. https://doi.org/10.48550/arXiv.1304.0634 doi: 10.48550/arXiv.1304.0634
    [3] N. Chau, Pencils of irreducible rational curves and plane Jacobian Conjecture, Ann. Polon. Math., 101 (2011), 47–53. https://doi.org/10.48550/arXiv.0905.3939 doi: 10.48550/arXiv.0905.3939
    [4] A. Essen, Polynomial Automorphisms and the Jacobian Conjecture, Berlin: Birkhäuser Verlag, 190 (2000). http://doi.org/10.1007/978-3-0348-8440-2
    [5] P. Jedrzejewicz, J. Zieliński, An approach to the Jacobian Conjecture in terms of irreducibility and square-freeness, Eur. J. Math., 3 (2017), 199–207. http://dx.doi.org/10.1007/s40879-017-0145-5 doi: 10.1007/s40879-017-0145-5
    [6] S. Kaliman, On the Jacobian Conjecture, Proc. Amer. Math. Soc., 117 (1993), 45–51. http://dx.doi.org/10.2307/2159696 doi: 10.2307/2159696
    [7] Q. Liu, Algebraic geometry and arithmetic curves, New York: Oxford University Press, 2002.
    [8] M. Miyanishi, A geometric approach to the Jacobian Conjecture in dimension two, J. Algebra., 304 (2006), 1014–1025. http://dx.doi.org/10.1016/j.jalgebra.2006.02.020 doi: 10.1016/j.jalgebra.2006.02.020
    [9] D. Mumford, Algebraic geometry I: Complex projective varieties, New York: Springer-Verlag, 1976.
    [10] J. H. Silverman, The arithmetic of elliptic curves, Berlin: Springer-Verlag, 2009. Available from: https://link.springer.com/book/10.1007/978-0-387-09494-6
    [11] S. Smale, Mathematical problems for the next century, Math. Intell., 20 (1998), 7–15. http://dx.doi.org/10.1007/BF03025291 doi: 10.1007/BF03025291
    [12] C. Sun, K. Xu, On tame kernels and second regulators of number fields and their subfields, J. Number Theory, 171 (2017), 252–274. http://dx.doi.org/10.1016/j.jnt.2016.07.009 doi: 10.1016/j.jnt.2016.07.009
    [13] D. Zhang, C. Sun, Remarks on the $K_2$ group of $\mathbb{Z}[\zeta_p]$, AIMS Math., 7 (2022), 5920–5924. http://dx.doi.org/10.3934/math.2022329 doi: 10.3934/math.2022329
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(331) PDF downloads(55) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog